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REGULARITY OF THE VALUE FUNCTION FOR A TWO-DIMENSIONAL
SINGULAR STOCHASTIC CONTROL PROBLEM*

H. METE SONER AND STEVEN E. SHREVE

Abstract. It is desired to control a two-dimensional Brownian motion by adding a (possibly singularly)
continuous process to it so as to minimize an expected infinite-horizon discounted running cost. The
Hamilton-Jacobi-Bellman characterization of the value function V is a variational inequality which has a
unique twice continuously differentiable solution. The optimal control process is constructed by solving the
Skorokhod problem of reflecting the two-dimensional Brownian motion along a free boundary in the -V V
direction.
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1. Introduction. We study regularity of the solution of the variational inequality
associated with a two-dimensional singular stochastic control problem with a convex
running cost. The solution u of this variational inequality, which is the value function
for the control problem, is shown to be of class C2. We also study the regularity of
the free boundary in E2 which divides the region where u satisfies a second-order
elliptic equation from the region where it does not. The free boundary is shown to be
smooth, and this fact is instrumental in our construction of the optimal process for
the stochastic control problem.

Previous work on the regularity of the value function in singular stochastic control
has focused on one-dimensional problems. Beneg, Shepp, and Witsenhausen (1980)
suggested that the value function for these problems should be of class C2 and used
this so-called "principle of smooth fit" to determine some otherwise free parameters
that arose in the solution of their problems. It has been used in the same way by
Harrison (1985), Harrison and Taylor (1978), Harrison and Taksar (1983), Karatzas
(1981), (1983), Lehoczky and Shreve (1986), Shreve, Lehoczky, and Gaver (1984), and
Taksar (1985). (But see Menaldi and Robin (1983), Chow, Menaldi, and Robin (1985),
and Sun (1987) for a variational inequality approach to singular control that does not
use the principle of smooth fit.) An important question is whether the principle of
smooth fit can be expected to apply to multidimensional singular control problems,
or is it strictly a one-dimensional phenomenon. Karatzas and Shreve (1986) suggested
that it might apply in higher dimensions. These authors studied the singular control
of a one-dimensional Brownian motion under a constraint on the total variation of
the control process (a "finite-fuel" constraint). The fuel remaining constitutes a second
state variable, and the value function for this problem was found to be of class C
jointly in both state variables. One should observe, however, that the second state
variable in this problem is not a diffusion; indeed, the fuel remaining is constant until
control is exercised, at which time it decreases an amount equal to the displacement
caused by the control.
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This paper concerns the control of a two-dimensional Brownian motion, and
control can cause displacement in any direction. Thus, the discovery of a C2 value
function provides strong support for belief in a widely applicable principle of smooth
fit. Nevertheless, the argument of this paper depends heavily on the fact that only two
dimensions are involved (see Remark 6.2), and we have not found a way to obtain a
similar result in higher dimensions.

This paper is organized as follows. Section 2 defines the underlying stochastic
control problem, and 3 relates it to a free boundary problem, the so-called Hamilton-
Jacobi-Bellman (HJB) equation. Section 4 constructs a C ’1, nonnegative convex
solution u to the HJB equation and proves its uniqueness. Sections 5-10 upgrade the
regularity of u to C2. The key idea here is to use the gradient flow of u to change to
a more convenient pair of coordinates. This is a generalization of the device used by
many authors in one-dimensional problems of differentiating the Bellman equation so
as to obtain a more standard free boundary problem. In 11 the free boundary is
shown to be of class C2’ for any c (0, 1). In 12 we return to the stochastic control
problem, which now reduces to the Skorokhod problem of finding a Brownian motion
reflected along the free boundary in the -Vu direction. The established regularity of
u and the free boundary allow us to assert the existence and uniqueness of a solution
to the Skorokhod problem and finally complete the proof, begun in 3, that u is the
value function for the stochastic control problem of 2.

2. The singular stochastic control problem. Let { W, 0 =< <} be a standard,
two-dimensional Brownian motion defined on a complete probability space (1), , P),
and let {@t} be the augmentation of the filtration generated by W (see Karatzas and
Shreve (1987, p. 89)). The state process for our control problem is

(2.1) Xt

where x is the initial condition and the control process pair {(N,, r,); 0=< <o} is
{,}-adapted and satisfies the conditions:

(2.2) IN, I= 1, V0=<t<o a.s.,

where I" denotes the Euclidean norm, and

(2.3) sr is nondecreasing, left-continuous, and ro 0 a.s..

The process N gives the direction and r gives the intensity of the "push" applied by
the controller to the state X.

Given control processes N and ’, we define the corresponding cost

Io(2.4) V.(x) E e-’[h(X,) dt + d],

where h:R-R is a strictly convex function satisfying, for appropriate positive
constants Co, Co, and q:

(2.5)

(2.6)

(2.7)

(2.8)

loc\ ]

O<=h(x)<=fo(l+[x[ q) Wx2,

IVh(x)l<-_ fo(l+h(x)) ’x,
colyl<-Oh(x)y y<=Co]yl2(l+h(x)) Vx,y2.
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Without loss of generality, we also assume that

(2.9) 0 h(0) <_- h(x) Ix

For x e N2, we define the value function

(2.10) V(x) a__ inf VN,c(X).
N,

3. The Hamilton-,lacobi-Bellman equation. We shall show that the value function
V of (2.10) is characterized by the Hamilton-Jacobi-Bellman (HJB) equation

(3.1) max{u-Au-h, IVul2-1}=O.
The following theorem gives a partial description of the relationship between V and
the HJB equation. More definitive results are proved in 12.

THEOREM 3.1. Let u :2__) be a convex, C- solution of (3.1). Then u <- V. For a
given x , suppose there exists a control process pair N, ) such that Vs,c(x) < c and
the corresponding state process (2.1) satisfies

(3.2) u(Xt)-Au(Xt)- h(Xt)=0 Vt (0, o), a.s.,

fot l{Ns=-Vu(Xs)} ds t G [0, cx3),/t

u(Xt)- u(X,+) ,+- t Vt [0, ),

(3.3) a.s.,

(3.4) a.s.

Then

u(x) V(x)= v,c(x),

i.e., N, ) is optimal at x.

Proof Let x and any control process pair (N, ’) be given. Applying It6’s rule
for semimartingales (Meyer (1976, pp. 278, 301)) to e-’u(Xt), adjusting the result to
account for the fact that sr is left-continuous rather than right-continuous, and observing
that ]V ul =< 1 so E to e-SVu(Xs) dWs 0, we obtain for t>= 0:

u(x)=Ee-’u(X)+E e-’[u(X)-Au(X)-h(X)] ds

(3.5) +E e-h(X) ds+ E [-e-SVu(X) N] d

+E E e-’[u(X)-u(Xs+)+Vu(X). N(r+-rs)].
Os<t

The second and fifth terms on the right-hand side of (3.5) are nonpositive because of
(3.1) and the convexity of u, respectively. Because IVul -< 1, the fourth term is dominated
by E to e d’, and thus we have

(3.6) u(x)<-Ne-u(X)+ e-’[h(Xs) ds+d].

We wish to let t- oo in (3.6) to obtain

(3.7) u(x) <= e-[h(Xs) ds + d] Vs,(x).
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Assume E o e-’h(X)< oo, for otherwise (3.7) is obviously true. This implies that

lim E e-th(Xt) O.

Now (2.8), (2.9), and the inequality IVul <_ 1 (from (3.1)) imply that for all yR2,

2
(3.8) u(y) <- u(0) + [y[ <= u(0)+ 1 +[yl2<- u(0)+ 1 +-- h(y),

C0

SO

li__m E e-tu(Xt) O.

We may therefore pass to the limit in (3.6) along a sequence {tn}= such that
E e-t,,u(X,,) -, 0 as tn - oo, and (3.7) follows. Since (N, ’) is an arbitrary control process
pair, we have u(x)<_- V(x).

If (3.2)-(3.4) are satisfied, then the second and fifth terms on the right-hand side
of (3.5) are zero, and the fourth term is E Io e- d. It follows that equality holds in
(3.6), and hence also in (3.7), i.e.,

u(x) V(x) v(,)(x) u(x).

Remark 3.2. Equation (3.1) is similar but not equivalent to a problem arising in
elastic-plastic torsion (Ting (1966), (1967), Duvant and Lanchon (1967), Brezis and
Sibony (1971)). The elastic-plastic problem is posed on a bounded domain flcN",
and is to minimize

J(v) a ffa 1 [2lV
over K {v H(fl); IlVvl]N 1}. Equivalently, one seeks u K satisfying

f h(v-u)- f Vu. (Vv-Vu)NO VveK.

If u solves the elastic-plastic torsion problem, then

(au+h)(lVu[-1)=O,

but u+k may be negative. In the special case that k is a nonnegative constant
function, a solution to the elastic-plastic problem also satisfies a variational inequality
like (3.1) (see Evans (1979, 6), but such an h is not interesting in the control problem.

4. Solution of the HamiltonaeoN-Bellman equation. The existence of a W;
solution to the HJB equation (3.1) follows from a modification of Evans (1979) (see
also Ishii and Koike (1983)), who treated a bounded domain and general h and space
dimension. We need to refer to this construction in the next section, so we provide it
here.

Let B’R be a C function satisfying

(4.1i) /3(r) =0 Vr (-oo, 0],

(4.1ii) /3(r) > 0 Vr (0, oo),

(4. liii) /3(r) r- 1 Vr e [2, oo),

(4.1iv) /3’(r)=>O, /3 "( r) O VreN.
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For each e > 0, we form the penalization function

(4.2) fl(r)----a/3 Vr I,
e

and we consider the penalized equation

(4.3) u-Au +/(lul.) h.

The following lemma is proved in the appendix.
LEMMA 4.1. For every e (0, 1), there exists a nonnegative, convex, Cesolution u

to (4.3). There exist positive constants C1, C2, and p, indepenent of e, such that for all
e (0, 1), for all x

(4.4) 0 <- u(x)<= Cl(1 / Ixl),

(4.5) IVu (x)l_-< CI(1 / Ixl ),
and for every y

(4.6) 0 <- Deu (x)y. y <= C21 y[e(1 + u (x)).

DEFINITION 4.2. We define a norm on the vector space of 2 x 2 matrices by

a _a_ x/trace (AAr ).

If A is symmetric with eigenvalues h and he, then

(4.7) Ilall ,/A / A.
THEOREM 4.3. The HJB equation (3.1) has a nonnegative, convex solution u

satisfying

(4.8) IID u(x)ll C3(1 /lxlm), I.e. xR,
for some C > 0 and m N.

Proof Because D2u is locally bounded uniformly in e (0, 1), we may choose
a decreasing sequence { e,}= with limit zero such that { u-}= and {Vu- },__ converge
uniformly on compact sets, and {Deu-}=l converges in the Lloc-weak topology.
Define u limn_o u ", so that Vu lim,_.oo Vu- and the weak* limit of {D2u-}__l is
Deu. Passage to the limit in (4.3) gives (3.1).

LEMMA 4.4. Let u Wle;, be a nonnegative, convex solution to the HJB equation
(3.1), and define
(4.9) cg A {X 2; IVU(X)I2 < 1}.

Then for every unit vector v,

(4.10) u a--(D2u)v v>0 on

cg is bounded, and u attains its unique minimum over 2 inside

Proof We have

(4.11) u-Au=h on

21 2 C4,aand h e Ci;c(R ), so u e (cg) for all a e (0, 1). Differentiating (4.11), we obtain

u-Au h on

and since h> 0, relation (4.10) holds. Equation (4.11) also implies that u _-> h on
and since IVul -< 1 on R2 but h grows at least quadratically (see (2.8)), c must be
bounded.
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Let 6 (0, 1/2) be given, and choose x R2 such that

u(x) <= u(x) + , Vx .
Define

I[i(X) U(X) "-i- 3IX X612 [X [12,

and note that 6 attains its minimum over 2 at some point yS. In particular,

(4.12) O=Vq(y)=Vu(y)+26(y-x).

But also

u(y) + ,Sly X612--" d/(y) <= qt(x) u(x) <-- u(y) + 3.

It follows that lya-xl_-<l, and returning to (4.12), we see that IVu(ya)l_-<2,<l.
Therefore, y for all 3 (0, 1/2), and the sequence {yl/n}= accumulates at some
yO . From (4.12) we have Vu(y) =0, so yO , and the convexity of u on 2 implies
that u attains its minimum at Yo. This minimum is unique because of (4.10).

THEOREM 4.5. There is only one nonnegative, convex solution u WI25 to the HJB
equation (3.1).

Proof. Let Ul and ua be two nonnegative, convex solutions to (3.1), and let yO be
the point where u2 attains its minimum. Given 3 > 0, define

3(X) -- Ul(X) U2(X) 31x-- yOI2 ’X G [2.

The function q attains its maximum at some x f2, and 0=Vo(x)
Vu1(xa)--VUa(Xa)--23(xa-- y). Consequently,

1 >-_lVu(x)12=lVu2(x)12+4321x-yla+43Vu(x) (x-y).

Because ua is convex, VUE(X) (x-y)>=O, so either IVu2(x)12 1 or x=y. This
last equality would imply that Vu(x) =0, so in any event, IVua(x)12 1. From (3.1)
we have

AU2(X6) U2(X6 h(x).

Because # attains its maximum at x, we have from the Bony maximum principle
(Bony (1967), Lions (1983))

0 >- lim inf ess A q (x)

lira inf ess [Aul(x) Aua(X) -43]

>=U1(X)--U2(X)--43.

It follows that for all x R2,

Ul(X) Ua(X q93(X q- 3IX yO[2

Letting 350, we obtain ul-< u2. The reverse inequality is proved by interchanging ul
and u2.
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Remark 4.6. Throughout the remainder of the paper, u will denote the unique
nonnegative, convex solution in Wt2g to (3.1). The set c will be given by (4.9), and

2,o 2yO c will denote the unique minimizer of u. We shall prove that u C loc for all
a (0, 1) (Theorem 10.3), 0c is of class C2" for all a (0, 1) (Corollary 11.3), and
n(x). Vu(x)-> r for all x 0c, where n(x) is the outward normal to at x and r is
a positive constant (Lemma 12.2).

5. An obstacle problem. Let us return to the construction of u in the proof of
Theorem 4.3 as the limit of a sequence of functions {ue-}=, where each u e- satisfies
(4.3). Define we. IVu  l 2 and compute the product of Vu e,, with the gradient of both
sides of (4.3) to obtain

(5.1)

where

H,, =Vh. Vu,,-IID-u,,II.
Along a subsequence, which we also call { e,}=, {He.}= converges to

(5.2) =a Vh. Vu-X,

where X is the limit of IIO=uo 2 in the weak* topology on Lloc. We will show that

w

solves an obstacle problem involving/-, and we will then obtain WI2,P regularity for
w by invoking the theory of variational inequalities.

For r > 0 chosen so that B(0) a__ {x 2; Ixl < r} contains , define

K,.A{v W’:(Br);O<-_v<=I on Br and v-16 W’Z(B)}.
We pose the problem of finding K such that

lfn Vq. (Vv Vq)-> (ffI-w)(v-)(5.3)
2 o o

LEMMA 5.1. The function w IVul 2 solves (5.3).
Proof Let v K be given. From (5.1) we have

fn (we"-l Awe"-He") (v-we")
(o) 2

(5.4)

I 2’e, (we")(D=ue")vue"" Vue"(v- w’")"
r(o)

0 whenever we,, < 1, and v we- < 0 wheneverThe function u e- is convex,/3e,,(w e-

w e,, > 1. Therefore, the right-hand side of (5.4) is nonnegative, and integration by parts
yields

1
(v we")Vw"’n+ Vw" (Vv-Vw’)

2 I,.(o 2 o
(.)

>-I (He"-we")(v-we")’
Br(O)

where n is the outward normal on OB(O). Now we- - v uniformly on OB(O), w e- - w
uniformly on Br(O), and He’’ - H, Vw e,, - V w, both the latter convergences being weak*
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in L(Br(O)). Because the weak* limit of IVWenl 2 dominates [Vw[2, we may pass to the
limit in (5.5) to obtain

IIR Vw.(Vv Vw)->_ IR (ffI-w)(v-w) VvEKr.(5.6)
2 ,.(0) ,.(o)

T-IEORE 5.2. For every p (1, ), w & [V u[ W;p
Proof This is a classical result. See, for example, Lemma 5.1 and Theorem 3.11,

p. 29 of Chipot (1984).
COROLLARY 5.3. We have w C’(2) for any a (0, 1).
Proof This follows from Sobolev imbedding (Gilbarg and Trudinger (1983, Thin.

7.17, p. 163)).
Remark 5.4. Integration by parts allows us to rewrite (5.6) as

(w--1/2Aw--ffI)(v--w)O /Vgr,
r(O)

for all sufficiently large r, and so

(5.7) max {w _1Aw-/, w- }=0.
Now X appearing in (5.2) dominates IIDZull, and so is dominated by

(5.8) H a Vh. Vu- IIDu .
But let x e be given and choose e > 0 such that the closed disk B(Xo) is contained
in . Choose a positive integer N such that

[Vu"(x)[< 1 Vn_--> N, xe B2(/).
From (4.1i), (4.2), and (4.3), we see that

u - -Au ,, h on Bz(X).
According to Gilbarg and Trudinger (1983, Thm. 4.6, p. 6), for every a (0, 1),
lunlc2.((xo)) is bounded uniformly in n _>-N. Thus, on B(x), D2u ,, is continuous
and converges uniformly to D2u, 1’ []D2u 2, and H. We conclude that (5.7)
remains valid if H is replaced by H, i.e.,

(5.9) max {w-1/2hw- H, w- 1}=0.
6. D2u insitle . Inside the set defined by (4.9), u satisfies the elliptic equation

u- hu h, and is therefore smooth (at least C4’ for all a e (0, 1) because h is C2’1).
In this section, we describe the behavior of D2u as 0)g is approached from inside

LEMMA 6.1. Let z 0c be given. As x approaches z, D2u(x) approaches the
matrix

A(z)(u(z)-h(z))[ u2(z)
-u(z)u(z) u(z)

where ui denotes the ith partial derivative of u.

Proof Because w= [Tu[2= 1 on 0c, A(z) can be characterized as the unique 2x2
positive semidefinite matrix with eigenvalues zero and u(z)-h(z), and with Vu(z) an
eigenvector corresponding to the eigenvalue zero. Let v be a unit vector orthogonal
to the unit vector Vu(z). It suffices to show that

(6.1) lim Du(x)Vu(z)=O
x

(6.2) lim DZu(x), (u(z)- h(z)),.
C
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Because w IV ul 2 attains its maximum value of 1 at z, and Vw is continuous (Corollary
5.3), we have

0= Vw(z)= lim Vw(x)= lim D2u(x)Vu(x).

Since Vu is continuous and Du Lloe, (6.1) follows.
Let 0=Al(x)=<A2(x) denote the eigenvalues of D-u(x). Then u(x)-h(x)=

Au(x)=A(x)+,2(x) for all x % and (6.1) shows that limx_,z.x A(x)=0. Con-
sequently,

(6.3) lim A2(x) u(z)- h(z),

which is thus nonnegative. If u(z)- h(z)= 0, then D2u(x) approaches the zero matrix
and (6.2) holds. If u(z)- h(z) >0, then (6.1) implies that any unit eigenvector corre-
sponding to A(x) must, as x approaches z, approach colinearity with V u(z).
Hence, any unit eigenvector corresponding to ,2(x) approaches colinearity with v, and
(6.2) follows from (6.3).

Remark 6.2. The characterization of A(z) used in the proof of Lemma 6.1 makes
critical use ofthe fact that our problem is posed in two dimensions. The two-dimensional
nature of the problem also plays a fundamental role in Lemma 8.1, and together these
lemmas provide the basis for 10, where the existence of a continuous version of D2u
on 2 is established.

THEOREM 6.3. For every a (0, 1), u C2’a(q), i.e., D2u restricted to c has an
a-H61der continuous extension to c.

Proof Because IV ul 1 on 0% we can choose an open set G
is bounded away from zero on C\G. Elliptic regularity implies the H61der continuity
of D2u on (, so it suffices to prove uniform H61der continuity of D2u on C\G.

Let a unit vector , be given, and define on

if z 0,

Observe that 7/-y 0 and 17/I Y] 1. Therefore,

Au--(D2u)7/ 7/q-(D2u)’y" on \G.

Direct calculation shows that on \G,

(D2u)p p--(D2u)z z+2(v. 7/)(D2u)7/ 2,+(/7.7/)2(D2u)7/ 7/

=lzl2(Au-(D2u)7/ 7/)+2(v. 7/)(D2u)7/ (v-(v. 7/)7/)

q-(t," 7/)2(D2u)7/" 7/.

Since Au u-h and 2(D2u)7/ (Vw/lVul) on \G, we have

(6.4)

1 (Vw. Vu))
on \G.
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All the terms appearing on the right-hand side of (6.4) are uniformly HiSlder continuous
in \G (recall Corollary 5.3).

7. The gradient flow. Recalling Remark 4.6, we let yO denote the unique
minimizer of u. Using the strict convexity of u in (Lemma 4.4), we choose 6 > 0,
Ix > 0 such that

(7.1) B2(y)

(7.2) D2u(x)y y >- lyl2 Vx n2(y),

(7.3) _-< IVu(x)l=<_- VxOB(y),

(7.4) Vu(y+60)" O >- tx /0 Sa,

where Sa a--OBa(O) is the set of unit vectors in 2. For 0 Sa, we define the gradient
flow 6(t, O) to be the unique solution to the differential equation

d
(7.5)

dt
(t, O)=Vu(qt(t, 0)), t>=O,

with the initial condition

(7.6) q(0, 0)= yO+ 60.

We will find it convenient to use q to change coordinates in -. The following theorem
justifies this.

THEOREM 7.1. The map q is a homeomorphism from [0, ] x S1 onto \B(y).
Proof Let us for the moment fix OS and define n(t)&(t, O)-y for all t0.

Because [Vu[l, we have [n(t)lt+6, and y+(t/t)n(t)B2(y) for all t>0.
We conclude from the convexity of u on 2 and from (7.2) that for > 0:

d
1 yOd[n(t) =2Vu( +n(t)). n(t)

--2[Vu(y+n(t))-Vu(y+6tt n(t))].n(t)
(7.7) +2 u

s/

2 D2u(y + zn(t))n(t), n(t) dr

2 (1A )In(t)[2.

Since In(0)[== 2, we can integrate (7.7) to obtain the inequality

(7.8) [0(t, 0)-y1262 1 v e2"(’) VtO, OS1.

One consequence of (7.8) is that

(7.9) 16(s, 0)-6(0, )l >0 Vs>O, OSl, S
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Now let s, [0, o) and 0, q S be given. Again using the convexity of u, we
may write

IO(t/s, o)-4,(t, )12-Iq,(s, 0)-q,(0, )12

(7.10) +2 [7u(p(r+s, O))-Vu(d/(r, q))]. [p(r+s, 0)- O(r, q)] dr

_>-I(s, 0)- q,(0, )1.
If 0, q are in $1 and tl, t2 are in [0, c) and t t2, then (7.9), (7.10) imply that
4,(t, 0) 4,(t, q). If t t2 but 0 q, then the uniqueness of solutions to (7.5) implies
that 0(tl, 0) 0(t:, q). This concludes the proof that q, is injective.

It is clear from its definition that q, is continuous. Define

D _a q([0, o) x Sl) C [2\Ba(y

to be the range of q. Let x D and e >0 be given. It follows from (7.8) that there
exists T > 0 such that

D U(x) 0([0, T] x $1).

But an injective, continuous map on a compact set has a continuous inverse, so -1
is continuous at x.

It remains to show that D=\Ba(y). There is a function ’[0, oo)x-R such
that

p t, fl g t, cos fl, s n fl ’(t,)e[0, oo)x,

and 0 is continuous and locally injective. It follows from Deimling (1985, Thm. 4.3,
p. 23) that

D (e\B(y)) ((0, ) x)

is open. On the other hand, if {xn}7_l C D is a sequence with limit x el2, then (7.8)
shows that {q,-(xn)}= is bounded and thus has an accumulation point (t, 0)e
[0, oo)x S. The continuity of g, implies that x= q,(t, 0), so D is closed. It follows
that D 2\Ba (y).

COROLLARY 7.2. For 0 S and y [1/2, 1 ], define

(7.11) Tr(O)&inf{t>=O; IVu(d/(t, 0))l2>- 3/}.

Then

sup Tv(0)-<-sup Tl(0)<o.
1/2=<yl OS
OS

Proof According to Lemma 4.4, is bounded. We can use (7.8) to choose
t* (0, ) such that

qt([0, t*] x S’).

THEOREM 7.3. The homeomorphism is Lipschitz continuous on compact subsets of
[0, co) St, and - is Lipschitz continuous on all of \Ba(y).
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Proof It follows immediately from (7.5) that I(d/dt)O(t, 0)1<_-1 for all (t, 0)
[0, c) x $1. Now let T > 0 be given and use Theorem 4.3 to choose a Lipschitz constant
C for V u on 0([0, T] x $1). For 0, q $1 and t [0, T], we have

[@(t, O)-d/(t, ,)1_-< Ig,(o, 0)-@(0, )1

+ u((,, 0l-u((,l

Gronwall’s inequality gives

and the local Lipschitz continuity of 0 is proved.
To prove the global Lipschitz continuity of 0-, we let x, x NB(y) be given

and define (t, 0) 0-(x), (t, 0) 0-(x). Assume without loss of generality that

Ix xl N 1 and that h t. Set s q t. According to (7.10) and (7.8),

x’- xl I(s, 0,) (0, 0)1

(7.12)
[O(s, O)-y]-[y-O(O, 0)[

1 v e(’-

6 lv (s ).

If 0_<-- s _<-- 6, then (7.12) yields

1
(7.13)

If s and/ 1, (7.12) again yields (7.13). Finally, if s 6 and 0 </6 1, (7.12)
yields Ix x[ 6-s, so

(7.14) ]t-t](6-)/]x’-x]/"a(6-a)/a[x-x2].
Relations (7.14) and (7.15) imply the global Lipschitz continuity of the first component
of -, i.e., there exists a constant L> 0 such that

(7.15) ]t- t2l LI O(t, 0,) O(t2, 0)] V(t, 0), (t, 02) [0, ) x

Now let x, xBa(y) be given, and define (fi, 0), (t, 02), and s= t- t2> 0
as before. From (7.10), (7.5), and (7.6), we have

Ixl- xl 10(s, 0a) 0(0, 0)l

-s+6lO-O].

Relation (7.15) gives us

1 1 1
10-0 It,-tl+ Ix -xl ( + lx’-xl.
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Remark 7.4. In much of what follows, we will use the coordinates (t, 0)
[0, )x S rather than the coordinates x RZ\B(y). We may identify S with the unit
circle, and let [0, c) S have the product of Lebesgue measure and arc length measure.
An important consequence of Theorem 7.3 is that 0 maps measure zero subsets of
[0, c) S onto Lebesgue measure zero subsets of RZ\B(y). Likewise, 0- preserves
measure zero sets.

8. W2’ regularity for the obstacle problem. The purpose of this section is to show
that the function w IV ul 2 is in WI2;. This improves the regularity result of Theorem
5.2.

LEMMA 8.1. We have

(8.1) (D2u)Vu=O, [[D2u[[ =Au a.e. on

Proof By the definition of c, w attains its maximum value of 1 at every point in
R2\, so Vw=0 everywhere on R\cg. But Vw= 2(D2u)Vu almost everywhere on
and the first part of (8.1) follows. Since D2u is singular almost everywhere on
the second part of (8.1) also holds.

Remark 8.2. Because D2u is positive definite on and positive semidefinite
almost everywhere on 2, and since (recalling Remark 7.4)

d
d--t w(d/(t, 0))= 2DZu(d/(t, O))Vu(d/(t, 0)). Vu(t(t, 0))

(8.2)
a.e. (t, 0) [0, c) S,

the function - w(O(t, 0)) is nondecreasing for almost every 0 S. In particular, with
Ta(O) defined by (7.11), we have

(8.3) w(O(t, 0))=-1 Vt>= TI(0), a.e. OS.
THEOREM 8.3. The function w [V/,/I 2 is in W2’.
Proof Recall that w satisfies (5.9), where for all a (0, 1), n & Vh. Vu -IID2ull =

is of class C’" inside c, and H is defined up to almost everywhere equivalence on
2\ c. We define

vx
h(x) Vu(x)-[(u(x)-h(x))+]2 ifx[2\c.

Now u- h Au _--> 0 on , so u- h _-> 0 on 0. Theorem 6.3 and Lemma 6.1 then show
that /-) is locally H61der continuous with exponent a for any a (0, 1). Because of
(3.1) and Lemma 8.1,

u h =< Au J2u a.e. on 2\.
But Au >= 0 almost everywhere a, so

[(u h)+]2 __< 92u = a.e. on R2\
Therefore >-H amoSt everywhere R2\(, and H on c, so (5.9) yields

(8.5) max {w-1/2Aw-fI, w- 1}-- 0.

With the aid of (8.5) and the H61der continuity of/, we can obtain the W2’

regularity of w from the theory of variational inequalities. More precisely, choose r
so that ( c Br(O) and observe that the Dirichlet problem

/’ Br(O), qq-Aq on 0 on OBr(O)
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has a solution q which is in C2"a(Br(O)) for any a(0, 1) (Ladyzhenskaya and
Ural’tseva (1968, Thm. 3.1.3, p. 115)). Set ___a w-q, so that W2’P(Br(O)) for any
pc (1,) and

(8.6)

(8.7)

Define

max {-1/2A, - 1 + q}=0 in Br(O),

=1 onOBr(O).

Lr{)c wl"2(Br(O));---t)--l- on Br(O and v-le W’(Br)},
and note from (8.6), (8.7) that Lr and

lI V’(Vv-V)>- I ,(v-’) VvLr.
2 (o) r(0)

It follows from Chipot (1984, Thm. 3.25, p. 49), that
W2"(Br(O)). On 2\Br(0), w 1.
COROLLARY 8.4. We have D2u wl’(c).

Proof Use the W1’ regularity of Vw in (6.4).

9. Lipschitz continuity of Tr. Recall the mappings Tr" S1 --) [0 oo) defined by (7.11)
for each y [1/2, 1]. The continuity of Vu implies the lower semicontinuity of each

Tv. In this section we prove that for each y [1/2, 1 ], T is, in fact, Lipschitz continuous.
LEMMA 9.1. We have

IVw(x)l
(9.1) K _a__ sup < c.

vS,,xe D2u(x)p v

Proof Let v, r/ $1 be given and set f& (D2u) v- v and g & V w. r/. Then in c,
f-Af=(DZh)v g-Ag=2VH, r/-g,

where Co> 0 is the constant in (2.8), and H, defined by (5.8), is in wl’cx((9) because
of Corollary 8.4. Furthermore, g =0_-<f on 0cC Therefore the maximum principle
implies that g- Kf<= 0 in % where

K1 (21IXTHII)+
o

In other words, V w. r/-<_ K(D2u) v" v. U
THEOREM 9.2. For each y [1/2, 1], the mapping Tv" $1-[0, c) is Lipschitz con-

tinuous with a Lipschitz constant which is independent of y.
Proof For each y [1/2, 1 ], define

%,=a {O(t, 0); 0<= < Tv(0)} (.J B(y)

(with q, 6, and y0 as in (7.1)-(7.6)). Each c is open, w < 3’ on c and w y on 0c.
For y[1/2, 1), we also have c c. Because of (4.10), Vw does not vanish on c, so
for fixed y [1/2, 1) and z 0c, the outward normal to c exists and is

Vw(z) 2DZu(z)Vu(z)n(z)=
IVw(z)i IVw(z)l

In fact D2w is continuous in and bounded in 2 (Theorem 8.3), so for every
3’ [1/2, 1),0cgv has bounded curvature, i.e., there are constants e > 0, Kv > 0 such that
for every z 0%, and for every x Be (z)"

(9.2) (x- z) n(z) Klx- zlZx 2\%.
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We may use the local boundedness of (d2/dt2)O(t, O)=1/2Vw(O(t, 0)) and the
Lipschitz continuity of 0 to choose a constant K2> 0 such that for every y [1/2, 1),
every/ [0, 1], and every 0, q $1:

(9.3) Iq(T(0) +/3, O)-O(T,(O), O)-Vu(O(T,(O), 0))1 <- K2/3 2,
(9.4) ]O(Tv(O)+fl, O)-O(Tr(O)+fl, )1-<_ g10- 1.
With K as in (9.1), choose L>max {1/2KK2, 1}. Let 0, qS1 be given with 10- ql <_ l/L,
and set

/3-L[O-I, z=O(T,(O), O), x=O(T(O)+, q).

Then (9.3), (9.4) imply the existence of vectors v, r/ BI(0) such that

x z+flVu(z)+K2v+K2[O-Pln.
We calculate

and

(x- z) n(z)
2/3D2u(z)V u(z). V u(z)

IVw(z)l
-t- K2/2n(z) p+ K2lO-qln(z)" q

>2

Klx- zl= KlgVu(z)+ K2fl2v+ K210- qll
__< 9Kv(L2 + K22L4+ K)I0- ul 2.

It is clear that for 10-ql sufficiently small, x Be(z) and

(x z) n(z) >- K,lx z[ 2,

from which we conclude (see (9.2)) that x 2\(r, i.e.,

Tv(q)-< Tv(0)+/3 Tv(O)+L]O-qI.

Interchanging the roles of 0 and q, we obtain

T(0)- T()l<=LlO-ql

for all 0, q S1 such that 10-ql is sufficiently small.
For each O eSI, the mapping tw(O(t, 0)) is strictly increasing on [0, T1(0)]

(see (8.2) and (4.10)). Therefore, the mapping y-> Tv(O) is continuous on [1/2, 1]. The
Lipschitz continuity of T follows from the uniform Lipschitz continuity of Tr for
y [, 1). [3

COROLLARY 9.3. With , 6, and yO as in (7.1)-(7.6), we have

(9.5) {@(t, 0); OS,/[0, Tl(0))} [..J B(y).

Proof Define to be the set on the right-hand side of (9.5). It is clear that c,
and because of (8.3) and Remark 7.4, the Lebesgue measure of c\ is zero. Let
x c\ be given, and define (t, 0) __a 0-(x). Then >= T(O), but because w(T(O), O)
1, we must in fact have > T(O). The continuit.y of T1 and w allows us to chose an
open neighborhood, of (t, 0) contained in c\c, and this contradicts the Lebesgue
negligibility of c\ c. l-]
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10. D2u outside qq. We saw in Lemma 8.1 that oZu is singular almost everywhere
in 2\ (. Indeed

(10.1) UllU1+Ul_u2=O, b/12Ulq-Uz2U2=0 a.e. on

and because u2 + u 1 on E2\ R, we have

(10.2) D2u Au [ u22 --UlU2]-UlU2 u2
a.e. on 2\ R.

Because u has continuous first partial derivatives on 2, the proof of continuity of
OZu on 2\( reduces to a search for a continuous version of u on this set. In order
for Du to be continuous across 0R, we must also have Au u h on 0R (see Lemma
6.1).

We shall construct the desired continuous version of &u in the (t, ) variables.
Indeed, if we set

A(t, O)=Au(d/(t, 0)) VOES > TI(O)

then a formal calculation relying on (10.2) and the constancy of w on R2\R leads to

d 1
02 2(10.3) A(t,

=-A2(t,O) VOWS’ >TI(o)

Integrating this equation and invoking the condition Au u- h on 0R, we obtain

u(O(T,(O), O))-h(O(Tl(O), 0))
A(t, 0)=

1 +(t- Tl(O))[u(tp(Tl(O), 0))- h(O(Tl(O), 0))]
(10.4)

VOeS1, >- TI(O).

The task before us is to show that with defined by (10.4), the function A qt -1 is a
version of Au on R2\R. This is essentially a justification of the formal differentiation
in (10.3), which involved third-order derivatives of u.

Let p" Rz--> [0, oo) be a C function with support in B(0) and satisfying p 1.
For n 1, 2,. ., we define mollifications of u by

(10.5) u(")(x) a u x-- p() d= n2 u()p(n(x- )) d.
FI

Then 7un and Du" are locally bounded, uniformly in n, and un u, 7u(n 7u,
and D-u" D2u in L]o. By passing to subsequences if necessary, we assume that
these convergences occur almost everywhere. We define for (t, 0)

(10.6) l(")(t, O) a--Au(n)(o(t 0)), n-- 1,2,. ,
(10.7) l(t, O)&Au(O(t, 0)),

and observe that l")(t, 0) - l(t, 0) for almost every (t, 0) [0, ) S (Remark 7.4).
LEMMA 10.1. The functions

(10.8) i"(t, 0)= VAu"(q,(t, 0)). Vu(q,(t, 0))

are locally bounded, uniformly in n.

Proof Observe first of all that

1/2A([V,/(n)[2) [[Jalg(n)[[2-] VA,n (n). (VU --Vu(n)),
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where (" is evaluated at (t, 0), and the right-hand side is evaluated at b(t, 0). It
suffices to obtain uniform local bounds on A(IVuI=) and VAu’. (Vu-u").

Define for i {1, 2} the functions

F)(x) Vu x--- p() d
i,i

n u x-- o()

=n u x-- .u x-- O()d,

n=l,2,...,

and note that these functions are uniformly bounded in n (Theorem 8.3). Then

([u(n)(x)[2)ii 2n6 f2 Vu() 7u()[p.(n(x-))p(n(x-))

+p(n(x-))p(n(x-))] dd

=n u x-- .u x--n

2n u x-- Vu x-- n P,()P(n)
n n

The last term is locally bounded in x, uniformly in n. The next-to-last term is

2(x+ u x- x-n - x-
which is also locally bounded in x, uniformly in n, because for all , e B(0),

x-- - x-- -sup
BI(X

This provides a uniform local bound on
On the other hand,

u((x) .(u(x) u((x)

x[Vu(x)-Vu(,)] Vp(n(x- f))p(n(x-,))

x- e),
x u(x)-u x-- o()o(),
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and the boundedness of this expression follows from the local Lipschitz continuity of
Vu. 0

Because of Lemma 10.1, a subsequence of {i(n}__l converges in the Loc-weak
topology to a function sr e Lc([0, oo) x $1). We assume without loss of generality that
the full sequence converges. For each nonnegative integer k, choose a number tk > k
such that {l(n)(tk, O)}n=, converges for almost every 0 S,, and define A.k(tk, O) to be
this limit. (Whereas l(.,. is defined up to almost everywhere equivalence on [0, o)
S1, the functions Ak(tk," are defined UP to almost everywhere equivalence on S1.)
We insist furthermore that to be chosen so that q(to, 0) cg for all O6S1. Then
Au(q(to, .)) is defined pointwise on S1 because Au is continuous on c, and so we
may require that

Ao(to, 0)=Au((to, 0)) V06S,.

For each k =0, 1,. ., define Ak .’[0, CX3)X SI- by

hk(t, O) =a hk(tk, 0)+ ’(S, O) ds,

so that any two versions k and k of this function have the property that the set
{0Sll there exists t[0, c] with k(t, 0) 5 k(t, 0)} has measure zero.

We now relate the functions Ak, k=0, 1,..., to the function of (10.7). Let q9

be a continuous, real-valued function on [0, )x S1, and define

(t, O)& qg(s, O) ds V(t, O) [0, co)x S1.

Fork=0, 1,...,

fsfo’a.(s,O)(s,O)dsdO
Ak(tk, O)(tk, 0)-- (S, O)q(S, O) as dO

$1

Is[lim l(n(tk, O)d(tk, 0)-- I((S, O)q(S, O) ds dO

lim l(( 0)

It follows that Ak almost everywhere on [0, tk] X S1. In particular, for any two
nonnegative integers k and m, Ak and Am agree almost everywhere on [0, tk tin] X S1,
and hence almost everywhere on [0, )x S. In paicular,

(10.9) Ao(t, O)=Au(O(t, 0)), a.e. (t, 0)e[0, m)xS,
and for almost every 0 S1,

(10.10) Ao(t, O)=Au(d/(to, 0))+ (s, O) as vt6[0, ).
to

LEMMA 10.2. Almost everywhere on the set

I]/--1([2\ () {( t, 0) [0, 030) X S TI(0)},
the function appearing in (10.10) is equal to A o.
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Proof From (10.8) we have

i> -+ (t ,-)(r> ,-)
=VAu(") Vu+Au Au

=(uu+u>u)+(u u =
+ U{"l u22 + u,,

Now Ull(n)u22 +Ullu 2Ul2(n)gl2 is locally bounded, uniformly in n, and converges
almost everywhere to 2 det D2u, which is zero on R2g. It follows from (10.1) that for
any function e C(R2),

lim [1(") -+(lo -)(1(") -)]

(n) (n), (n)lim [(u <">, + u u,),+( + u=. . u)]12 "2 11
n 2

=-lim (u{)u2+u,>u,),+(u +

Because the functions (") ott,-1 + (1 tl,-)(1(") q,-) are locally bounded, uniformly in
n, we can show that for every q e L(R2\ @),

q-l+(/o i]t--l) (0 0.(10.11) ,lim. [i->o e-,)(l->

Now let T L(@-(Rk)) be given so that (To O-)lj-l[ L(h), where IJ-l
is the bounded (Theorem 7.3) determinant of the Jacobian of -. From (10.11) it
follows that

On the other hand, i(")+ 1l(") converges in the L/c-weak* topology on [0, m)x $1 to

ff 4-/2__ . 4- A o almost everywhere, and the lemma follows. [3

THEOREM 10.3. There is a Lipschitz continuous version of OZu on [2.
Proof For 0

_
$1 and 0-<t< TI(0), define

(10.12) A(t, O) a--Au(d/(t, 0)),

where, of course, we mean the Lipschitz continuous version of Au inside (Corollary
8.4). For OS and t=> TI(0), define A(t, 0) by (10.4), which gives us a Lipschitz
function. At TI(O), the Lipschitz continuity of A follows from (10.4), Lemma 6.1,
and the equality IVul- 1 on 0R. The Lipschitz continuity of q-i implies the Lipschitz
continuity of a 4, -1.

It remains to show that A 4, -1 is a version of Au, or equivalently,

(10.13) A(t, O)=Au(q(t, 0)), a.e. (t, O)[O, o0) xS

In light of (10.9) and (10.12), we need only show that for almost every OS,
(10.14) A(t, O)=Ao(t, O) Vt-->__ TI(O).
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But (10.10) shows that for almost every 0 S1, the function t--Ao(t, 0) is absolutely
continuous on [0, oo); in particular,

Ao(TI(0), 0) lim Ao(t, 0)
tTl(O)

-lim Au(q(t, O))
ttTl(O)

(10.15)
lim [u((t, O))-h(O(t, ))]

tTl(O)

u(O(T,(O), O))-h(O(T,(O), 0)).

Equation (10.10) and Lemma 10.2 imply that for almost every 0 S,

(10.16) ,o(t, 0)=-A(t, 0), a.e. t>= T,(O).

Equations (10.15) and (10.16) imply (10.14). El

11. Regularity of the free boundary. In this section we apply known regularity
results for free boundaries to show that the boundary of is of class C2’ for all
a (0, 1). In order to apply these results, we recall that w IV u] - is a W2’ function
(Theorem 8.3) which satisfies (see (5.9)) 1- w=>0 on 2 and

(11.1) 1/2A(1-w)=H-w on%,

where we recall that H-a Vh. Vu-IIDull. We shall establish the strict positivity of
the forcing term H-w on 0% Recall that

w-1/2Aw-H_--<0 one2,
and w=l, Aw=0on\,so
(11.2) H-w=H-I>-0 on\%

LEMMA 11.1. The function H is locally Lipschitz continuous, and H > 1 on OCt.
Proof The local Lipschitz COlatinuity of H follows from Theorem 10.3. To prove

that H > 1 on 0c, we assume that there exists a point on 0c where H 1. Without
loss of generality, we take this point to be the origin (0, 0), and we take V u(0, 0)=
(-1, 0).

We first obtain an upper bound on H near (0, 0). Inside , H is differentiable and

(11.3) VH. Vu=(D2h)Vu Vu+(D:u)Vu. Vh-V(IID2uII 2) .Vu.

Let u and u be unit eigenvectors for D2u, and let A1 and A denote their respective
(nonnegative) eigenvalues. Then

V(IID2ulI) Vu -tr (DwDu)-2 tr [(Du)3]
(11.4) AI(D2w)u1. p’q- A2(D2w)/,,2. u2-2(A] h- A)

<=211O ull     sup
uS

Applying Theorem and the remark following it from Caffarelli (1977) to the function
1- w, we have that for some positive constants C and e,

(11.5) sup D2w(x,y)u u<-Cllog(dist((x,y),O))l V(x,y)%
vS

Combining (11.3)-(11.5), we conclude that

VH(x, y) Vu(x, y)>-_D2h(x, y)Vu(x, y) Vu(x, y)+1/2Vw(x, y) Vh(x, y)
(11.6)

--2[ID2u[ILo() C]log (dist ((x, y), 0))] V(x, y) c.
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As (x, y) approaches (0, 0) 0c, Irk(x, Y)I approaches 1 and Vw(x, y) approaches zero.
Using (2.8) and (11.6), we can choose E> 0 such that

Co(11.7) VH(x, y) Vu(x, y)>--f
Let OoS1 be such that (Tl(0O), 0o)--(0,0). For t(0, Tl(0O)) chosen so that

,(t, 0o) [-, ],

d n(b(t, Oo))=VH(d/(t, 0o))" Vu(ff(t, 0o))>- c---9-
dt 2"

It follows that for some " > 0,

(11.8)
H(b(Tl(Oo)-t, Oo))<-H((Ta(Oo), Oo))-1/2Cot

l-1/2cot V t(O,’).

But also

I( T( Oo) t, 0o)-(t, O)[ I( T( Oo) t, Oo) 4,( T( Oo), 0o)

(11.9) + tVu(q(Tl(Oo), 0o))l
<-_ tllD=ult,:o Vt (0, T,(Oo)).

Let/3 > 0 be a Lipschitz constant for H in a sufficiently large neighborhood of (0, 0).
From (11.8), (11.9), we have for all (0, )"

H(t, O)<-H(O(T,(O)-t, Oo))+lH(t, O)-H(d/(T(Oo)-t, 0o))[

<= 1-&Cot / t=llO=ull<.
Choosing " smaller, if necesary, we have H(t, 0) -<_ 1-1/2Cot for all (0, ’). Again using
the Lipschitz continuity of H, we obtain the desired upper bound

(11.10) H(x, y) <-_ 1 -CoX + fllYl V(x, y) [0, ’] x [-’,

We next construct a function "2- such that for appropriate p, tr (0, z),

(11.11) q-1/2Aq_>-H on [0, p]x[-tr, o-],

(11.12) qg-->_l on O([0, p] x [cr, tr]),

(11.13) q(0, 0) 1.

For this purpose, choose 0 < p < min {% (Co/6x/fl)} such that

(11.14) (1--) sink v/p_-> x/p.

Then define

(11.15) tr & min -,

(11.16) A a_ c_o_o ( l
x/p )-13 sink x/p cosh x/tr

( coshx/y (sinh,,/x+sinhx/(p-x))q(x, y) ___a 1 +/3o- 2-
coshx/tr]

1
sinhp

x
-+ V(x, y)+Ap 1 ] -p sinhp]
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Then

(o, ) (p, )= v [-, ],

(#(x, +o.)= 1 +/3o. [1 -sinh x/.x: + sinh x/(p x)] >_- 1
sinhL 3

Vx[O,p]

because

sinh a + sinh b _<-sinh a cosh b + sinh b cosh a
(11.17)

=sinh(a+b) Va, bR.

It remains to verify (11.11). Direct computation reveals

1
q(x, y) - A(x, y) 1 + 2/3o’- Ax + Ap

sinh ,,/x cosh x/y
sinh x/p cosh x/o"

cosh x/y (sinh /x+ sinh x/(p x))-o cosh x/o" sinh

x>= 1 + o" Ax + Ap
sinh x/p cosh

>--1- 1
sinhfpcoshvo" Ax+o"

>-_l-]cox+[yl
>-- H(x, y) V(x, y) 6 [0, p] x [-o’, o’],

where we have used (11.17), the inequality a _-<sinh a for all a->_0, (11.16), and (11.10).
On the other hand, (5.9) implies that

w-1/2Aw<--H on[0, p]x[-o’,o’]

w_-< 1 on 0([0, p] x [-o’, o’]).

The maximum principle implies that w _-< q on [0, p] x [-o’, o’]. In particular, for all
x[O, p],

w(x, O)- w(O, O) w(x, O)- 1 <= o’(x, O)- 1 q(x, O)- q(O, 0),

and thus

(11.18) 0
o o

w(0, 0)_-<-- (0, 0).
Ox Ox

The final step in the proof is to show that (O/Ox)q(O, 0)<0, so (11.18) is contra-
dicted, as well as the assumption that H 1 at some point on 0% We compute

0-0 ( -Y,-1 )(coshx/p-1)sinh,,,pq(O, O)= 2-cosg
(11.19)

sip]
The first term on the right-hand side of (11.19) is bounded above by

sinhp N 2gp.
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As for the second term, (11.14) and the inequality cosh ,v/cr 1 _-> x/o" imply that

sin-- /-O] + (cosh ,/o- 1)

->--2
CO

Therefore,

0-- q(O, O) =< o" 2/3p- p+--v7r]
and (11.15) and the choice of p show that

Ox(0’0) 2p- <0.

THOgM 11.2. efree boundary O is of class C, and w has continuous second
partial derivatives inside up to

Proof Because T is Lipschitz (Theorem 9.2), for every 0 S, the point T(0), 0)
is a point of positive density with respect to the measure of Remark 7.4 for the set
{(t, 0)[0 S, (T(0), )} (E2k). But and - are locally Lipschitz, so every
point of 0 is a point of positive Lebesgue density for 2. It follows from Theorem
2 of Caffarelli (1977) that 0 is Lipschitz. Caffarelli’s Theorem 3 can now be applied
(with v in Caffarelli’s Assumption (H1) equal to our 1- w), and it yields the desired
results.

CorollArY 11.3. e boundary O is of class C2" for every (0, 1).
Proof In light ofTheorems 6.3 and 11.2 and equation (6.4), Du has a C extension

from to @. Therefore, H-w appearing on the right-hand side of (11.1) has a C
extension from to @, and because 0 is of class C, H-w has a C extension to
an open set containing . (In Lemma 12.4, we explain in some detail how to construct
a similar extension.) Lemma 11.1 and Theorem 11.2 permit us to apply a theorem of
Kinderlehrer & Nirenberg (1977) (see also Friedman (1982, Thm. 1.1(i), p. 129)), to
conclude that 0 is of class C l’ for every e (0, 1).

Now observe that w solves the problem

Vw-7w=VH in

Vw=0 on

Since VH is continuous up to 0 and OC is C ’", Theorem 8.34 of Gilbarg and
Trudinger (1983, p. 211), implies that Vw is of class C’ on up to 0% Inserting
this regularity into (6.4), we conclude that DZu, and hence H-w, are of class C ’" on

up to 0% We may again appeal to Friedman (1982, Thm. 1.1) to conclude that
is of class C2’ for every

Remark 11.4. The bootstrapping in Corollary 11.3 can be continued until the
k,regularity of h is exhausted. If, in place of assumption (2.5), we assume that h Co

for some k 3 and (0, 1), then the free boundary is of class C w is of class C’
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inside up to 0% and u is of class C k+l’a inside c up to 0% This argument uses
Ladyzhenskaya and Ural’tseva (1968, Thm. 1.1, p. 107), to wit, ifVH is of class Ck-3,

up to 0 and 0q is Ck-l"", then Vw is of class Ck-’" up to

12. Construction of the optimal control process.
DEFINITION 12.1. Let x be given. A control process pair {(Nt, ’t); 0 <_- <}

as in 2 is called a solution to the Skorokhod problem for ,reflected Brownian motion in
starting at x and with reflection direction -Vu along 0c provided that:

(a) " is continuous,
(b) the process X defined by (2.1) satisfies Xt % 0-<- < c, almost surely and
(c) for all 0_<- <,

(12.1) t- IXEO,N,.=-Vu(X ds,

For every x % the Skorokhod problem of Definition 12.1 has a solution starting
at x. This follows from Lions and Sznitman (1984, Thm. 4.3), provided that the following
three conditions are satisfied:

(C1) has a C boundary and satisfies a uniform exterior sphere condition,
(C2) There exists o->0 such that Vu(x) n(x) > r for all x 0% where n(x) is

the outward normal vector for at x,
(C3) Vu on has an extension to a C function on an open set containing .

Condition (C1) is implied by Corollary 11.3. We establish (C2)and (C3).
LEPTA 12.2. Condition (C2) is satisfied.
Proof Let x 0 be given. We construct a sequence {Xk}=2 in such that Xk --> X

and (VW(Xk)/IVW(Xk)I)- n(x). With K as in Lemma 9.1, we have

2Vw(x). Vu(x)
>__

IVw(x)l -:’

and (C2) follows.
As for the construction of {Xt}k_-2, we choose r> 0 such that B(x + rn(x))

Define x +1/2rn(x), so B/(2) 4 and x OB/e(2). Given k >-- 2, we define
{xe; w(x)<l-(1/k)}. We then translate B/(2) in the -n(x) direction until
it touches O, i.e., we define

p sup {p > 0; B/2( pn(x)) f3 c},

and we choose x B/2(-pn(x))O. Then B/2(-p,n(x)) is an exterior sphere
for 0 at x, so the outward normal to at x is

Vw(x) -pn(x)-x
Vw(x) 12- pn(x) xg]"

As k- c, we have x--> x and p->0, so (Vw(x)/[Vw(x)[)- n(x). [3

LEMMA 12.3. Condition (C3) is satisfied.
Proof Given e > 0, we can find a finite set of open discs {B},=, each with radius

e, such that [_J ,= B, and we can find C functions y "2--> [0, 1] such that
suppygcB for every k and ,=y=l on % We can decompose Vu on as
Y,= yVu, so it suffices to show that each vg - yg7 u has a C2 extension from B 71
to B. For sufficiently small e > 0, in each B there is a C2 change of coordinates
which results in B ( {(x, y)[x <= 0} and B\ {(x, y)lx > 0}. Now v has a C
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extension from Bk 0 c to Bk c (proof of Corollary 11.3), and taking Dk to be zero
on {(x,y)lx<=O}\(Bkfq ), we have a C2 function on the closed left half-plane. For
x > 0, y R, define

Vk(X, y) 3 Vk(0, y) 3Vk(--X, y) + Vk( 2X, y).

It is easy to check that this extended Vk is C2 on all of R2. [q

THEOREM 12.4. Let x 2 be given. If x , then the solution to the Skorokhod
problem of Definition 12.1 is an optimal control process pair for the singular stochastic
control problem with initial condition x posed in 2. If x : , then there exists a unique
pair t, 0) [0, (x)) x S such that x b( t, 0). Define a--A d/( Tl( O), O) and let ]Q, ) be a
solution to the Skorokhod problem starting at . Then N, ) is optimal for the control
problem with initial condition x, where

A-Vu() if t=0,
(12.2) N, rt if t>0,

(12.3) .t A__. {t if t=0

+[x-[ if t>0.

In either case, we have that u(x)= V(x), where u is the solution to the HJB equation
(3.1) (see Theorem 4.6), and V is the value function for the control problem defined by
(2.0).

Proof. The theorem follows immediately from Theorem 3.1 once we observe that
in the case x g, Lemma 8.1 implies that for all s >_- TI(0),

Vu(,/,(s, o)) =Vu(,)+ Vu((-, 0)) d-
T(O)

VU(.) + D2u((’r 0))Vu((’r, 19)) d’r
T(o)

=Vu().

Thus, when x , the control process pair (N, sr) of (12.2), (12.3) causes the state to
jump from Xo x to Xo and u(x) u() Ix l. After this initial jump, the state
is kept inside c by reflection in the -Vu direction along 0c. [3

13. Appendix. Proof of Lemma 4.1. For e (0, 1), R > 0, denote by u ,R the solution
to

(13.1) u’--Au’ +(Ivu’I=) h on Be(O),

(13.2) u ’R 0 on OBR(O).

The existence of U e’R C2(BR(O)) follows from Ladyzhenskaya and Ural’tseva (1968,
Thm. 4.8.3, p. 301); uniqueness follows from the following lemma.

LEMMA 13.1. Suppose that p is a subsolution and b is a supersolution to (13.1).
Then for all x 13 (0):

(13.3) qg(x)-O(x)<= sup [(y)-(y)]+.
yEOBR(O)

Proof If - attains its maximum over BR(O at an interior point x*, then
V(x*) =V(x*) and O>--A(x*)-Ad/(x*)=(x*)-b(x*).

LEMMA 13.2. Let q > 0 be as in (2.6). There exists a constant C1 > 0, independent
of e and R, such that

(13.4) Oue’R(x)<Cl(1W]x] q) [xBR(O).
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Proof To prove the nonnegativity of ue’R, take o = 0 and /= ue’R in Lemma 13.1.
To obtain the upper bound on u ’R, take q u’R and

O(x) E e-’ h(x +x/Wt) at,

where ’x inf { _>- 0; Ix + x/ Wtl--> R}. Then A6 h on BR (0), 0 on OBR(O), and
Lemma 13.1 and (2.6) imply that

u’R(x) <--_ E e-t h(x +x/W) dt

<- E e-t h(x + x/ Wt) dt

<- 2CoE e-’(Ixl +1,/1o) dt

<-- C1(1 /lxl)

LEMMA 13.3o. There exist constants C > 0 and p > O, independent of e and R, such
that

(13.5) max IVu’R(x)I--C(I+RP) Ve(0,1), R>0.
xoBR(O)

Proof. Let N be a positive integer greater than q/2, and define g, B’[0, oe)- by

N r2k r2k
g(r) E B(r) E

=o 4k(k!)2’ k=0 4k(k!)2k

Then

r2N
g(r) _lr g’(r) g"(r) 4N N I)2’

and

(13.6) B(r) _1 B’(r) B"(r) O.

For R > 0, define

OR (X) 2 Co+ Co4u(N !)2g(ixl)

-[2Co+ Co4(N!)2g(R)] B(Ixl) VxR,
B(R)

SO

OR(x) AqR(x) Co(2 + Ixl2N) >- h(x) Vx BR(O),

OR(x) =0 Vx eOBR(O).

It follows from Lemma 13.1 that u’R-< 0R on BR(0), and because these functions
agree on BR(0) and because Vu’R on OBR(O) must point inward, where u’R is
nonnegative, we have

IVu"(x)l<-_lvO,,(x)l VxeOBR(O).
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But on 0Be(0),

B’(R)
IVOe(x)J= c4N(N!)2g’(R)-[2C+c4N(N!)2g(R)]

B(R)

Equation (13.6) and the nonnegativity of B" show that

0 B’(r) <= rB(r) Vr>0,

so we may bound the growth of maXxoBR(O) lVe(x) by a constant times (1+
R2N+I). [’]

LMMA 13.4. There exist constants C > O, p > O, , > O, independent of e and R,
such that

(13.7) [Vu’e(x)l<-,u’e(x)+C]x[P+C Vx6Be(0), e(0,1), R>0.

Proof With C-> 1 and p->_2 satisfying (13.5), and Co as in (2.7), define )t

max {2, Co}, B a___ Cp + Co, and consider the auxiliary function

q(x) Vu,(x) ,-,Xu.(x)-Clx]P-B,
where e (0, 1), R > 0 are fixed, and , is a fixed unit vector. It suffices to show that
q(x)_-<0 for all x Be(0), so let x* be a point at which q attains its maximum over
Be(0). If x* OBe(O), then (13.5) implies that q(x*) <_- 0. Thus, we need only consider
the case that x* Be(O), for which we have

0_-> A(x*) AVu"(x*) -Au"(x*)-Cplx*]-)-.
Using (13.1), we may rewrite this as

0 >- Vu’e(x*) ,+ 2’(r*)V[Vu’e(x*) v]. Vu’e(x*)
(13.8)

-Vh(x*) v- Au’R(x*) Afl (r*)+ Ah (x*)- CpZ]x*l p-z,
where r* denotes ]Vu’R(x*)[2. Because of (2.7),

IVh(x)l<- Co+ ,h(x) Vx N.

Furthermore,
p-2

Cplxl- <-_ Cp -<= Clxl + cp Vx .
Adding these two inequalities, we see that

IV h(x*)l + cplx*l---< ,h(x*)+ Clx*l + B.

Substitution into (13.8) yields

(13.9) O>=q(x*)+2’(r*)V[Vu’e(x*) ,] Vu’e(x*)-A(r*).
Because Vq(x*)=0, we also have

0= V(x*) Vu’"(x*)

(13.10) =V[Vu’R(x*) ] Vu’R(x*)--Ar*

-Cplx*lO-x* v,"(x*.
Substitution of (13.10) into (13.9) results in the inequality

(x*) N A[(r*)-2’(r*)r*]-2Cp]x*[P-2’(r*)x* Vu’R(x*).
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Let us assume that q(x*)> 0. Then

x/>_Vu’R(x*), v>=B>_2,

so r* ->_ 4 and for all e (0, 1),

r*-I
/3 (r*) 1,

1
/3’ (r*) =--.

Consequently,

A e,R 12 2Cp ,R(x,0<(x*)=<--(lVu (x*) /l/e)-lx*lP-=x*.Vu

A
12 2Cp ,_-< (Iv’"(x*) ++)+lx*l"-’lv, (x*)l,

E E

which implies that

2Cp x* p-1

IVu,(x*)l-<_-[x*l-’ < Cp <- CIx*l / B.

This inequality contradicts the assumption that q(x*)> 0.
LEMMA 13.5. For each e (0, 1), there is an increasing sequence {Rn},__l ofpositive

numbers converging to infinity and a function u C2(2) such that {u’"}n=l and
{Vu,o},=l converge uniformly to u and V u respectively, on compact sets. Furthermore,
u is a solution to (4.3) and satisfies (4.4), (4.5), with C1 and p independent of e.

Proof Let e (0, 1) be fixed and let r>0 be given. Then u’ and V u’ are
bounded on B2r(0), uniformly in R and e (Lemmas 13.2, 13.4). Elliptic regularity
implies H61der continuity of Vu’ on Br(0), uniformly in R e[2r, oe) (Gilbarg and
Trudinger, Thm. 3.9, p. 41), and by the Arzela-Ascoli Theorem, we can find a sequence
{R,} along which {ue’Rn} n=l and {7u’R }7=1 converge uniformly on Br(0). Indeed,
by diagonalization we can select {Rn} 1so that {u’&,}_ and converge
uniformly on compact sets to limits u and V u, respectively, where u C 1’’ for all
a (0, 1). Passing to the limit in (13.1), we see that Au exists in the distributional
sense and is equal to u+ e(17Uel2) --h, which is a C’" function. Elliptic regularity
implies that OZu in fact exists in the classical sense and u is C2’’. (By bootstrapping,
we could conclude that u is C4,a because h is C2’1.)

The convexity of u will be established by representing u as the value function
of a stochastic control problem with convex cost functions. With/3 defined by (4.2),
we define a convex function g .Nzo and its (convex) Legendre transform
by

(13.11) g(x)&([x[), l(y) & sup {x. y-g(x)}.
x[

For every y 2,

(13.12) l(y)>=-lyl-g -y lyl2.

Furthermore, the supremum in the definition of l is attained if x is related to y by
y 2/3’(Ix12) x, i.e.,

(13.13) l,(2’(Ix12)x)- 2’(Ixl2)lxl2--(lxl2) Vx 2.
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A control process is any two-dimensional, absolutely continuous process r/ adapted to
the Brownian motion { Wt, $;, 0 =< < 0o} and satisfying r/o 0 almost sarely. Given an
initial state x E2, the corresponding state process is

(13.14) Yt a=x+x/Wt-lt.
For each R > 0, we define the cost corresponding to up to the exit from B(0) as

V’R(X) & E ffn e-t[h()+l(t)]dt,

where re&inf{t0; ][R}, and t=(d/dt)t. The value function up to the exit
from B(0) is

v’R(x) & inf v’R(x).

It is clear that v’R(x) is nondecreasing in R, and

(13.15) lim v’(x)Nv(x)infE e-’[h(Y,)+l()]dt,

where v is the value function for a control problem on N.
LMMA 13.6. For each e (0, 1), R > 0, the solution u’ of (13.1), (13.2) agrees

with v’ on B(0).
Proof It6’s lemma implies that for a given control process , x e B(0) and 0:

R
E e-’u,n( y,)= u,n(x)+ E e- [(lVu,n( y)12

(13.16) -h(Ys)-Vu’n() )] ds

u’(x)- e-[h(Y)+l()] ds.

Letting , we see that v’(x) u’(x) for all all , so v’(x) u’(x). However,
if Y is the solution to

g= x- 2’(IVu’( g)lZ)Vu’( g) ds+,

then the corresponding control process satisfies

"=2’ ’ ’(
and equality holds in (13.16) because of (13.13), i.e.,

e,Rv, (x) u (x) < (x),

and thus u ,R (x) v’R (x).
LEMMA 13.7. For each e (0, 1), the function u constructed in Lemma 13.5 agrees

with the value function v defined in (13.15).
Proo We have immediately from (13.15) and Lemma 13.6 that u v. For the

reverse inequality, let x e be given and define Y (up to the time of a possible
explosion) by

g=x- ’(lu(g(g+.
Imitating (13.16), we have from Itg’s lemma and (13.13) that for every R>0,
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(13.17) u’(x) E Io’’’’ e-[h( YT) + l(7)] ds + E e-t^,u

where

r/, =2fl’(]Vu (Y)]z)7u (Y,), ,=inf{tO;]Y[R}.

Deleting the (nonnegative) second term on the right-hand side of (13.17) nd letting
R , , we obtain

(13.18) u(x)e e-[h(Y)+l()] ds,

where lim r is finite if and only if Y explodes in finite time.
To see that almost surely, observe that for all 0, R > 0,

o

Gronwall’s inequality implies

where we have used (13.12). Letting R c and taking expectations, we conclude that

]2
4e Io^% 4e2‘

sup In <-Ex (7) ds<--u(x) <,
O<=s<t^-oo

But

sup IYTl=<x+ sup InTl+ max IWl
0--<s< ’co 0<s< "ro 0--<s--

and supo__<<t^.lYTl< on {,-<_t}. It follows that P*{z_<-t}=0 for all t>=0.
Inequality (13.18) can now be restated as

u(x)>=E e-S[h(Y)+l(l)] ds>=v(x).

COROLLARY 13.8. For each e (0, 1), the function u constructed in Lemma 13.5
is convex.

COROLLARY 13.9. For each e (0, 1], limlxl_o u (x) o.
Proof. In light of (2.8), (2.9), (13.12), and (13.15), we have

u (x) _-> inf E e- CO e- Ytl=/ Itl - dt.

But the right-hand side is the value associated with a linear-quadratic-Gaussian prob-
lem, which is easily computed to be 1/2a]x]2+2a, where a is the positive root of the
quadratic equation (2/e)a2+ a Co=0.

LEMMA 13.10. There is a constant C2, independent of e, .such that for every
e (0, 1), the function u constructed in Lemma 13.5 satisfies (4.6).

Proof Let v be a unit vector and define u a__ (D2u)v. v. It suffices to produce a
constant C2, independent of e and v, such that

U, C2(1 + U).
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We begin by differentiating (4.3) to obtain- Vuh,=u Au+2fl.(I ]2)(Vu, Vu +[(DRu
(13.19) +4"(]Vu12)(J2uVu" /d)2

>_ uG-auG+z’(lVul=)Vu; Vu.
Let x be a minimizing point for u , choose p > 0 satisfying (4.4), (4.5), choose Co> 0
to satisfy (2.8), let 6 > 0 be given, and define the auxiliary function

6(X) U;v(X Coue (x) ]x Xe[ p+2.

This function attains its maximum at some point y, where we have

(13.20) O=V(y)=Vu;(y)-CoVu(y)-(p+Z)]y-xJP(y-x),

(13.21) O&(y)=&u;(y)-Co&u(y)-6(p+2)[y-xv.
Substituting (4.3) into (13.21) and using (13.19), we obtain

O uL(y)+ 2’(IVu(y)lZ)Vu;(y) 7u(y)
-h(y Cou y Co(IV u (y)l 2)
+Coh( y) 3(p + 2)2[ y 6 xe[p

-=(y)+2’(IVu(y)j2)Vu;(y) Vu(y)
(13.22) -h(y Co(IV u (y)l2) + Coh( y)

-(p+2)a[y-xlp+y-x[p+2

(y)+2’(lVu(y)la)vu(y) 7u(y)

G(1 + h(y)) Gfl(lVu (ya)[2)+ Gh(y)
-26p(/(p + 2)(p+2/z

because of (2.8) and the fact that

-6(p + 2)2r p + 6rP+2 2p(p/2)(p + 2) (P+2)/2

But (13.20) implies that

Vr=>O.

Vu,,(y) Vu(y ColVu(y)12 + rS(p+ 2)]y -xl"(y x) Vu(y)
(13.23) >_ ColVu(y)]2
because u is convex and attains its minimum at x. Substitution of (13.23) into (13.22)
yields

0 (y) + 2CoB’(IV u (y)12)lV u (y)lz- CoB (IV u (y)l2)
(13.24)

Co- 26pP/Z)(p + 2)P+/.
The convexity of B implies that

fl’(r)r fl(r)-(O)= fl(r) VrO,

so (13.24) reduces to

(x)(y)Co+23p’/2(p+2)p+2/2 Vxe2.

Letting 3 $ O, we obtain

u:v(x)Co(l+ue(x)) VXe2,
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