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Abstract. We consider the discounted and ergodic optimal control problems 
related to a one-dimensional storage process. The existence and uniqueness of 
the corresponding Bellman equation and the regularity of the optimal value is 
established. Using the Bellman equation an optimal feedback control is 
constructed. Finally we show that under this optimal control the origin is 
reachable. 

Introduction 

We investigate the optimal control of a one-dimensional storage process. This 
problem arises in the economic planning of a nonrenewable natural resource 
(such as oil, mineral deposits or energy) in a socially managed economy. K. 
Arrow in [1] modelled the level of natural resource as a controlled jump-process.  
The randomness  of the process was due to the uncertainty in the exploration of 
the natural resource. S. D. Deshmukh and S. R. Pliska studied a similar model in 
[5] under the assumption that the unexplored area has an infinite area. Let us 
briefly explain this model. 

Let y(t) be the current level of the natural process at time t >/0. At each time 
t the planner determines the consumption rate c(t)~ [0, Co], under which the 
storage level decreases with the rate c(t). Since the resource level is always 
non-negative, c(t)= 0 is the only choice whenever y(t)= 0. In addition to the 
consumption rate, the planner also determines the exploration rate e(t) E [0, e0] 
which is the intensity of search effort to discover additional sources of the 

x This work was supported by the National Science Foundation under Grant No. MCS 8121940. 
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resource. Under this policy the resource level has the jump rate X(e(t)) and the 
jump-size distribution G(e(t), .). Note that G(e, .) has support on [0, oo). 

In this paper we use the above model with feedback strategies. Let ~r(x)= 
(e(x), c(x)) be a Borel measurable map of [0, oo) into [0, e0lX[O, col. The map ~r 
is an admissible strategy if (i) there is a unique storage process y(t) with the 
consumption rate c(y(t)) and the exploration rate e(y(t)) and (ii) c(O) = O. For 
each admissible strategy ~r consider a discounted cost J"(x, ~r) with discount 
factor a > O. 

Jix(x,~r) = E[fo°°e-ixt(u(c(y(t)))-h(e(y(t)))- f(y(t)))dt ly(O)=x] 

(0.1) 

The optimal value v"(x) is the supremum of Jix(x, rr) over all admissible 
strategies. This problem is studied by S. R. Pliska [8] and S. D. Deshmukh and 
S. R. Pliska [5] in the case of no-holding cost f .  Heuristically v" satisfies the 
Bellman equation 

sup [(A"vix)(x)+u(c)-h(e)] = f ( x )+  avix(x) (0.2) 
O <~ e <~ e o 

O < c ~ < c  o 

where A" is the infinitesimal generator of the storage process. Under (1.10)-(1.15) 
it is shown that the optimal value is bounded, continuous with bounded continu- 
ous derivative on [0, oo), this class of functions is denoted by CJ([0, oo)). More- 
over v ~ solves the integro-differential equation: 

d ix ( x )  = { 1 [u(c)- I(x)-  vix(x)- h(e) + ff(v°(x ÷ y) sup c 
O ~ < e ~ e  o 
0 < c ~ < c  0 

- vix(x))X(e)G(e, dy)]} ; x > 0 ( 0 . 3 )  

with boundary condition 

av~(0) = sup {-h(e)+fo~(Vix(y)-o~(O))X(e)G(e, dy)) (0.4) 
0 < e ~ < e  0 

Note that (0.3)-(0.4) is in fact equivalent to (0.2). The unusual form of the 
boundary condition is caused by the state-space constraint. 

By standard selection theorems one can choose ~r* = (e*, c*) so that for all 
x >t Oe*(x), c*(x) maximizes (0.3)-(0.4). The properties of v ~ yield that tr* is 
admissible. Moreover if the consumption utility rate u is twice continuously 
differentiable around the origin then under the optimal strategy ~r*, the origin is 
reachable. 
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In Section 4 we consider the corresponding ergodic control problem. For  an 
admissible strategy let 0(x, ~r) be 

O(x, rr) = limsuPt_oo 1E[fotU(c(y(s))-h(e(y(s)))- f (Y(t))ds[y(O)=x] 

(0.5) 
and 0 be the supremum of O(x, or) over all admissible controls. A standard 
technique of solving this problem [2, 7] is to consider the function g~(x)= v~(x) 
- v~(0). In Section 4 we show that g~(-) and av*(0) converge to g( . )  and 0 on a 
subsequence. Moreover (g, 0) solves the limiting equation of (0.3), (0.4), i.e., 

~ x g ( X )  = sup ( l [ u ( c ) - f ( x ) - h ( e ) - O  
0~<e~<e 0 
0 < c ~ < c  o 

+fo°°(g(x+y)-g(x))~(e)G(e,  dy)]); 

x > 0 (0.6) 

0 = sup - h ( e ) +  g(y)X(e)a(e,,t),) (0.7) 
O~<e~<e o 

As suggested by the notation 0 is in fact the optimal value if f(oo) is larger than 
U(Co). Additionally one can use (0.6)-(0.7) to obtain an optimal strategy. To 
motivate the assumption that f(oo) is sufficiently large suppose the holding cost 
rate f is identically zero. Then g(x)= xu'(O) is a solution of (0.6)-(0.7) and 
~r(x) = (e*,0)  maximizes the expressions in (0.6)-(0.7) which is clearly not an 
optimal strategy in general. 

Finally I would like to thank Professor W. H. Fleming for suggesting the 
problem, and for his helpful discussions and good advice. 

1.  C o n t r o l l e d  P r o c e s s  

Let e o and c o be positive numbers and E = [0, e0], C = [0, Co]. An admissible 
strategy ~r = (e, c) is a Borel measurable map of [0, oo) into E × C satisfying (i) 
c(0) = 0 (ii) for any x >I 0, s >/0 the equation 

dyo(x,  s; t, ~r) = - c(yo(x , s; t, 7r)) t > s (1.1) 

with initial data yo(x, s; s, ~r) = x, has a unique solution. Further let h be a map 
of E into [0, ~o] satisfying (1.13) and G be a map of E into the set of probability 
measures on [0, oo) satisfying (1.14). 

Set T O = 0 and Y0 = x. We now can construct a probability space (f~, P),  a 
sequence of random times ( T n : n = 0,1,2, . . .  } and a sequence of positive random 
numbers (Y~:n = 0,1 . . . .  }, corresponding to the jumps in the storage level, 
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satisfying 

P(r,,+l - r,>~ tlr~,. . . ,  T,; vl , . . . ,  L )  

= e x p ( - l r ' + ~ ( e ( y o ( Y , , T , ; . c , ~ ' ) ) ) d . c )  (1.2) 
T. 

P(Y~+I - Yo(Y~, T,,; T,,+ t, ~r) ~ A)I T1,... , T,,+I , I11 . . . . .  Y,) 

= G(e(yo(Yn,Tn;T.+l,  rr)) ,A) (1.3) 

Above identity holds for all Borel subset A of [0, ce). For more information see 
[5]. Now define the storage process y(x; t, ~r) as 

y ( x ; t ,  lr) = yo(Yn,T.;t ,w) i f t  ~ [Tn,Zn+l) (1.4) 

The process y(x, t, qr) is a strong Markov process with infinitesimal generator 
A '~. Put fl(e, dy) = X(e)G(e, dy) then A ~ is given by 

A " ~ ( x )  = - c ( x )  a oo ~xqO(x)+fo (qo(x+ y)-ep(x))fl(e(x),dy) (1.5) 

with domain of A 0~ containing at least continuously differentiable functions on 
[0, oe) with bounded derivative. More precise description of A ~ is given in [5]. 

In this paper we consider two different control problems. Let ~ / b e  the set of 
all admissible strategies and a positive. 

J~(x ,w)  = E fo~°e-"t[u(c(y(x,t ,  rc))) 

- h ( e ( y ( x ,  t, ~ r ) ) ) - f ( y ( x ,  t, ~r))] dt 

v~(x, w) = sup J"(x,  It) 

(1.6) 
(1.V) 

We refer to v ~ as the optimal value of the discounted problem. The ergodic 
control problem is defined as 

1 /oT[ O(x,~r) = limsup ~ E  u(c(y(x , t ,~r)) )  

- h ( e ( y ( x ,  t , ~ r l l ) - f ( y ( x ,  t, ~rl)] dt 

0 = sup sup 0 (x ,  ~r) 

(1.8) 
(1.9) 



Optimal Control of a One-Dimensional Storage Process 179 

We assume  the following throughout  the paper.  

u, f ,  h are cont inuous  (1.10) 

u is concave  on [0, Co] with u(0) = 0 and different iable at the origin (1.11) 

f ,  h are non-decreas ing with f (0 )  = h (0) = 0. Moreove r  f is bounded  
with  f ( ~ ) =  l im f(x). 

X ----~ O0 

(1.12) 

X is a nonnegat ive  cont inuous funct ion on E with )t(0) = 0 and it is 
b o u n d e d  by  X 0 < ~ .  

(1.13) 

G is a weakly  cont inuous map  of E,  i.e., for any  ep bounded  (1.14) 
cont inuous  on [0, co) 

leim e fo~ep(y)G(e, dy)- fo=ep(y)G(&dy) =0 

fo~YG(e, dy) < m for e in E.  (1.15) every 

Remark .  An  appl icat ion of Dini ' s  theorem together  with (1.13)-(1.15) yields 
oo 

sup f l (e ,[0,  m ) ) < m  and sup f yfl(e, dy)<m. Moreover  
e ~ [0 ,  e 0 ] e E [0 ,  e 0 ] *'0 

l im sup /~(e, [ M ,  m ) )  = 0 
M ~  e ~ [0 ,  eo ]  

f£'yBt l im sup g, dy) = 0 (1.16) 
M - + o o  e E [0 ,  go ]  

2. Bellman Equation 

We will show that  v ~ is in CJ([0, ~ ) ) ,  the set of  b o u n d e d  cont inuous  funct ions 
wi th  b o u n d e d  cont inuous  first derivatives, and v ~ solves the equat ion (0.3)-(0.4). 
T o  s impl i fy  the nota t ion  we suppress a. Fol lowing S. Pliska [8] we consider  the 
fol lowing equa t ion  for any 8 > 0. 

sup 
dx e~10, eo] t C I t  

c ~ [8, c0] 

+ f~(v~(x + y ) -  vs(x))fl(e, dy) 
-'o 

> 0 

su, q 
e ~ [0 ,  eo]  k 

(2.1) 

(2.2) 
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The o rem 2 in [8] yields that there is a unique C1((0, oo))n Cb([0 , O0)) funct ion v~ 
and  

lim own(x ) = U(Co)-  f (oo)  (2.3) 
X ----} OO 

Moreover  the following estimate is derived in [8]. 

- f ( o o )  <<. avs(x  ) <~ U(Co) f o r a l l x  ~ [0, oo). (2.4) 

In  addit ion,  by  using Lipschitz continuity of v n and (1.16) one can show that the 
integral term in (2.1) is continuous in x uniformly with respect to e, (see (2.19) 
also). Hence  left-hand side of  (2.1) is continuous,  so v 8 ~ C~([0, oo)). 

We need an estimate of  the first derivative of v 8 which is independent  of  3 to 
pass the limit as 3 tends to zero. The next two lemmas will be used to derive the 
estimate. Let  " ' "  denote the spatial derivative. 

L e m m a  2.1. Let c n be the solution of (2.1)-(2.2). I f  c'8( z ) = 0 for some z >~ 0 then 
v'~( x ) <~ 0 for all x >1 z. 

Proof Suppose  not,  then there is z 0 such that v'~(Zo)= 0 and v'8(x ) > 0 on 
(z  o, z 0 + e) for  some e positive. Set 7 = cn(Zo + ~)-  vn(zo), note that 7 is positive. 
Cons ider  the set 

F = ( X > Z o : C ' s ( x ) = O  and cs (x)>~vs(Zo)+7 } (2.5) 

Since v~ is cont inuous  F is closed. Since v'8(Zo) = 0, U ( C o ) - f ( ~  ) <~ acs(Zo) < 
aos(Zo + e) and  v'8(z o + e) >I O. Hence (2.3) yields that there has to be at least one 
zero of  v~ larger than z 0 and the first one must  be in F. So F is non-empty,  also 
(2.3)-(2.4) imply  that F must  be bounded.  N o w  let x 0 = s u p ( x :  x ~ F}. Then x 0 
is in F and finite. We claim that v~(xo) >t v~(x) for all x >/x 0. Suppose not,  i.e. 
there is y > x o such that on(y) > vs(Xo). Then one of  the following should hold:  

(i) v'8(y) = 0; then y ~ r and this contradicts  the fact that  x 0 = s u p ( x :  x 
~r) .  

(ii) v'~(y) < 0; define Yl = s u p ( x  ~< y :  v'~(x) = 0}. Since v~(y) > vs(xo)y 1 
must  be larger than x o and v~(yl) >1 v~(y) > v~(Xo). Hence Ya ~ F 
which is a contradiction. 

(iii) v'~(y) > 0; define Y2 = i n f ( x  > / y :  v'8(y ) = 0}. A similar argument  yields 
a contradict ion.  

Hence  v~(Xo) >1 c~(x) for all x >/x o. In  equation (2.1) the integral term at x 0 
is negative, thus maximum is achieved by  choosing e = 0. 

0 = v ~ ( x 0 ) =  sup ( l [ u ( c ) - f ( y o ) - a o ~ ( X o ) ] )  
~ c ~ < c  o 

One  can easily conclude that avs(Xo) = U(Co)- f (xo) .  Choose e = 0 and c = c o at 
z o in equat ion (2.1) to obtain 

1 [ U ( C o ) _ f ( z o ) _ a v s ( Z o )  ] o = o' (Zo) Co 
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So a%( Zo) >~ U( Co)- f ( Zo) >i U( Co)- f ( Xo) = avs( Xo). This contradicts  the fact 
tha t  x 0 is in F, hence the result. [] 

In  the case there is no holding cost v~ is concave. This is no  longer true when 
f is no t  zero, but  we have the following analog of  it. Let 

z o = in f {x>jO:v '8 (x )=O } or + o o i f  v~(x)  > O f o r a l l x  >~ 0 (2.6) 

L e m m a  2.2. Suppose there is e >1 0 such that fl(e[0, e]) = 0 for every e in E. Then 
v'8(x ) is decreasing on [0, z0]. 

Proof Suppose  z o is finite. To simplify the calculations let for  cp bounded  

I ( x , e ,  ep) = - h ( e ) +  (cp(x + y ) - q ~ ( x ) ) f l ( e ,  dy) (2.7) 

I ( x ,  cp) = sup I ( x ,  e, ~p) (2.8) 
e ~ E  

Rewri te  equat ion (2.1) as 

~ x v a ( x )  = sup ( 1 - - [ u ( c ) - f ( x ) - a v s ( x ) + I ( x ,  va)]}; x > 0 
c~[&Co]~ C 

(2.9) 

O n  [0, Zo] av  8 is increasing and f is non-decreasing. Therefore it is enough to 
show I (x ,  08) is non-increasing on [0, z0]. The previous lemma yields that  for  
x ~ [z o - e, oo)l(x, e, vn) = 0 for all e ~ E. Thus  l (x ,  vs) = 0 and v~(x) is de- 
creasing on x ~ [z o - e, 09). Define x o as 

x o = inf (  x > O: I ( y ,  vs) is non-increasing on [x ,  oo)}. (2.10) 

A b o v e  calculat ion shows x o ~< z o - e and on [x 0, Zo]V'~(x ) is decreasing. I f  x o = 0 
we are done. Suppose x o > 0, since v'8(x ) is decreasing on Ix o, z0] and it is 
cont inuous .  There  is Y > 0 such that for  all x ~ [x o - y, Xo] 

v'~(x) > v'8(y ) fo ra l l  y ~ [ x + e ,  oo) (2.11) 

Take  x 1 < x 2 in [x o - y, Xo]. 

I ( x 2 , e , o s ) -  l ( x l ,  e, vs) = fE~Li2(v'8(y+ t ) -o '8 ( t ) )d t f l ( e ,  dy) <~ 0 

(2.12) 

The  last inequali ty follows (2.11). Thus we concluded that I (x ,  e, vs) is non-  
increasing on  [x o - 7, Xo] which contradicts  the choice of  x 0. Hence  Xo mus t  be 
zero. 
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Suppose z o = + ~ ,  i.e. v'~(x) > 0 for every x ~ [0, ~ )  and because of (2.3) 
lira v'~(x) = 0. For each Y0 ~ [0, ~ )  define A(yo) as 

X - - ~  

A(yo)  = {x >/Yo: v'8(x) > v'~(yo) ) (2.13) 

then A(yo) is an open bounded subset of (Yo, ~)-  Suppose A(yo) is non-empty, 
there is N (finite or infinite) and a sequence of disjoint intervals ((xi, y i ): i  = 
1,2, . . .  } such that 

N 

A(Yo) = ~.J (xi ,Yi)  and yi < x,+ a 

If N is infinite choose m such that y , - x  re<e, for every n>/m.  Then on 
(x m, y,,) v'8(x ) satisfies (2.11). Thus v~ is decreasing on (xm, y,,), in particular 
v'~(x,,) > v'8(y,,) which contradicts the choice of Xm, Ym" If N is finite repeat the 
argument (2.10)-(2.12) on the interval (x N, YN), to conclude v~ is decreasing on 
(XN, YN)" This is again a contradiction. Hence A(yo) is empty which implies 
I (x ,  v~) is nonincreasing. [] 

Suppose the conclusion of lemma 2.2 holds. For any ~ bounded define 
K(x ,  9~) as follows 

K ( x ,  ~) = - f ( x )  - cpot(x) + I (x ,  (p) (2.14) 

Then K(x,  v~) is decreasing on [0, zo] and equation (2.2) yields K(0, v~) = 0. Thus 
for x ~ [0, z0] 

cc[8,Co]~ " c  l c~ [8 ,  co] C 

On the other hand I(x,  v~) = 0 on [zo, ~ )  and (2.4) yields - ave(x) ~ - u(co). 
Thus for x ~ [z o, ~ )  

sup -f(x---2) >t 
c~[~,Co] C 

Hence we obtained the estimate 

- f ( ~ ) C o  1 ~ v'~(x) ~ u'(O) f o r a l l x  >~ 0 (2.15) 

Lemma 2.2 and the estimate (2.15), which is independent of e, suggest the 
following approximation to (2.1) and (2.2). For n positive integer let fi" be 

f l " ( e , B )  = f l ( e , B N ( 1 , ~ ) ) + f l ( e , [ O , ] ] ) X B ( 1 )  (2.16) 

Here X B is the indicator function of B. Let va, . be the solution of (2.1)-(2.2) with 
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fln instead of ft. Since fl" satisfies the hypothesis of lemma 2.2 us,, satisfies (2.15) 
and also (2.4). Therefore Ascoli-Arzela yields that there is a subsequence denoted 
by n again and Lipschitz continuous function ~ such that o8,n converges to 68 
uniformly on compact sets. Let In(x, e, v~n ) be defined as in (2.7) with fin instead 
of ft. Then for every M > 0 we have 

[I(x,  e, °8 ) -  In( x, e, vs.)l 

~ ll38n( x + l )-- OSn(X) lfl( e, (O, 1]) 

+ fol/"l ~8(x + y) -  0~(x)IB(e, dy) 

+ 211 v~,n -- va IIL°°qx, M + x])fl( e, [0, M])  

+ [11 va,n IIL  ,, + II IIL  ,,] B( e, [ M, oc)). (2.17) 

Use the estimates (2.4)-(2.15) to conclude 

I I ( x ' e ' ~ ) - I " ( x ' e ' v a , n ) l  < n 

+ C sup fl(e, [M, oo)). 
eEE 

The fact (1.16) yields that I(x, o~) converges to I(x,  ~).  Now it is easy to show 

lim ~ n ( x )  = sup l [ u ( c ) - f ( x ) + I ( x , ~ 8 ) - a ~ a ( x ) ] ' x  > 0 (2.18) 
n ~ o o  c c  [8, co] c 

Moreover, we claim that the right-hand side of (2.18) is continuous on [0, oc). 
Recall that ~8 is Lipschitz continuous 

I I ( x , e , ~ 8 ) - I ( z , e , ~ 8 ) l  

< f0~(l~(x + y ) - F 8 ( z  + y ) l + l ~ ( x ) - F 8 ( z ) l ) f l ( e ,  dy) 

< f i x  - zlfl(e,[O, oo)) < CIx - ZlXo (2.19) 

Hence I(x,  vs) is continuous on [0, o¢). Using this one can prove the claim. Thus 
we proved that v8 ~C~([0, oe)) and v8 solves the equation (2.1)-(2.2). But 
(2.1)-(2.2) has a unique solution, so v~ = vs- We proved the following 

Lemma 2.3. The solution 0 8 of (2.1)-(2.2) satisfies the estimates (2.4) and (2.15). 
We have obtained an estimate of v~ which is independent of 8. Using this we 

can now pass to the limit to solve the original equation in which we are interested. 

Theorem 2.4. There is a unique solution v of (0.3)-(0.4) in C~([0, oc)). Moreover v 
satisfies (2.4) and (2.15). 

Proof Since v 8 satisfies (2.4) and (2.15) there is a subsequence denoted by 8 
again and a Lipschitz continuous function v such that v 8 converges to v 
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uniformly on compact  subsets of [0, oo). Arguing as in (2.17)-(2.19) we can show 
that  I(x, va) converges to I(x, v) and l(x, v) is continuous in x. Let K(x, v) be 
defined as in (2.14). Then K(x, v~) converges to K(x, v), in particular K(x, v) <~ 0 
with K(0, v) = 0. 

Suppose K(x, v) < 0. Then there is ~ > 0 such that for sufficiently small ~ we 
have 

: s u p  - :  s u ,  
c ~ [ ~ , c 0 ]  ( C c ~ [ ~ , c o ]  C 

The last expression converges to 

sup 
c ~ [~,co] c ~ [0, Co] 1 C 

Suppose K(x, v ) =  0. Then K(x, vs) converges to zero. For e >  0 choose 

> 0 s o t h a t  u(~)  , ~ - e~ - u (0) ~ ~ and choose 8 > 0 so that K(x, vs) >1 - -~ for 

all ~ ~< ~. For  8 smaller than 6 and ~ we have 

1 
o's(x) c + u'(O) 

u(c)  
Additionally v'a(x ) <~ sup = u'(0). Therefore we have lim v'~(x) = u'(O). 

c ~  [0, col C ~ - - , 0  

Combining this with the other case, K(x, v~) < 0, yields 

l i m o S ( x ) - -  sup ~ [ u ( c ) + K ( x , v ) ] } ;  x > 0  (2.20) 
~ 0  c E [0, col L c  ) 

Arguing similarly one can prove that the right hand side of (2.20) is continuous in 
x. This shows that v ~ Cbl([0, O0)) and solves (0.3)-(0.4). 

Uniqueness can be proved by using the maximum principle as in [8] or it 
follows a verification theorem as in lemma 6 of [5]. [] 

3. Optimal Strategies 

Since v ~ C~([0, ~ ) )  the argument (2.19) holds for I(x, e, v). So I(x, e, v) is 
continuous in x uniformly with respect to e. Moreover (1.13) and (1.14) yields 
that I(x, e, v) is also continuous in e. Thus one can select e*(x) Borel meas- 
urable such that I(x, e*(x), v) = I(x, v) for all x >1 0. Recall that l(x, v) is 
non-increasing. Thus K(x, v) is decreasing on [0, z0]. In particular, K(x, v)< 
K(0, v ) = 0 .  Therefore one can select c*(x) non-decreasing and [u(c*(x))+ 
K(x, v)]c*(x) -1= v(x) for all x > 0. Since e* is monotone ~r* = (e*, c*) is an 
admissible strategy. Moreover ~r*(x) = (0, c0) on x ~ [z0, ~ ) .  Now we can show 
J(x, ~r*) = v(x) as in lemma 6 of [51. 
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Suppose u is strictly concave. Then we claim c* is continuous on [0, o¢) and 
it is the only optimal consumption rate. To prove this assume that there are 
e 2 > e I > 0 such that 

v'(x) = u ( q ) + K ( x , v )  = (3 .1 )  
Cl (:2 

By using the strict concavity of u we obtain 

C l +  C2\-1[" { C 1 + C 2 \  -w-) 
[u(q)+K(x,v)] 

> - -  + 

C 1 + C 2 C 1 C 1 + C 2 

u(c2)+ K(x, v) ] 
C2 

= v $ ( x )  

This contradicts the choice of c 1 and c 2. 

Proposition 3.1. Suppose u is twice differentiable in a neighborhood of origin and 
strictly concave. There there is y > 0 such that c*(x)>~ yx 1/2 for small x. In 
particular origin is reachable under the strategy ~r* 

Proof Let K(x,  v) be as in (2.14). Recall that K(0, v) = 0 and K(x,  v) decreas- 
ing on [0, Zo] 

K(x ,  v) = - f ( x )  - av(x)  + sup I (x ,  e, v) - K(O, v) 
e ~ E  

<~ - f ( x )  - av(x)  + I (x ,  e*(x),  v) + av(O) - I(0, e*(x) ,  v) 

---- f o ~ / o ( V ' ( y + t ) - v ' ( t ) ) d t f l ( e * ( x ) , d y ) - a f o X v ' ( t ) d t -  f ( x )  

(3.2) 

The second inequality obtained by choosing e*(x) in K(0, v). Since K(x, v) is 
continuous and K(0, v) = 0, one can show that z 0 is away from the origin. Thus 
v'(y + t)-v'(t)<~ 0 for small t and y positive, so the first integral in (3.2) is 
non-positive. 

K ( x , o )  <~ - f ( x ) -  ax in f {v ' (y ) :  y ~ ( O , x ] ) .  (3 .3 )  

Equation (0.3) yields that lim v'(y) = u'(0), so we can choose x 0 small enough so 
y-+0 

that v'(y) >1 ½u'(0) for every y ~< x 0. Substitute this into (3.3) to obtain a */> 0 
such that 

K ( x ,  v) <~ - f ( x ) -  ~x for small x > O. (3.4) 

Note  that at c*(x) the mapping [u(c)+K(x,  v)]/c has an interior maximum. 
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Thus we have 

c * ( x ) u ' ( c * ( x ) )  - u (c*(x) )  - K ( x ,  v) = 0 (3.5) 

But u(c) <~ u(0)+ cu'(O) for every x, plug this into (3.5) 

c*(x)[u ' (c*(x)) -u ' (O)]  <~ K ( x , v )  <~ -TIx 

g Also u ' (c ) -  u'(O) = u"(t) dt >1 c min{ u"(t) : t ~ [0, c]}. 

implies that there is h > 0 such that u'(c)-  u'(O) >~ - c6 for every c. Therefore 

- [ c * ( x ) ] 2 a  [] 

(3 .6)  

Strict concavity of u 

4. Ergodic Control Problem 

Let vix be the solution of (0.3)-(0.4). Consider the function g"(x) = vix(x)- v"(O). 
The estimate (2.15) yields that there is K > 0 such that 

d ix 
sup ~xxg (x ) l  ~< K (4.1) 

a > 0 ,  x~>0  

Also gix(0) = 0 for every a > 0. Thus Ascoli-Arzela implies there is a subsequence 
denoted by a again and g ~ C([0, oe)) so that gix converges to g uniformly on 
every compact subset of [0, oe). Passing to the limit in (0.4) yields that there is 
such that 0 = lim avix(0) and 

a - - ' 0  

0 =  s u p e { - h ( e ) +  fo°~g(y)B(e, dy)} (4.2) 

Moreover lim avix(0) = lira avix(x) = 0, because of (2.15). So one can pass to the 
a - - , 0  a - ~ 0  

limit in (0.3) also and by arguing as in Theorem 1 one can conclude that 
g ~ C~([0, oe)) and g' ~ Cb([0, oe)) and 

~xg(X)  = sup ( l [ u ( c ) - f ( x ) - O  
e ~ [0, e0] 
c ~  [0, c0] 

f o ~ ( g ( x +  y ) - g ( x ) ) t ~ ( e , d y ) - h ( e ) ] } ,  + 

x > 0 (4.3) 

with g(0) = 0. Since I(x, g) is the limit of I(x, vix) and I(x,  v ~) is non-increasing 
on [0, m), I(x,  g) must be non-increasing. Consider K(x, g) defined as 

R'(x,  g)  = - f ( x )  - 0 + I (x ,  g) (4.4) 
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N o t e  that  K'(x,  g) is non-increasing. The equation (4.2) reads as 0 = I(0, g), so 
K(0,  g ) - 0 .  In  particular K , ( x , g ) < ~ - f ( x ) .  As in Section 3 we can select 
~r*(x) = (e*(x) ,  c*(x)) which is an admissible strategy and for every x such that  
K(x ,  g) < 0 we have 

(C*(X))-I[u(c*(x))+ K(x,  g)] = sup{ l ( u ( c ) +  K ( x ,  g ) ) :  c ~  [0, c0] } 

and  

l ( x ,  e * ( x ) ,  g)  = s u p ( I ( x ,  e, g ) : e  ~ [0, eol} = I ( x ,  g) for  all x >/ 0 

N o t e  that K(x ,  g) may be equal to zero on an interval like [0, a] and c*(x) = 0 
on this interval.  

Proposit ion 4.1. F,(x, g) and I(x, g) are non-increasing with /~(0, g )  = 0 and 
I(0, g) = O. Suppose f ( ~ ) > U( Co ). Then z 0 = i n f ( x  > O: g'( x ) = O} is finite. 

Proof Equat ion  (4.3) reads as g ' ( x ) =  sup {c - l [u (c )+F , ( x ,g ) ] )  and 
c ~ [0, %] 

K(x ,  g) <~ - f ( x ) .  [] 

Theorem 4.2. Suppose z o is finite then O= 0 = O( x, 7r* ) for every x > 0, where 0 
and O(x, ~r*) are defined in (1.8)-(1.9). In particular this holds if f(oo) > U(Co). 

Proof Since g '  is bounded (1.5) implies g is in the domain  of A ~. By Dynkin 's  
fo rmula  

E g ( y ( x , t , ~ r * ) )  = g ( x ) +  E fo t (A '*g)(y(x ,~ ' ,Tr*))dr .  (4.5) 

N o t e  that  equat ion (4.3)-(4.4) implies A'~*g(x) = f ( x ) +  h ( e * ( x ) ) -  u(c*(x))+ O. 
Subst i tute  this into (4.5) 

1 t 
O =  l [ E g ( y ( x ' t ' ~ r * ) ) - g ( x ) ]  + T E  fo 

- h ( e * ( y ( x ,  r, Tr*)))- f ( y ( x ,  r,~r*))] d'r. (4.6) 

Since z o is finite g(y)  <~ g(zo) for  every y > 0. Pass to the limit in (4.6) to obtain 

0 O(x, for all x > 0. (4 .7)  

For  large M positive there is G M ~ C~([0, oo)) satisfying (i) G~t(x) = g(x)  if 
x ~< z o + M, (ii) G~(x )  >i g ' (x)  for all x > 0, and (iii) GM(x + y ) -  GM(x ) < 0 
whenever  x + y >~ z o + M. In fact G~t is a smooth version of the funct ion 
hM(x ) = g (x )  on x ~ [0, z 0 + M] and hM(x ) = g(z o + M)  on x ~ [z o + M, ~ ) .  
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Now use conditions (ii) and (ri) to obtain I(x, GM)= I(x, g ) =  0 on x 
[Zo, oo). The equation (4.3) together with (ii) above yield 

- cG 'm(x )+  fo~(GM(X + y ) -GM(X)) f l (e ,  dy ) <~ 0 + f ( x ) +  h ( e ) -  u(c), 

fora l le ,c ,x  ~ [Zo,OO ). (4.8) 

Use the estimate (2.15) and condition (iii) to conclude 

fo~(G~(x  + y)- -GM(x) lB(e ,  ay) < f o ~ ( g ( x  + y ) - g ( x ) l f l ( e ,  dy) 

f7 + xllg'll L~yfl(e, dy) (4.9) 
zo+M-  

The remark in Section 1 and (1.16) imply that the last term in (4.9) tends to zero 
as M goes to infinity. It will be denoted by h(M). The equation (4.3), condition 
(ii) above and (4.9) yield 

- cG~(x)  + fo~(GM(X + y ) -  GM(X))fl(e, dy) 

0 + f ( x )  + h ( e ) -  u(c) + h (M) ,  

for a l l e , c , x  ~ [0, z0] (4.10) 

Apply Dynkin's formula to G~ and use equation (4.3) together with (4.8), (4.10) 
to obtain for all ~r in d :  

>1 1E(GM(Y (x , t ,  Tr)-GM(X)) 

+ E fot[U( e( y( x, 

- f ( y (x , ' r ,  ~r))] d'r - h( M) 

First send t to infinity then M to infinity to obtain 0 >/O(x, ~r) for all ~r. 

(4.11t 

[] 

Theorem 4.3. There is only one solution (0, g) in R × C1([0, oo)) of the equation 
(4.2)-(4.3) with (i) g(O) = O, (ii) there is z o < oo such that g'(x) <~ 0 for all x >1 z o. 

Proof Suppose (01, gl) solves (4.2)-(4.3). In the proof of Theorem 4.2 we used 
only the fact supg (x )  < oo, so 01 = 0. 

Let g(x) be the limit of ave(x) - av~(O) and zo(zl) be the first zero of g '  (g~ 
respectively). Finally let yo=max(zo, zl}. Then on x ~ [ y o ,  m ) I ( x ,g )=  
l(x,  gl) = 0 and the equation (4.3) yields that g'(x) = g{(x) on the same interval. 
Thus we have 

g'(x)  = g{(x) ~< 0 forall  x E [yo,Oe);g'(yo) = gi(Yo) = 0. (4.12) 
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Let /g(x, g) be defined as in (4.4). Then it is continuous with K ( y  0, g l ) =  
K(Yo, g) = - u(co). Consider x, defined by 

x ,  = i n f { y > 1 0 : K ( z ,  g l ) < ~ - l / n  a n d K ( z , g ) < ~ - l / n  

for all z ~ [y ,  ~ ) }  (4.13) 

There is ~/> 0 such that g ' (x )  = sup { l[u(c)+F.(x ,g)]}onx~[x , ,oo)and 
c~[n,  Co] 

the same statement holds for gt also. Let T to be chosen later and £ ~ [Y0 - Y, Yo] 
such that 

m = g ' ( . 2 ) -  g{(.~) = m a x ( g ' ( x ) - g ; ( x ) ' x ~ [ y o - y ,  yo] } (4.14) 

Let e*, c* be as in Theorem 4.2. Then c*(x)>1 TI on [xn, ~ )  and the equation 
(4.3) yields 

m = g ' ( ~ ) - g r ( Y )  ~ c*(~-----S g ' (~+t ) -g ; (~+t ) ) f l ( e* (~ ) ,dy )  

1-- [YO-~myfl(e*(~),dy ) 
<~ 71ao 

~< m "/ supB(e , [O,  oo)) (4.15) 
"O e ~ E  

Choose 2/so that the last expression is less than m. Thus m ~< 0, but the argument 
is symmetric so we conclude that g'(x)= g~(x) for all x E [Y0-  ~, ~)-  Repeat 
the same argument to cover the interval [x, ,  ~ ) .  We have 

g'(x) = g~(x) for all x ~ [ x ~ , ~ )  (4.16) 

where x~  = lim x n. Moreover K(xoo, g) = K(x~, ga) = 0 but K(x ,  g) is non- 
n - - ~  

increasing with K(0, g) = 0. Therefore 

K.(x,g) = f ( x )  = O, g'(x) = u'(O), I ( x ,g )  = O for a l l x  ~ [0, x ~ ]  

(4.17) 

For  x ~ xoo we have 

0 <~ I ( x ~ , g l ) - l ( X ,  gl)<~ fo fx (g~( t+y)-g~( t ) )d t f l (e~(x~) ,dy)  

(4.18) 

where e*(x~) maximizes I(x~, e, gl) ,  because of (4.16) one may pick e?(x~) = 
e*( x~). Now we claim that fl( e*( x~),[O, x~)) = O. 

0 = I ( O , g ) -  l(xoo,g ) >~ l(O,e*(Xoo),g ) -  l ( x~ , e* (x~ ) , g )  

+ f ~ [ Y ( g ' ( t ) - g ' ( x ~  +t))dtB(e*(x~) ,dy)  (4.19) 
.,o Jo 

The integrand is non-negative and for t E [0, x~);  g'( t ) -  g'(x~ + t) > 0. There- 
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fore the claim should hold. Substitute this into (4.18) 

0 <~ I ( x ~ , g l ) - -  l (X,  gl) <~ f x ~ ( g ~ ( t q - y ) - g { ( t ) ) f l ( e * ( x ~ ) , d y )  

(4.20) 

Let  ~=inf(y<.x~:g~( 'r)=u'(O) for all ~'~[Y, Xoo]}. If ~ > 0  one can find 
3' > 0 such that 

g~(t) >i g i ( t + y )  f o r a l l y  >~ x~ and t ~ [ f f - ' f , o o ) .  (4.21) 

Use this in (4.20) to get 0 = I(x~,, gl) = I(y,  gl) on y ~ [~ - % x~]. Subse- 
quently g { ( y ) =  u'(0) on the same interval, contradicting the choice of Y. Thus 
~ = 0 .  [] 

Any continuously differentiable solution gl of (4.3) satisfies g~(x)~ u'(O). 
Thus 

f0 ° I (x ,  gl) <~ u'(O) sup yfl(e,dy) = a. 
O<~e<~e o 

Then K(x ,  g l )  ~< 0~-- f ( x )  since 0 is non-negative. So if f ( ~ )  > U(Co)+ a then 
g~(x) must be negative for sufficiently large x. We have the following result: 

f0 ° Corollary 4.4. / f  f (co)  > U(Co)+ u'(O)" sup yfl(e, dy) then there is one 
O<~e~e o 

solution of (4.2)-(4.3). 

Remark. For  x, z >/0 and admissible strategy ¢r define a random time Tf z as 

~'~z = inf(  t >~ 0: y(x ,  t, ~r) = z }. (4.22) 

Suppose there is z >/0 such that "* ~'Lz < ~ almost surely for every x. An easy 
application of Dynkin's formula yields 

~r* 
g(x)  = g ( z ) + e  

- f ( y ( x ,  t, ~r*))-O] dt. (4.23) 

See [2] for more information. 
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