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Abstract
We study an optimal dividend problem under a bankruptcy

constraint. Firms face a trade-off between potential

bankruptcy and extraction of profits. In contrast to previ-

ous works, general cash flow drifts, including Ornstein–

Uhlenbeck and CIR processes, are considered. We provide

rigorous proofs of continuity of the value function, whence

dynamic programming, as well as comparison between

discontinuous sub- and supersolutions of the Hamilton–

Jacobi–Bellman equation, and we provide an efficient and

convergent numerical scheme for finding the solution. The

value function is given by a nonlinear partial differential

equation (PDE) with a gradient constraint from below in

one direction. We find that the optimal strategy is both a

barrier and a band strategy and that it includes voluntary

liquidation in parts of the state space. Finally, we present

and numerically study extensions of the model, including

equity issuance and gambling for resurrection.

K E Y W O R D S
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1 INTRODUCTION

The problem of optimizing dividend flows has its origins in the actuarial field of ruin theory, which
was first treated theoretically by Lundberg (1903). The theory typically models an insurance firm, and
initially revolved around minimizing the probability of ruin. However, in many situations in practice,
there is an emphasis on maximizing the shareholder value—an idea that fits well into de Finetti (1957)
proposal to optimize the net present value of dividends paid out until the time of ruin. With a positive
discount rate of the dividends, de Finetti solved the problem for cash reserves described by a random
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walk. Since then, this new class of dividend problems has been extensively studied, especially in the
context of modeling insurance firms.

Although a dividend problem can be seen as assigning a value to a given cash flow, the prob-
lem formulation nevertheless retains an emphasis on the ruin time. This is contrasted by cash flow
valuation principles such as real option valuation, first introduced by Myers (1977). Although the div-
idend problem seeks the value of a cash flow after passing through a buffer (the cash reserves), the real
option approach evaluates a cash flow without such a buffer. In other words, the latter is a valuation
of a cash flow without any liquidity constraint, as opposed to the optimal dividend problem where the
firm can reach ruin. The real option value thus provides a natural bound for the optimal dividend value,
which turns out to be helpful in our analysis.

In the actuarial literature, the cash reserves are commonly described by a spectrally negative Lévy
process with a positive drift of premiums and negative jumps of claims. Our direct focus is not an
insurance firm, and we instead study cash reserves described by a diffusion process. Although this is
not the natural insurance perspective, it is studied also there as the limiting case of the jump processes,
as initiated by Iglehart (1965).

Formulated as a problem of “storage or inventory type,” the general diffusion problem with singular
dividend policies was solved by Shreve, Lehoczky, and Gaver (1984). In the case of constant coef-
ficients in the cash reserves dynamics, Jeanblanc-Picqué and Shiryaev (1995) found the solution by
considering limits of solutions to problems with absolutely continuous dividend strategies. The opti-
mal solution to this singular problem formulation is described by a so-called barrier strategy, which
yields a reflected cash reserves process by paying any excess reserves as dividends. This divides the
state space into two regions: dividends are paid above the barrier (dividend region), but not in the region
between zero and the barrier (no-dividend region). This is contrasted by dividend band strategies that
frequently appear in jump models and were first identified by Gerber (1969). Instead of the two spatial
regions, there then exists at least one no-dividend region in which the origin is not contained. It thus
creates a band-shaped no-dividend region in-between two dividend regions.

In the financial and economics literature, the main focus is on diffusion models, and extensions
often involve nonconstant interest rate, drift, and/or diffusion coefficients. Indeed, external, macroe-
conomic conditions and their effects on profitability have a substantial impact on dividend policies, as
shown by Gertler and Hubbard (1991) and more recently by Hackbarth, Miao, and Morellec (2006).
Such macroeconomic effects have been studied in various forms. In particular, Anderson and Carver-
hill (2012) as well as Barth, Moreno-Bromberg, and Reichmann (2016) numerically study continu-
ously changing stochastic parameters, whereas Akyildirim, Güney, Rochet, and Soner (2014) consider
stochastic interest rates following a Markov chain, and Jiang and Pistorius (2012) consider model coef-
ficients and interest rate both governed by Markov chains. Bolton, Chen, and Wang (2013) similarly
study the macroeconomic impact on both financial and investment opportunities. In contrast to coeffi-
cients influenced by macroeconomic factors, Radner and Shepp (1996) already in 1996 modeled a firm
that alternates between different operating strategies, thereby effectively controlling the model coef-
ficients. Other extensions include transaction costs of dividend payments or the possibility of equity
issuance, cf. Akyildirim et al. (2014); Bolton et al. (2013); Décamps, Mariotti, Rochet, and Villeneuve
(2011). The papers by Cai, Gerber, and Yang (2006), and Cadenillas, Sarkar, and Zapatero (2007)
both treat different models with mean-reverting cash reserves, contrasting the model here, where we
instead consider mean-reverting profitability. Finally, Avanzi and Wong (2012) and Albrecher and
Cani (2017) propose dividend processes proportional and affine in the cash reserves, respectively, as
a means to capture the more stable dividend streams seen in practice. For further references, we refer
the reader to Asmussen and Albrecher (2010); Albrecher and Thonhauser (2009) and the references
therein.
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Our choice of diffusion model has a continuous, stochastic drift generated by a separate profitability
process. This structure yields a two-dimensional problem in which the dividend strategy depends on
the current profitability. In particular, for low (negative) rates, a band strategy is optimal, but at higher
rates, dividends are optimally paid according to a barrier strategy, with a barrier level depending on
the profitability. Additionally, for very low rates, we prove that it is optimal to perform a voluntary
liquidation, meaning that all cash reserves are paid instantaneously. Band structures are common for
jump models, but here appear in a continuous model.1 Finally, in addition to qualitative and numer-
ical results, we provide proofs for continuity of the value function as well as a comparison principle
for the dynamic programming equation (DPE). The latter supports the convergence of the numerical
scheme.

Mathematically, the problem is an example of a multi-dimensional singular optimal control.
Although the abstract formulation is given generally Fleming & Soner (2006), a vast part of the
literature and applications of singular control have been in one space dimension. Indeed, in multi-
dimensions, several difficult technical problems arise as the geometry of the free boundary separating
the two regimes is nontrivial. Consequently, the problem is studied only under structural conditions.
In two space dimensions, the regularity of the free boundary is studied by Soner and Shreve (1989)
using the rotational symmetry and by Chiarolla and Haussmann (1994) through monotonicity in both
variables. When the so-called push direction is unique, Shreve and Soner (1991a, 1991b) exploit the
connection to an obstacle problem.

Another approach to singular control is to characterize the free boundary as a solution of an inte-
gral equation. In the context of the classical Stephan problem of melting ice, this was first observed by
Kolodner (1956). A similar characterization through a very different method is given in Ferrari (2015);
De Angelis, Federico, and Ferrari (2017). These papers use stochastic singular control to model prob-
lems in irreversible investment. More recently, a public debt management problem studied by Ferrari
(2018) and an integral equation as well as the regularity of the free boundary is obtained. Mathemat-
ically, this model is the closest to the one studied in this paper. However, there are substantial differ-
ences as well. In our model, as opposed to Ferrari (2018), bankruptcy happens and is central to the
difficulties in our analysis. In particular, there are at least two free boundaries in our problem, and the
derivation of integral equations seems not possible. Consequently, we follow the dynamic programming
approach and prove a general comparison result, Theorem 3.7. In Section 4, we then use it to prove
the convergence of our numerical method. In turn, this allows us to numerically study the problem
extensively.

The paper is organized as follows. We begin by describing the problem in Section 2, followed by
our assumptions and analytical results in Section 3. In Section 4, we present a numerical algorithm as
well as its results. Intuition for these results is then provided by studying a related, simpler problem
in Section 5. Finally, we suggest and numerically study some possible extensions of the model in
Section 6. At the end of the paper, after the concluding comments in Section 7, the proofs of the
statements in Section 3 are given in Section 8.

2 PROBLEM FORMULATION

Consider a cash flow of the form

d𝐶𝜇
𝑡
= 𝜇𝑡d𝑡 + 𝜎d𝑊𝑡, 𝐶

𝜇

0 = 0,

1 Similar properties have been observed by Anderson and Carverhill (2012) and Murto and Terviö (2014).
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where W is a Brownian motion and the profitability (cash flow rate) (𝜇𝑡)𝑡≥0 is described by

d𝜇𝑡 = 𝜅(𝜇𝑡)d𝑡 + �̃�(𝜇𝑡)d�̃�𝑡, 𝜇0 = 𝜇,

for some functions 𝜅 and �̃�, as well as another Brownian motion �̃� with correlation 𝜌 ∈ [−1, 1] to
W. When it is necessary to emphasize the starting point of (𝜇𝑡)𝑡≥0, a superscript will be added. In
other words, (𝜇𝜈

𝑡
)𝑡≥0 is the process with 𝜇0 = 𝜈 that solves the above stochastic differential equation

(SDE). Despite the formulation of 𝜇𝑡 as a continuous process, most of the results extend naturally to
the Markov chains studied in the literature.

The precise assumptions on the diffusion, given in Assumptions 3.2 and 3.3, include Ornstein–
Uhlenbeck processes

d𝜇𝑡 = 𝑘(�̄� − 𝜇𝑡)d𝑡 + �̃�d�̃�𝑡,

for constants 𝑘 > 0, �̄�, and �̃� as well as another commonly considered process, the Cox–Ingersoll–Ross
(CIR) process

d𝜇𝑡 = 𝑘(�̄� − 𝜇𝑡)d𝑡 + �̃�
√
𝜇𝑡 − 𝑎d�̃�𝑡,

for constants 𝑘 > 0, �̄�, �̃�, and a. In fact, the Assumption 3.2 only imposes asymptotic conditions as|𝜇| → ∞. This means that on any given bounded domain, 𝜅 and �̃� can be general, provided certain
growth conditions are satisfied outside the bounded domain, and provided the SDE has a well-defined
solution. This is naturally satisfied by bounded processes. Interpreting −𝜅 as the derivative of some
potential, it also includes the possibility of potentials with multiple wells (local minima), thus having
several points of attraction.

We model a firm whose cash flow is given by the process 𝐶𝜇 = (𝐶𝜇
𝑡
)𝑡≥0. The firm pays dividends

to its shareholders using cash accumulated from the cash flow. Let 𝐿𝑡 denote the cumulative dividends
paid out until time t. Then, the cash reserves 𝑋 = (𝑋𝑡)𝑡≥0 of a firm with initial cash level x can be
written as

d𝑋(𝑥,𝜇),𝐿
𝑡

= d𝐶𝜇
𝑡
− d𝐿𝑡, 𝑋

(𝑥,𝜇),𝐿
0 = 𝑥.

The objective of the firm is to maximize its shareholders’ value, defined as the expected present value
of future dividends, computed under the risk-adjusted measure.2 Denote by  the domain on which 𝜇𝑡
resides. This domain is typically the whole real line, as for a Ornstein–Uhlenbeck process, a half-line,
for a CIR process, or a bounded interval, for a bounded process. The value function is then defined as

𝑉 (𝑥, 𝜇) ∶= sup
𝐿∈(𝑥,𝜇)

𝐽 (𝑥, 𝜇;𝐿)

∶= sup
𝐿∈(𝑥,𝜇)

𝔼

[
∫
𝜃(𝑥,𝜇)(𝐿)

0
𝑒−𝑟𝑡d𝐿𝑡

||||||(𝑋0, 𝜇0) = (𝑥, 𝜇)

]
, (𝑥, 𝜇) ∈  ∶= [0,∞) ×, (1)

2 We assume that shareholders can diversify their portfolios and that the firm under study is small, so that its decisions do not
alter the risk-adjusted measure.
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where (𝑥, 𝜇) is the set of processes 𝐿 = (𝐿𝑡)𝑡≥0 that are cádlàg (right-continuous with left lim-
its) adapted to the filtration (𝑡)𝑡≥0 generated by 𝐶𝜇 and 𝜇, as well as nondecreasing3 with Δ𝐿𝑡 ≤
𝑋

(𝑥,𝜇),𝐿
𝑡− ,4,5 and

𝜃(𝑥,𝜇)(𝐿) ∶= inf{𝑡 > 0 ∶ 𝑋(𝑥,𝜇),𝐿
𝑡

< 0}

is the time of bankruptcy. We model a limited liability firm, and therefore do not impose a penalty at
ruin.6 In particular, we interpret a payout Δ𝐿𝑡 = 𝑋𝑡− as a decision to liquidate the firm. In the context
of insurance, one may imagine a ruin penalty is also possible, see for instance Liang and Young (2012).
Mathematically, this would change the boundary conditions, but we believe that most of the analysis
and in particular the computational method still apply.

Note that as 𝜇 satisfies comparison (see Revuz & Yor, 1999, theorem 3.7, p. 394),𝑋(𝑥,𝜇),𝐿
𝑡

≤ 𝑋(𝑦,𝜈),𝐿
𝑡

P-a.s. for any 𝑡 ≤ 𝜃(𝑥,𝜇) if 𝑥 ≤ 𝑦 and 𝜇 ≤ 𝜈. Hence, the value function is monotone in each argument.
We use this comparison property repeatedly in the proofs.

When the starting points (𝑥, 𝜇) of the cash reserves and the cash flow are clear from context, the
superscripts will be dropped in order to simplify the notation. Similar omissions of superscripts will
be done for the bankruptcy times and strategies L when it is clear what dividend policy is followed.

3 MAIN RESULTS

Before presenting the main results, we give a brief account of the structure of the state space. The state
space can be divided into a number of regions, each characterized by its role in the DPE—interpreted as
a control action—as illustrated in Figure 1. The value function is characterized by three main regions:
the dividend region, retained earnings region, and the liquidation region. The region of retained earn-
ings is bounded by two curves and is characterized by d𝐿𝑡 = 0. The dividend region and liquidation
region are both characterized by d𝐿 ≠ 0, but correspond to different interpretations, and intersect at
the line at the threshold value 𝜇∗. More precisely, in the liquidation region, all available cash reserves
are “paid,” leading to a liquidation. This is in contrast to the dividend region, where only the excess of
the dividend boundary (or dividend target) is paid to the shareholders.

The remainder of this section is devoted to the statements of the main results that are all proved
in Section 8. For the proofs, we need the following set of assumptions, satisfied by for example
Ornstein–Uhlenbeck and CIR processes. This assumption essentially says that the profitability process
is mean-reverting and well behaved in the sense of a Feller condition. Mean-reversion of profitability
is empirically well established by Fama and French (2000) and others.

We will use the so-called big O notation.

3 The process L must be nondecreasing because the limited liability of shareholders implies that d𝐿𝑡 cannot be negative. Section 6
considers the case when new shares can be issued at a cost, allowing to inject new cash into the firm. Also any monotone process
such as L has left limits and we could dispose with the requirement.
4 Shareholders cannot distribute more dividends than available cash reserves. Otherwise, this would constitute fraudu-
lent bankruptcy.
5 Although the model allows dividend payments with infinite “frequency” of very general type, we argue that it is not less realistic
than the absolutely continuous case where the “frequency” is also infinite, but interpreted as a rate. Indeed, as suggested by (2)
in Section 3.4 and exploited in Section 4, this model can be considered the limit when there is no bound on the dividend rate.
6 Limited liability implies that the bankruptcy costs are not paid by the owners of the firm but by its creditors.
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F I G U R E 1 The figure shows the three regimes. In the region between the lines 𝑥 and 𝑥, the all incoming profits
are retained. When the cash reserves fall to 𝑥, the firm liquidates, whereas when it increases to 𝑥, dividends are paid out
according to the local time at the boundary, thus reflecting the cash reserves process. In the region above 𝑥, a lump sum
of the excess of 𝑥 is paid immediately. Finally, when 𝜇 ≤ 𝜇∗, liquidation is optimal at all cash levels

Definition 3.1. A function f is said to be in 𝑂(𝑔) (so-called big O) as 𝑦→ 𝑎 if

lim sup
𝑦→𝑎

||||𝑓 (𝑦)𝑔(𝑦)
|||| < ∞.

We are now ready to state the following set of assumptions on the growth of the coefficients and
the regularity of 𝜇 at a boundary of its domain. The following condition on the 𝜇 process, without
explicitly mentioning, is assumed throughout the paper.

Assumption 3.2. Throughout, we assume that the domain of (𝜇𝑡)𝑡≥0 is some possibly unbounded
interval  ⊆ ℝ. In other words, for any starting point 𝜇0 ∈ , the process remains in .

Moreover, we assume that 𝜅 and �̃�2 are locally Lipschitz continuous on the interior o, that −𝜇∕𝜅
is nonnegative and bounded for large (positive) 𝜇, that −𝜅∕𝜇 is nonnegative and bounded for large −𝜇,
as well as that �̃�2 ∈ 𝑂(𝜇) and never vanishes in o.

The following assumption is needed to prove comparison for non-Lipschitz coefficients 𝜅 and �̃�.

Assumption 3.3. If  ≠ ℝ, that is, it has an upper or lower boundary, we require some regularity at
this boundary.

1. The function �̃�2 is also locally Lipschitz on the boundary 𝜕.
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2. For any sufficiently small 𝜂 > 0, we assume that if −∞ < inf  = 𝜈, then

lim sup
𝜇→𝜈

(
1

𝜇 − 𝜈
− 2𝜅(𝜇) + 𝜂𝜌𝜎�̃�(𝜇)

�̃�(𝜇)2

)
<∞,

and if ∞ > sup = 𝜈, then

lim inf
𝜇→𝜈

(
1

𝜇 − 𝜈
− 2𝜅(𝜇) + 𝜂𝜌𝜎�̃�(𝜇)

�̃�(𝜇)2

)
> −∞.

The economic interpretation of the growth conditions on 𝜅 is that even if the profitability is very
large, it eventually returns to a more reasonable level. The growth condition on �̃� simply ensures that
the diffusion does not overpower this effect. Finally, the origin of the lim sup and lim inf conditions at
the boundary points are due to conditions needed for the comparison proof (cf. Section 8.4), while still
general enough to encompass processes like the ones in Section 2.

We assume that Assumption 3.2 holds throughout. This assumption is not necessary for the com-
parison proof, but ensures that the value function is polynomially growing—the family of function for
which comparison is established.

3.1 Finiteness
We begin by establishing that the value function is finite. The proof of this result is provided in Sec-
tion 8.1.

Theorem 3.4. The value function is finite.

3.2 Liquidation threshold
The following theorem establishing the existence of the value 𝜇∗ in Figure 1 is proven in Section 8.2.

Theorem 3.5. If  has no lower bound, there exists a value 𝜇∗ such that it is optimal to liquidate
immediately whenever 𝜇 ≤ 𝜇∗, that is, 𝑉 (𝑥, 𝜇) ≡ 𝑥.

3.3 Continuity
Although the problem formulation bears resemblance to the Merton consumption problem, which has
been extensively studied in the mathematical finance literature, the crucial difference here is that the
firm is always exposed to the risk of its own operations. In other words, because X is the only asset
and also volatile, there is no safe asset, and, as a result, the problem lacks desired concavity properties.
More specifically, this happens due to the possible quasi-convexity of 𝐿 → 𝜃(𝐿). Figure 2 shows a

case where 𝜃(𝐿
1+𝐿2

2 ) < max{𝜃(𝐿1), 𝜃(𝐿2)} for two strategies 𝐿1 and 𝐿2, which means that the convex
combination of strategies in some scenario would pay out dividends after bankruptcy. Note that this loss
of concavity corresponds to nonconvexity of the set of dividend processes that are constant after ruin.

Despite this lack of concavity, we can prove continuity, given by the following theorem.

Theorem 3.6. The value function is continuous everywhere.



8 REPPEN ET AL.

F I G U R E 2 Recall that ruin occurs when the dividends reach the total cash accumulated, that is, 𝑥 + 𝐶𝑡. The
figure illustrates two dividend policies 𝐿1 and 𝐿2 (solid) as well as their convex combination �̄� = (𝐿1 + 𝐿2)∕2
(dashed), showing that for some path 𝜃(�̄�) < 𝜃(𝐿1) ∨ 𝜃(𝐿2), which corresponds to the possibility of dividend payments
after ruin. Equivalently, the set of dividend strategies that are constant after ruin is nonconvex

3.4 Dynamic programming equation
Following the continuity of Theorem 3.6, we refer to Fleming & Soner (2006) for proving the dynamic
programming principle. For a general proof of dynamic programming, we refer to Karoui and Tan
(2013a, 2013b). Writing

𝑉 = 𝜇𝑉𝑥 + 𝜅(𝜇)𝑉𝜇 + Tr Σ(𝜇)𝐷2𝑉 ,

where

Σ = 1
2

[
𝜎2 𝜌𝜎�̃�

𝜌𝜎�̃� �̃�2

]
is the covariance matrix, the dynamic programming equation corresponding to (1) is given by

min{𝑟𝑉 − 𝑉 , 𝑉𝑥 − 1} = 0, in ℝ>0 ×, (2)

with 𝑉 (0, ⋅) ≡ 0.

Theorem 3.7 (Comparison). Let u and v be upper and lower semicontinuous, polynomially growing
viscosity sub- and supersolutions of (2). Then, under Assumption 3.3, 𝑢 ≤ 𝑣 for (𝑥, 𝜇) ∈ 0 × implies
that 𝑢 ≤ 𝑣 everywhere in  ∶= ℝ≥0 ×.

Corollary 3.8 (Uniqueness). The value function is the unique subexponentially growing viscosity
solution to the dynamic programming equation (2).

Proof. By the dynamic programming principle, the value function V is a viscosity solution to (2).
To obtain uniqueness, observe that, by Theorem 3.7, V, being both a sub- and a supersolution, both
dominates and is dominated by any other solution. In other words, it is equal to any other solution, and
thus unique.
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Note that the comparison principle is essential for the stability property of viscosity solutions, which
leads to convergence of monotone numerical schemes to a solution, and, by the comparison theorem,
it is unique, cf. Barles and Souganidis (1991). It thus ensures that the stability property gives the
correct solution.

4 NUMERICAL RESULTS

The numerical results presented in this section are all obtained through policy iteration. Policy iteration
is an iterative technique where one chooses a policy, calculates the corresponding payoff function,
then improves the policy by updating it where the payoff function suggests it is profitable, and finally
iterates this procedure until convergence. That the scheme does indeed converge to the value function
is supported by the comparison principle in Theorem 3.7 and the uniqueness result in Corollary 3.8.

The idea implemented here is to approximate the singularity with increasingly large controls that are
absolutely continuous with respect to time. In particular, let 𝐾 > 0 be any large constant and consider
control variables 𝐿𝑡 = ∫ 𝑇0 𝓁𝑡d𝑡, where the adaptive control process 𝓁𝑡 takes values in [0, 𝐾]. Then, the
problem of optimizing over 𝓁 amounts to a penalization of the DPE (2) with penalization factor K.

To see that the limit of these problems gives the solution to the original problem, we begin by writing
out the PDE for the approximation

min
𝓁∈[0,𝐾]

[
𝑟𝑉 𝐾 − 𝑉 𝐾] + 𝓁

[
𝑉 𝐾
𝑥

− 1
]
= 0. (3)

Letting 𝜆 = 𝓁∕𝐾 and subtracting and adding equal terms, we reach

min
𝜆∈[0,1]

(1 − 𝜆)𝑟𝑉
𝐾 − 𝑉 𝐾
𝐾

+ 𝜆
(
𝑉 𝐾
𝑥

− 1 + 𝑟𝑉
𝐾 − 𝑉 𝐾
𝐾

)
= 0,

which is equivalent to

min
{
𝑟𝑉 𝐾 − 𝑉 𝐾, 𝑉 𝐾

𝑥
− 1 + 𝑟𝑉

𝐾 − 𝑉 𝐾
𝐾

}
= 0.

For 𝑝𝑥, 𝑝𝜇 ∈ ℝ and a matrix Y, let, with some abuse of notation,

(𝜇, 𝑝𝑥, 𝑝𝜇, 𝑌 ) = 𝜇𝑝𝑥 + 𝜅(𝜇)𝑝𝜇 + Tr Σ(𝜇)𝑌 ,

and

𝐹𝐾 (𝑥, 𝜇, 𝑢, 𝑝𝑥, 𝑝𝜇, 𝑌 ) = min
{
𝑟𝑢(𝑥, 𝜇) − (𝜇, 𝑝𝑥, 𝑝𝜇, 𝑌 ), 𝑝𝑥 − 1 +

𝑟𝑢(𝑥, 𝜇) − (𝜇, 𝑝𝑥, 𝑝𝜇, 𝑌 )
𝐾

}
.

Letting 𝐾 → ∞,

lim
𝐾→∞

𝐹𝐾 (𝑥, 𝜇, 𝑢, 𝑝𝑥, 𝑝𝜇, 𝑌 ) = min {𝑟𝑢(𝑥, 𝜇) − (𝜇, 𝑝𝑥, 𝑝𝜇, 𝑌 ), 𝑝𝑥 − 1}

= 𝐹 (𝑥, 𝜇, 𝑢, 𝑝𝑥, 𝑝𝜇, 𝑌 ).

Finally, 𝑉 𝐾 is bounded from above (by V) and monotonically increasing, and hence converging to
some function 𝑉 ∞ as 𝐾 → ∞. Moreover, 𝑉 𝐾 satisfies

𝐹𝐾 (𝑥, 𝜇, 𝑉 𝐾, 𝑉 𝐾
𝑥
, 𝑉 𝐾
𝜇
,𝐷2𝑉 𝐾 ) = 0,
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so, by the viscosity stability property, 𝑉 ∞ is a viscosity solution to 𝐹 = 0, and, by the comparison
theorem, 𝑉 ∞ ≡ 𝑉 .

Thanks to this approximation of the state dynamics, it holds that in any given space discretization, the
transition rate between states is bounded away from zero. This means that the continuous-time Markov
chain on the discretized space can be reduced to a discrete-time Markov chain (cf., e.g., Puterman,
1994). Thus, after a suitable space discretization, the problem is solved using standard methods of
policy iteration that are known to converge. The convergence to 𝑉 𝐾 of the solution to the discretized
problem can be also be shown with standard viscosity methods.

Let  be a discretization of  consisting of N points, and let 𝓁 be a corresponding discretization
of the terms from (3) involving 𝑉 𝐾 , that is, 𝑟𝑉 𝐾 − 𝑉 𝐾 + 𝓁𝑉 𝐾

𝑥
. Then, starting with any control 𝓁0,

the policy iteration scheme with tolerance7 𝜏 ≥ 0 is given by the following steps:8

Algorithm 1: Policy iteration algorithm (step i)

1. Compute Vi ∈ RN such that

(x ,µ )∈D
L i

D(x, μ, x , μ )Vi(x , μ ) − i = 0, ∀(x, μ) ∈ D.

Halt if sup |Vi − Vi−1| ≤ τ .

2. For each (x, μ) ∈ D, compute i+1(x, μ) according to

i+1(x, μ) ∈ arg min
∈̂[0,K]

⎛
⎝

(x ,µ )∈D
Lˆ

D(x, μ, x , μ )Vi(x , μ ) − ˆ

⎞
⎠ .

3. Return to step (i).

Remark 4.1. In the algorithm above, the second step is computationally the most difficult. In general,
there is no known structure to be used, so it often has to be solved by brute force. Luckily, however,
the problems given for each (𝑥, 𝜇) are fully independent, and the step can thus be entirely parallelized.
Thanks to this, the computational burden can be partly mitigated.

7 Note that the policy iteration scheme halts even for 𝜏 = 0.
8 As we solve in a bounded domain, some care has to be taken at the boundaries. However, thanks to the condition given on
𝜅, it is natural to impose a reflecting boundary along the 𝜇-directions, provided the domain is large enough. Moreover, the
(approximately) optimal policy is expected to naturally reflect at the upper x-boundary, provided the domain is large enough to
contain the no-dividend region. For these reasons, the precise choice of boundary condition is of relatively small importance, if
 is chosen appropriately.
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F I G U R E 3 The black region corresponds to d𝐿 = 0, whereas the white region corresponds to d𝐿 > 0. The latter
case is interpreted as either dividend payments or liquidation, depending on the position in the state space, see Figure 1

4.1 Results and comparative statics
What follows is an account of an implementation of the scheme for the Ornstein–Uhlenbeck model

d𝜇𝑡 = 𝑘(�̄� − 𝜇)d𝑡 + �̃�d�̃�𝑡.

The resulting dividend policies are presented in Figure 3, with 𝑘 = 0.5, �̄� = 0.15, and �̃� = 0.3 (left) as
well as �̃� = 0.1 (right). The other parameter choices are 𝜎 = 0.1, 𝜌 = 0, and 𝑟 = 0.05. The white regions
indicate dividend payments or liquidation, that is, 𝑉𝑥 = 1 and d𝐿 > 0, whereas the black regions indi-
cate that the firm retains all its earnings, that is, 𝑟𝑉 − 𝑉 = 0 and d𝐿 = 0. The figures show the
(approximately) optimal policy, from which the value function can be obtained by solving a linear
system of equations.

Figure 4 shows the effect of changing one parameter at a time. The figures presented here have been
generated for 𝜏 = 0, without parallelization on an ultrabook laptop.9 On this system, the computations
took around 10 min10 at this resolution, and were observed to converge. Varying the parameters does
not seem to change the qualitative properties significantly. The parameter �̃� primarily changes the
width of the band region, k and �̄� affect the size and extension into the region of negative 𝜇, 𝜎 changes
the height, and finally 𝜌 influences the shape. Note that although the free boundary is nonmonotone in
�̃� for x right below 2, it is monotone for smaller x.

5 A SOURCE OF INTUITION: THE DETERMINISTIC
PROBLEM

When the two parameters 𝜎 and �̃� are zero, the problem can be solved explicitly for a mean-reverting
𝜅(𝜇) = 𝑘(�̄� − 𝜇), with 𝑘, �̄� > 0. The solution of this deterministic problem provides intuition for the
solution of the stochastic problem.

9 Intel Core i7-7600U, 1866MHz LPDDR3.
10 For the left solution in Figure 3 (same as “default” values from Figure 4), the runtime was just short of 8 min on a 1, 000 × 1, 000
grid without parallelization. A more modest grid size of 300 × 300 runs in 7 s on the same hardware. All computations were
generated with a starting point with “no information,” that is, 𝓁 identically zero.
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F I G U R E 4 Comparative statics. Apart from for the parameter being varied, the chosen values were 𝑟 = 0.05,
𝑘 = 0.5, �̄� = 0.15, �̃� = 0.3, 𝜎 = 0.1, and 𝜌 = 0. The parameter varied is indicated in the respective figure. The values
considered were 𝑘 = 0.25, 0.5, 1.0, �̄� = 0.0, 0.15, 0.3, �̃� = 0.1, 0.2, 0.3, 0.4, 0.5, 𝜎 = 0.1, 0.2, 0.3, 0.4, and
𝜌 = −1.0,−0.5, 0.0, 0.5, 1.0. To address the effect of the boundary conditions, most calculations were run on a larger
domain than plotted here. The lower boundary for 𝜌 = −1.0 displayed signs of numerical instability around the origin
and has therefore not been plotted in this region
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As (𝜇𝑡)𝑡≥0 is mean-reverting to the positive value �̄�, it will never attain negative values once it has
been positive. In particular, solving the ODE describing the dynamics of (𝜇𝑡)𝑡≥0 yields

𝜇𝑡 = �̄� + (𝜇 − �̄�)𝑒−𝑘𝑡.

We will treat the cases 𝜇 ≥ 0 and 𝜇 < 0 separately.
If 𝜇 ≥ 0, the firm is always profitable, and does not default at 𝑥 = 0 unless 𝜇 < 0. Therefore, there

is no need for a cash buffer, so it is optimal to pay all the initial cash reserves immediately. Thereafter,
cash from 𝜇 is paid out as it flows in. The value of paying the incoming earnings as dividends is

∫
∞

0
𝑒−𝑟𝑡𝜇𝑡d𝑡 = ∫

∞

0
�̄�𝑒−𝑟𝑡 + (𝜇 − �̄�)𝑒−(𝑘+𝑟)𝑡d𝑡 = �̄�

𝑟
+ 𝜇 − �̄�
𝑟 + 𝑘

. (4)

Hence, for 𝜇 ≥ 0, the value is given by

𝑉 (𝑥, 𝜇) = 𝑥 + �̄�
𝑟
+ 𝜇 − �̄�
𝑟 + 𝑘

.

On the other hand, if the cash flow starts at a negative level, it will eventually reach a positive state,
but the question is whether the firm is able to absorb the cumulated losses before then. If it can, are
those losses larger than future earnings? More precisely, the company could face ruin before it sees
positive earnings, but even if it does not, the losses incurred could offset the value of the future positive
cash flows. To address the first possibility, we calculate the minimum amount of cash needed to reach
a positive cash flow before the time of ruin. Denote by 𝜏0 the time such that 𝜇𝜏0 = 0. This time can be
found explicitly

𝜏0 = 𝜏0(𝜇) =
ln
(

�̄�

�̄�−𝜇

)
−𝑘

.

The cumulative losses until a positive cash flow is reached are

∫
𝜏0(𝜇)

0
𝜇𝑡d𝑡 = �̄�𝜏0(𝜇) +

𝜇 − �̄�
𝑘

(1 − 𝑒−𝑘𝜏0(𝜇)) = �̄�𝜏0(𝜇) +
𝜇

𝑘
.

Hence, the initial cash level needs to be at least this high to survive until 𝜇 ≥ 0, that is,

𝑉 (𝑥, 𝜇) = 𝑥, if 𝑥 < −�̄�𝜏0(𝜇) −
𝜇

𝑘
=∶ 𝑥𝑏(𝜇).

At an initial cash level x above 𝑥𝑏(𝜇), we identify two possible strategies: either pay out dividends of
size 𝑥 − 𝑥𝑏(𝜇) and wait for (𝜇𝑡)𝑡≥0 to reach 0, or perform a liquidation by paying out x. Which strategy
is optimal depends on the cost of waiting and the value of future cash flows. Hence, for 𝑥 ≥ 𝑥𝑏(𝜇),

𝑉 (𝑥, 𝜇) = max{𝑥, 𝑥 − 𝑥𝑏(𝜇) + 𝑒−𝑟𝜏0(𝜇)𝑉 (0, 0)} = 𝑥 + max
{
0, 𝑒−𝑟𝜏0(𝜇)𝑉 (0, 0) − 𝑥𝑏(𝜇)

}
.

Because 𝑥𝑏 and 𝜏0 are both decreasing in 𝜇, there exists a 𝜇∗ such that 𝑒−𝑟𝜏0(𝜇
∗)𝑉 (0, 0) = 𝑥𝑏(𝜇), so from

the last term we see that if 𝜇 ≤ 𝜇∗, it is optimal to liquidate regardless of the cash level. In the model,
this corresponds to paying all cash reserves as dividends at time 𝑡 = 0, yielding the value 𝑉 (𝑥, 𝜇) = 𝑥.

With 𝑥𝑏(𝜇) = 0 for 𝜇 ≥ 0, we have proved the following result.

Theorem 5.1. There exist thresholds 𝑥𝑏(𝜇) and 𝜇∗ such that

• it is optimal to liquidate immediately if 𝜇 ≤ 𝜇∗;
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F I G U R E 5 The value 𝑥𝑏(𝜇) is the cost of waiting for positive cash flow, whereas 𝑒−𝑟𝜏0(𝜇)𝑉 (0, 0) is the present
value of the future positive cash flow. For 𝜇 below the level at which these coincide, liquidation is thus optimal.
Liquidation is also optimal when 𝑥 < 𝑥𝑏(𝜇)

• it is optimal to liquidate immediately if 𝑥 < 𝑥𝑏(𝜇);
• if 𝑥 ≥ 𝑥𝑏(𝜇) and 𝜇 ≥ 𝜇∗, it is optimal to immediately pay the excess 𝑥 − 𝑥𝑏(𝜇) and thereafter all

earnings as they arrive.

This is the same type of structure we observe in the numerical solutions. The deterministic solution
suggests that liquidation is optimal for two different reasons. When 𝜇 is very negative, the firm cannot
expect to recover the initial “investment” x even if it avoids ruin, suggesting that the cash flow represents
a poor business opportunity. On the other hand, for initial points (𝑥, 𝜇) below the solid line in Figure 5,
the net present value of the cash flow net of the investment x is positive, but the firm foresees a liquidity
crisis at 𝜏0(𝜇). This future liquidity crisis could be avoided with more initial capital. However, lacking
the extra funds, the optimal decision is immediate liquidation.

6 MODEL EXTENSIONS

In this section, we present several model extensions that we study numerically. The numerical method
used is the same as in Section 4, but in the case of fixed costs, a slight generalization of the approxi-
mation of controls is necessary, due to the nonlocal behavior, as mentioned below.

6.1 Equity issuance
A firm in need of liquidity could see itself issuing equity to outside investors. In the sequel, we assume
that this happens whenever desired, but at a cost that is borne by the firm, and reflects the quality of
its access to financial markets. We consider two costs: one cost 𝜆𝑝 proportional to the capital received
and one fixed cost 𝜆𝑓 that is independent of the amount of equity issued. Mathematically, we follow
the model in Décamps et al. (2011) and write

d𝑋𝑡 = 𝜇𝑡d𝑡 + 𝜎d𝑊𝑡 − d𝐿𝑡 + d𝐼𝑡,
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F I G U R E 6 In the left figure, proportional issuance costs start at 34% for low 𝜇 and decaying to 25%. Equity is
issued according to local a time at the boundary 𝑥 = 0 where otherwise ruin would occur, and no equity is issued below
𝑖 = −1.0953. In the right figure, fixed costs are present, starting at 0.14 decaying to 0.06 as a function of 𝜇. Again,
equity is only issued at the boundary, and no equity is issued below 𝑖 = −0.7493. The dashed white line indicates the
cash reserve level after issuance, that is, how much equity was issued

where 𝐼 = (𝐼𝑡)𝑡≥0, just like L, is an adapted, increasing, cádlàg control process. We allow for the costs
to be 𝜇-dependent,11 and write 𝜆𝑝(𝜇𝑡) and 𝜆𝑓 (𝜇𝑡). For emphasis, we keep this dependence explicit.

The figures presented in this section are generated with the Ornstein–Uhlenbeck model

d𝜇𝑡 = 𝑘(�̄� − 𝜇)d𝑡 + �̃�d�̃�𝑡

for 𝑘 = 0.5, �̄� = 0.15, and �̃� = 0.3. The other parameter choices are 𝜎 = 0.1, 𝜌 = 0, and 𝑟 = 0.05.

6.1.1 Proportional issuance costs
If the costs are purely proportional, that is, 𝜆𝑓 = 0, the payoff corresponding to any two controls L and
I is

𝐽 (𝑥, 𝜇;𝐿, 𝐼) = 𝔼

[
∫
𝜃(𝐿,𝐼)

0
𝑒−𝑟𝑡

(
d𝐿 − (1 + 𝜆𝑝(𝜇𝑡))d𝐼

)
𝑡

]
,

where 𝜃(𝐿, 𝐼) is the first time the process X becomes negative. In this case, the DPE bears great resem-
blance to that of the original model, as issuance simply has the opposite effect of dividend payments

min{𝑟𝑉 − 𝑉 , 𝑉𝑥 − 1, 1 + 𝜆𝑝(𝜇) − 𝑉𝑥} = 0.

The interpretation is that the state space consists of three different regions defined by the optimal
action: pay dividends, issue equity, or do neither. Equity is thus issued whenever 𝑉𝑥(𝑥, 𝜇) = 1 + 𝜆𝑝(𝜇).
This means that issuance occurs whenever the marginal value is equal to the marginal cost.

Because issuance is costly and can be done at any time, it is optimal to only issue equity at points
where ruin would otherwise be reached, that is, where 𝑥 = 0. However, whether to do so at the bound-
ary depends on the current profitability. Indeed, as seen in Figure 6, equity is only issued when
the profitability is above a certain level, below which we still see the band structure of the original
problem.

11 This reflects the fact that a more profitable company (higher 𝜇) typically has better access to financial markets.
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6.1.2 Fixed issuance costs
On the other hand, if the fixed cost is nonzero, we can assume, without loss of generality, that

𝐼𝑡 =
∞∑
𝑘=1
𝑖𝑘1{𝑡≥𝜏𝑘},

for some strictly increasing sequence of stopping times 𝜏𝑘 and positive 𝜏𝑘 -measurable random vari-
ables 𝑖𝑘. The stopping times are interpreted as issuance dates, and the random variables as the issued
equity. If 𝐼𝑡 could not be written in this form, it would imply infinite issuance frequency, which would,
because of the fixed cost, come at infinite cost. This form is therefore a natural restriction, and the
corresponding payoff functional is given by

𝐽 (𝑥, 𝜇;𝐿, 𝐼) = 𝔼

[
∫
𝜃(𝐿,𝐼)

0
𝑒−𝑟𝑡d𝐿𝑡 −

∞∑
𝑘=1
𝑒−𝑟𝜏𝑘(𝜆𝑓 (𝜇𝑡) + 𝜆𝑝(𝜇𝑡)𝑖𝑘)1{𝜏𝑘<𝜃(𝐿,𝐼)}

]
.

The value function given by this problem is then the solution to the following nonlocal DPE:

min
{
𝑟𝑉 − 𝑉 , 𝑉𝑥 − 1, 𝑉 (𝑥, 𝜇) − sup

𝑖≥0
(
𝑉 (𝑥 + 𝑖, 𝜇) − 𝜆𝑝𝑖 − 𝜆𝑓

)}
= 0.

The last condition states that the value at any given point is at least equal to the value in any point after
issuance less the issuance costs.

As for proportional costs, issuance optimally only occurs at the boundary. However, with fixed costs,
the amount of equity issued is now larger in order to avoid incurring another fixed cost soon in the
future. The magnitude is presented as the issuance target in Figure 6. Note that, the numerical method
employed in the fixed cost case can be interpreted as the issuance structure in Hugonnier, Malamud, and
Morellec (2015) where the arrival of investors might not coincide with the desire for equity issuance.
The approximation parameter K from the singular case here describes the arrival rate of investors,
and the value V is the limit when the investor arrival rate tends to infinity. This same approximation
scheme is presented for another problem in Altarovici, Reppen, and Soner (2017) and turns out to be
very accurate.

By letting the fixed cost grow sufficiently fast in −𝜇, one can obtain substantially different issuance
policies. As shown in Figure 7, such structure can have a wave-like shape, not dissimilar to the shape
of the continuity region. This seems to indicate two factors at play: either one issues equity as a last
resort at 𝑥 = 0, or at an earlier time in fear of higher issuance costs in the future. Moreover, in this
regime, the target points no longer constitute a continuous line, but instead have a jump discontinuity
to the right of the gray region.

6.2 Gambling for resurrection
In Figure 3, we see that in the band region the solution first grows as x (liquidation region) and then
reaches the region where 𝑉𝑥 > 1 (retained earnings region). We thus observe that the value func-
tion is not necessarily concave in the x-direction. However, it is sometimes argued that concavity is
desirable, because of the possibility to enter (fair) speculative strategies and thus receiving the average
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F I G U R E 7 When issuance costs are sufficiently high for negative 𝜇, it is optimal to issue equity away from the
boundary 𝑥 = 0

of surrounding points.12 Such possibilities can be incorporated into the model by considering another
control process 𝐺 = (𝐺𝑡)𝑡≥0 and cash reserves given by

𝑋𝑡 = 𝑥 + ∫
𝑡

0
𝜇𝑡d𝑡 + 𝜎𝑊𝑡 − 𝐿𝑡 + 𝐺𝑡,

for processes of the form

𝐺𝑡 =
∞∑
𝑘=1
𝑔𝑘1{𝑡≥𝜏𝑘},

for some sequence of predictable stopping times and 𝜏𝑘-measurable random variables 𝑔𝑘
13 satisfying

𝔼[𝑔𝑘] = 0 and 𝑋𝜏𝑘− + 𝑔𝑘 ≥ 0 P-a.s. This leads to the DPE

min{𝑟𝑉 − 𝑉 , 𝑉𝑥 − 1, −𝑉𝑥𝑥} = 0,

from which the last conditions makes it directly clear that the value function is now concave. However,
as seen in Figure 8, this is not the concave envelope in the x-direction, because the retained earnings
region shifts in the 𝜇-direction. The cause of this is that gambling occurs in what otherwise would
have been the no-dividend region, thus affecting the solution in the 𝜇-direction through the elliptic
operator .

12 One example of such behavior by FedEx is described by Frock (2006, Chapter 18), one of the firm’s co-founders.
13 One possible interpretation of 𝑔𝑘 is to think of it as a forward contract. More precisely, it should be interpreted as the limit
when the forward contract can be entered with arbitrarily short maturity.
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F I G U R E 8 The figure on the left shows the model that allows gambling for resurrection. The figure on the right
shows the model without gambling in gray, overlaid by the free boundaries of the gambling model in solid lines. When
gambling is allowed, voluntary liquidation is no longer optimal in the “band region.” This is because entering a
“lottery” gives a chance of reaching a higher point in the no activity region, thus concavifying the problem

7 CONCLUDING COMMENTS

In this paper, we have studied an optimal dividend problem where the profitability of the firm is stochas-
tic. In this context, we have given a comparison result for general dynamics as well as outlined a numer-
ical algorithm to compute the solution. The convergence of the numerical method is a consequence of
the comparison result.

The numerical solution indicates that the problem exhibits both barrier and band structure, depend-
ing on the current profitability. The band structure is especially interesting, as it is unusual for Brow-
nian dynamics. We also prove that when the profitability falls below a certain threshold, liquidation
becomes optimal. Although mean reversion indicates that the profitability of the company will improve
over time, that is not enough; when the initial profitability is too low, the expected cumulative losses
are too large to be covered by the future income, so immediate closure is optimal.

The flexibility of the numerical method from Section 4 allows us to numerically study a number
of extensions to our original model. The extended models allow for issuance with proportional and/or
fixed costs as well as the possibility of gambling for resurrection. This last extension provides a way
to concavify the problem (in the x-dimension) by giving the firm the opportunity of entering fair bets.

8 PROOFS

This section is dedicated to the proofs of previous sections. We begin with a result that is needed in
multiple proofs. It is proven under slightly stronger assumptions, which turn out to be satisfied without
loss of generality where the lemma is needed.
Lemma 8.1. If, in addition to Assumption 3.2, inf  > −∞ or 𝜇 ∈ 𝑂(𝜅(𝜇)) as 𝜇 → −∞, there exists
a sublinearly growing function H and a constant C such that, for any stopping time 𝜏,14

𝔼
[
max
0≤𝑡≤𝜏 |𝜇0𝑡 |

]
≤ 𝐶𝔼[𝐻(𝜏)].

14 Recall that (𝜇0
𝑡
)𝑡≥0 is the process started in 0.



REPPEN ET AL. 19

Proof. We will use the result by Peskir (2001) to obtain a function H that is sublinearly growing. For
some 𝑐 ∈ o, let

𝑆′(𝜇) = exp
(
−2∫

𝜇

𝑐

𝜅(𝜈)
�̃�(𝜈)2

d𝜈
)

and

𝑚(d𝜈) = 2d𝜈
𝑆′(𝜈)�̃�(𝜈)2

.

Finally, define

𝐹 (𝜇) = ∫
𝜇

𝑐

𝑚((𝑐, 𝜈])𝑆′(𝜈)d𝜈.

Note that by the assumptions of the statement, 𝜅 and �̃� behave analogously for large positive and
negative 𝜇, so, without loss of generality, we may consider only positive values of 𝜇. In particular,
for large 𝜇, 𝑆′(𝜇) grows as exp(𝑎𝜇𝛾 ) for some 𝑎 > 0 and 𝛾 ≥ 1, and we are done if we can verify the
following condition

sup
𝜇>𝑐

(
𝐹 (𝜇)
𝜇 ∫

∞

𝜇

d𝜈
𝐹 (𝜈)

)
< ∞.

All involved functions are continuous, so we are done if it has a finite limit (or is negative) as 𝜇 → ∞.
L’Hpital’s rule yields the fraction

d
d𝜇 ∫ ∞

𝜇

d𝜈
𝐹 (𝜈)

d
d𝜇
𝜇

𝐹

= 𝐹 (𝜇)
𝜇𝐹 ′(𝜇) − 𝐹 (𝜇)

.

If the denominator were bounded from above, Grnwall’s inequality would imply linear growth of F,
which contradicts the growth of 𝑆′. Hence, the expression is either negative (and we are done), or we
may use l’Hpital’s rule again

𝐹 ′(𝜇)
𝜇𝐹 ′′(𝜇)

= 𝑆′(𝜇)𝑚((𝑐, 𝜇])
2𝜇
�̃�(𝜇)2 + 𝜇𝑆

′′(𝜇)𝑚((𝑐, 𝜇])

𝜇→∞
←←←←←←←←←←←←←←←←←←←←←←→ 0,

because 𝑆′(𝜇)∕𝜇𝑆′′(𝜇) = �̃�(𝜇)2∕(−2𝜅(𝜇)𝜇) → 0. Thus, with 𝐻 = 𝐹−1, Peskir (2001) allows us to
conclude that

𝔼
[
max
0≤𝑠≤𝜏 |𝜇𝑠|

]
≤ 𝐶𝔼[𝐻(𝜏)], (5)

for some constant C and any stopping time 𝜏. In particular, for 𝜏 = 𝑡, the expression is finite and
sublinearly growing in t. □

8.1 Finiteness
In light of Lemma 8.1, the proof of the following theorem is natural.

Theorem 8.2. The value function is finite.
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Proof. As 𝑋(𝑥,𝜇),𝐿
𝑡

≥ 0 for 𝑡 ≤ 𝜃(𝑥,𝜇)(𝐿),

𝐿𝑡 ≤ 𝑥 + ∫
𝑡

0
|𝜇𝑠|d𝑠 + 𝜎𝑊𝑡 ≤ 𝑥 + |𝜇0|𝑡 + ∫

𝑡

0
|𝜇0
𝑠
|d𝑠 + 𝜎𝑊𝑡 =∶ 𝑌𝑡.

Note that this bound is uniform in L. Hence, with 𝜃 ∶= 𝜃(𝑥,𝜇)(𝐿) it follows from integration by parts
and Lemma 8.1 that

𝐽 (𝑥, 𝜇;𝐿) = 𝔼
[
𝐿𝜃𝑒

−𝑟𝜃 − 𝐿0 + 𝑟∫
𝜃

0
𝐿𝑡𝑒

−𝑟𝑡d𝑡
]

≤ 𝔼
[
𝑌𝜃𝑒

−𝑟𝜃 − 𝑌0 + 𝑥 + 𝑟∫
𝜃

0
𝑌𝑡𝑒

−𝑟𝑡d𝑡
]

= 𝔼
[
𝑥 + ∫

𝜃

0
𝑒−𝑟𝑡d𝑌𝑡

]

≤ 𝑥 + |𝜇0|
𝑟

+ ∫
∞

0
𝑒−𝑟𝑡𝔼[|𝜇0

𝑡
|]d𝑡 < ∞.

8.2 Liquidation threshold
Before we present the proof of Theorem 3.5, we present an auxiliary problem whose properties are
especially useful to prove the existence of a liquidation threshold.

Consider the case where L is not restricted to be nondecreasing. This means that shareholders may
inject new cash into the firm at no cost. In that case, cash reserves are useless and x must be distributed
right away

𝑉𝑎(𝑥, 𝜇) = 𝑥 + 𝑉𝑎(𝜇),

where the auxiliary function 𝑉𝑎 is given by

𝑉𝑎(𝜇) = sup
𝜏

𝔼
[
∫
𝜏

0
𝑒−𝑟𝑡𝜇𝑡d𝑡

]
.

The liquidation time 𝜏 is chosen freely by the shareholders of the firm. This is a real option problem
(see, for example, Dixit & Pindyck, 1994). Intuitively, the owners of the firm exert the liquidation
option when the profitability 𝜇 falls below a (negative) threshold 𝜇∗, provided (𝜇𝑡)𝑡≥0 can reach such
a point. In particular, 𝑉𝑎 and 𝜇∗ satisfies the following boundary value problem:

𝑟𝑉𝑎(𝜇) − 𝜅(𝜇)𝑉 ′
𝑎
(𝜇) − �̃�(𝜇)

2

2
𝑉 ′′
𝑎
(𝜇) = 𝜇,

for all 𝜇 > 𝜇∗, subject to

𝑉𝑎(𝜇) = 0,

for all 𝜇 ≤ 𝜇∗.
The second part of this theorem characterizes an optimal liquidation time. This proves useful in

the original problem as 𝑉 (𝑥, 𝜇) ≤ 𝑉𝑎(𝑥, 𝜇), thus showing that 𝑉 (𝑥, 𝜇) ≡ 𝑥 for levels of 𝜇 below some
threshold.
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Lemma 8.3. When dividends can be of arbitrary sign, the optimal policy for shareholders is to imme-
diately distribute the initial cash reserves at 𝑡 = 0, and to maintain them at zero forever by choosing
d𝐿𝑡 = 𝜇𝑡d𝑡 + 𝜎d𝑊𝑡. If  has no lower bound, there exists a 𝜇∗ such that the firm is liquidated when
profitability falls below the threshold 𝜇∗: 𝜏 = inf{𝑡 > 0 ∶ 𝜇𝑡 ≤ 𝜇∗} is a maximizer.

Proof. Let L be any strategy for which 𝑋𝐿
𝑡
≥ 0 until some (liquidation) time 𝜏. Then, define

𝐿′
𝑡
= 𝐿𝑡 +𝑋𝐿𝑡 .

Because 𝑋𝐿
𝑡

is nonnegative until 𝜏, it is clear that 𝑋𝐿
′

𝑡
= 0 and that 𝐿′

𝑡
≥ 𝐿𝑡 for 𝑡 ≤ 𝜏. Hence, 𝐿′ is

admissible whenever L is, and it also produces a higher payoff.
It remains to prove the existence of 𝜇∗. If  has no lower bound, but 𝜅 is not growing linearly

as 𝜇 → −∞, consider instead of (𝜇𝑡)𝑡≥0 another process with the same �̃�, but which also fulfills this
growth condition. The corresponding value function dominates our original one, so it is enough to
prove it in this case.

Setting d𝐿𝑡 = 𝜇𝑡d𝑡 + 𝜎d𝑊𝑡 until a stopping time 𝜏 yields

𝐽 (𝑥, 𝜇;𝐿) = 𝑥 + 𝔼
[
∫
𝜏

0
𝑒−𝑟𝑡𝜇𝑡d𝑡

]
+ 𝔼

[
∫
𝜏

0
𝑒−𝑟𝑡𝜎d𝑊𝑡

]
.

Because the last term is zero, the value function is obtained by maximizing over 𝜏

𝑉 (𝑥, 𝜇) = 𝑥 + sup
𝜏

𝔼
[
∫
𝜏

0
𝑒−𝑟𝑡𝜇𝑡d𝑡

]
= 𝑥 + 𝑉𝑎(𝜇).

We now try to find a point in which 𝑉𝑎 is 0. Consider the equation

min
{
−𝜇 + 𝑟𝜙 − 𝜅(𝜇)𝜙′ − 1

2
�̃�(𝜇)2𝜙′′, 𝜙

}
= 0, (6)

and suppose it has a solution that never touches 0, that is, 𝜙 > 0. Then,

𝜙(𝜇) = 𝔼
[
∫

∞

0
𝑒−𝑟𝑡𝜇𝑡d𝑡

]
= ∫

∞

0
𝑒−𝑟𝑡𝔼[𝜇𝑡]d𝑡.

Using Itô’s formula, the bounds on 𝜅 and �̃�, as well as (5), for 𝜇 < 0, we obtain

𝔼[𝜇𝑡] ≤ 𝜇 + ∫
𝑡

0
𝐶1

(
1 + 𝔼

[
sup
0≤𝑠≤𝑡

|𝜇0
𝑠
|])d𝑠 ≤ 𝜇 + 𝑡𝐶2(1 +𝐻(𝑡)),

for some constants 𝐶1 and 𝐶2. Hence,

𝜙(𝜇) ≤ ∫
∞

0
𝑒−𝑟𝑡

(
𝜇 + 𝐶2𝐻(𝑡)

)
d𝑡 ≤ 𝜇

𝑟
+ 𝐶3,

for another constant 𝐶3. Thus, 𝜙(𝜇) → −∞ as 𝜇 → −∞, which contradicts that 𝜙 ≥ 0. We conclude
that a solution 𝜙 must indeed touch 0.

Finally, we are done if 𝑉𝑎 satisfies the dynamic programming equation (6). By Lemma 8.1 and
Kobylanski and Quenez (2012), the optimal stopping time is the hitting time of 𝐴0 = {𝜇 ∶ 𝑉𝑎(𝜇) =
0} ≠ ∅. Hence, the function is smooth everywhere, except possibly at 𝜇∗ ∶= sup𝐴0. However, as �̃�
never vanishes, an argument analogous to in the proof of Theorem 8.5 yields continuity also at 𝜇∗,
from which (6) can be derived.
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Theorem 3.5. If  has no lower bound, there exists a value 𝜇∗ such that it is optimal to liquidate
immediately whenever 𝜇 ≤ 𝜇∗, that is, 𝑉 (𝑥, 𝜇) ≡ 𝑥.

Proof. Until the time of ruin 𝜃(𝐿), 𝐿𝑡 ≤ 𝑥 + ∫ 𝑡0 𝜇𝑠d𝑠 + ∫ 𝑡0 𝜎d𝑊𝑠. Hence, by stochastic integration by
parts like in the proof of Theorem 3.4,

𝑉 (𝑥, 𝜇) = sup
𝐿∈(𝑥,𝜇)

𝔼

[
∫
𝜃(𝐿)

0
𝑒−𝑟𝑡d𝐿𝑡

]
≤ 𝑥 + sup

𝐿∈(𝑥,𝜇)
𝔼

[
∫
𝜃(𝐿)

0
𝑒−𝑟𝑡𝜇𝑡d𝑡

]
+ 𝔼

[
∫
𝜃(𝐿)

0
𝑒−𝑟𝑡𝜎d𝑊𝑡

]
.

First observe that the last term is equal to 0. Then, because the second term is smaller than or equal to
𝑉𝑎(𝜇), the result is a direct consequence of Theorem 8.3. □

8.3 Continuity
When proving the continuity of the value function, we need the following weak form of a dynamic
programming inequality.

Lemma 8.4. For any control L and stopping time 𝜏 with values between 0 and 𝜃(𝐿),

𝔼

[
∫
𝜃(𝐿)

𝜏

𝑒−𝑟𝑡d𝐿𝑡
|||||𝜏

]
≤ 𝑒−𝑟𝜏𝑉 (𝑋𝜏, 𝜇𝜏 ), 𝑃 -a.s., (7)

where 𝑉 denotes the upper semicontinuous envelope of V.

Proof. By the definition of J,

𝔼

[
∫
𝜃(𝐿)

𝜏

𝑒−𝑟(𝑡−𝜏)d𝐿𝑡
|||||𝜏

]
= 𝐽 (𝑋𝜏, 𝜇𝜏 ;𝐿⋅+𝜏 ), 𝑃 -a.s.

As for every x, 𝜇, and 𝐿 ∈ (𝑥, 𝜇)

𝐽 (𝑥, 𝜇;𝐿) ≤ 𝑉 (𝑥, 𝜇) ≤ 𝑉 (𝑥, 𝜇),
the lemma follows directly.

The necessity of this lemma stems from the a priori lack of the dynamic programming principle and
the measurability of V. This inequality is much related to the weak dynamic programming principle
(Bouchard & Touzi, 2011) that also establishes a similar inequality in the other direction. However, as
seen in the proof above, this equality is more primitive than that in the other direction.

The measurability issues are arguably the most notable obstacles in establishing the dynamic pro-
gramming principle. However, for continuous value functions, proofs of the dynamic programming
principle are well known (Fleming & Soner, 2006). For the general case, we once again refer to Karoui
and Tan (2013a, 2013b).

In this section, we establish the continuity of the value function, from which the dynamic program-
ming principle then follows.

Theorem 8.5. The value function is continuous at 𝑥 = 0.

Proof. Let {(𝑥𝑛, 𝜇𝑛)}𝑛≥1 be a sequence converging to (0, 𝜇∞). Without loss of generality, assume 𝑥𝑛 >
0 converges monotonically to 0. As 𝑉 ≡ 0 at 𝑥 = 0, it is sufficient to consider monotonically decreasing
sequences in 𝜇, by monotonicity in 𝜇. For simplicity, also assume that 𝑥1 < 1 and |𝜇1 − 𝜇∞| < 1.
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Let 𝜏 be any strictly positive, bounded stopping time such that for 𝑡 ≤ 𝜏, 𝜇𝜇
1

𝑡
≤ |𝜇∞| + 1 and

𝑋
(𝑥1,𝜇1),0
𝑡

≤ 1, P-a.s for the uncontrolled process corresponding to 𝐿 = 0. Hence, we also have

𝑋(𝑥𝑛,𝜇𝑛),𝐿 ≤ 𝑋𝑥1,𝜇1,0 ≤ 1 for all 𝑛 ∈ ℕ and dividend processes L.
Starting with the definition of the value function, one obtains

𝑉 (𝑥𝑛, 𝜇𝑛) = sup
𝐿∈(𝑥𝑛,𝜇𝑛)

𝔼

[
∫
𝜏∧𝜃𝑛(𝐿)

0
𝑒−𝑟𝑡d𝐿𝑡 + 1{𝜏<𝜃𝑛(𝐿)} ∫

𝜃𝑛(𝐿)

𝜏∧𝜃𝑛(𝐿)
𝑒−𝑟𝑡d𝐿𝑡

]

≤ sup
𝐿∈(𝑥𝑛,𝜇𝑛)

𝔼

[
∫
𝜏∧𝜃𝑛(𝐿)

0
𝑒−𝑟𝑡d𝐿𝑡 + 1{𝜏<𝜃𝑛(𝐿)} ∫

𝜃𝑛(𝐿)

0
𝑒−𝑟𝑡d𝐿𝑡

]

≤ sup
𝐿∈(𝑥𝑛,𝜇𝑛)

𝔼
[
𝑥𝑛 + (|𝜇∞| + 1)(𝜏 ∧ 𝜃𝑛(𝐿)) + 𝑉 (1, |𝜇∞| + 1)1{𝜏<𝜃𝑛(𝐿)}

]
≤ 𝑥𝑛 + (|𝜇∞| + 1)𝐸[𝜏 ∧ 𝜃𝑛(0)] + 𝑉 (1, |𝜇∞| + 1)𝑃 [𝜏 < 𝜃𝑛(0)].

Now, make the observation that

{𝜏 < 𝜃𝑛+1(0)} ⊆ {𝜏 < 𝜃𝑛(0)}.

As 𝜎 > 0, 𝜃𝑛(0) → 0 P-a.s., and therefore

lim
𝑛→∞

𝑃 [𝜏 < 𝜃𝑛(0)] = 𝑃
(
lim
𝑛→∞

{𝜏 < 𝜃𝑛(0)}
)
= 𝑃 [𝜏 ≤ 0] = 0.

By letting 𝑛→ ∞, we obtain lim𝑛 𝑉 (𝑥𝑛, 𝜇𝑛) ≤ (|𝜇∞| + 1)𝐸[𝜏], but because 𝜏 can be chosen arbitrarily
small, we conclude that

lim
𝑛→∞

𝑉 (𝑥𝑛, 𝜇𝑛) ≤ 0.

As V is nonnegative and zero where 𝑥 = 0,

lim
𝑛→∞

𝑉 (𝑥𝑛, 𝜇𝑛) = 0 = 𝑉 (0, 𝜇∞).

Lemma 8.6. For each starting point (𝑥, 𝜇),

sup
𝐿∈(𝑥,𝜇)

‖‖‖‖‖∫
𝜃(𝐿)

0
𝑒−𝛾𝑡d𝐿𝑡

‖‖‖‖‖ <∞,

for every 𝛾 > 0.

Proof. Without loss of generality, we may assume that 𝜇 ∈ 𝑂(𝜅(𝜇)) as 𝜇 → −∞, as this yields a larger
or equally large process 𝜇𝑡, and therefore also ∫ 𝜃(𝐿)0 𝑒−𝛾𝑡d𝐿𝑡. Integration by parts yields

∫
𝜃(𝐿)

0
𝑒−𝛾𝑡d𝐿𝑡 ≤ 𝑥 + ∫

𝜃(𝐿)

0
𝑒−𝛾𝑡𝜇𝑡d𝑡 + ∫

𝜃(𝐿)

0
𝑒−𝛾𝑡𝜎(𝜇𝑡)d𝑊𝑡

≤ 𝑥 + ∫
∞

0
𝑒−𝛾𝑡|𝜇𝑡|d𝑡 + sup

𝑇 ∫
𝑇

0
𝑒−𝛾𝑡𝜎(𝜇𝑡)d𝑊𝑡,

where the sup is taken over stopping times T. This provides the L-independent bound if it has
finite expectation.



24 REPPEN ET AL.

The expectation of the first integral is finite, because, by Lemma 8.1,

𝔼
[
∫

∞

0
𝑒−𝛾𝑡|𝜇𝑡|d𝑡] ≤ ∫

∞

0
𝑒−𝛾𝑡𝐻(𝑡)d𝑡 < ∞.

Similarly, by Doob’s inequality, Itô isometry, and Lemma 8.1, we obtain, for some C,

𝔼

[(
sup
𝑇 ∫

𝑇

0
𝑒−𝛾𝑡𝜎(𝜇𝑡)d𝑊𝑡

)2]
≤ 2∫

∞

0
𝑒−2𝛾𝑡𝐶(1 +𝐻(𝑡))d𝑡 < ∞.

□

Theorem 3.6. The value function is continuous everywhere.

Proof. Consider a sequence (𝑥𝑛, 𝜇𝑛) that is nondecreasing in both coordinates and converges to some
point (𝑥∞, 𝜇∞). The goal is to show that 𝑉 (𝑥∞, 𝜇∞) − 𝜀 ≤ lim𝑛→∞ 𝑉 (𝑥𝑛, 𝜇𝑛) for any 𝜀 > 0. For the
sake of readability, we introduce some notation. Let 𝜃𝑛(𝐿) be the ruin time of starting in (𝑥𝑛, 𝜇𝑛) and
using the dividend policy L, and let𝑋𝑛,𝐿 = 𝑋(𝑥𝑛,𝜇𝑛),𝐿 be the process associated with the starting point
(𝑥𝑛, 𝜇𝑛) and dividend process L.

Denote by 𝐿∞ an 𝜀-optimal strategy starting in (𝑥∞, 𝜇∞). As 𝐿∞ is the only strategy appearing
in the first part of the proof, let 𝜃𝑛 and 𝑋𝑛 are shorthand 𝜃𝑛(𝐿∞) and 𝑋𝑛,𝐿

∞
, respectively. Then, as

Δ𝐿∞
𝜃𝑛

= 𝑋𝑛
𝜃𝑛− + Δ𝐿∞

𝜃𝑛
−𝑋𝑛

𝜃𝑛−,

𝑉 (𝑥∞, 𝜇∞) − 𝜀 ≤ 𝔼
[
∫[0,𝜃𝑛) 𝑒

−𝑟𝑡d𝐿∞
𝑡

+𝑒−𝑟𝜃𝑛
(
𝑋𝑛
𝜃𝑛

+ Δ𝐿∞
𝜃𝑛

−𝑋𝑛
𝜃𝑛−

)
+ ∫(𝜃𝑛,𝜃∞]

𝑒−𝑟𝑡d𝐿∞
𝑡

]
(8)

≤ 𝑉 (𝑥𝑛, 𝜇𝑛)
+𝔼

[
𝑒−𝑟𝜃

𝑛(Δ𝐿∞
𝜃𝑛

−𝑋𝑛
𝜃𝑛−

)]
+ 𝔼

[
∫(𝜃𝑛,𝜃∞]

𝑒−𝑟𝑡d𝐿∞
𝑡

]
.

The middle term is needed to cover the case that 𝜃𝑛 occurs as a result of a jump in 𝐿∞. Note that it is
nonnegative, because either 𝜃𝑛 is caused by a jump larger than 𝑋𝑛

𝜃𝑛−, or the latter is zero. We want to
show that the last two terms tend to zero as n tends to infinity.

By Lebesgue’s dominated convergence theorem (see Lemma 8.6),

lim
𝑛→∞

𝔼
[
∫(𝜃𝑛,𝜃∞]

𝑒−𝑟𝑡d𝐿∞
𝑡

]
= 𝔼

[
lim
𝑛→∞∫(𝜃𝑛,𝜃∞]

𝑒−𝑟𝑡d𝐿∞
𝑡

]
. (9)

Note that the middle term is also dominated by an integrable expression, as it is itself dominated by
the total discounted payoff of 𝐿∞. Hence, we may take the limit inside both of the expectations.

We will prove that the limits inside the expectations are 0 on the following set

Ω′ =

{
sup

𝐿∈(𝑥∞,𝜇∞)∫
𝜃(𝑥

∞ ,𝜇∞)(𝐿)

0
𝑒−𝑟𝑡d𝐿𝑡 < ∞

}

∩

{
𝔼

[
∫(𝜃𝑛,𝜃∞]

𝑒−𝑟𝑡d𝐿∞
𝑡

|||||𝜃𝑛
]
≤ 𝑒−𝑟𝜃𝑛𝑉 (𝑋∞

𝜃𝑛
, 𝜇∞
𝜃𝑛

)
,∀𝑛 ∈ ℕ

}
,
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where 𝑉 denotes the upper semicontinuous envelope of V. Note that by Lemma 8.1 and (7), 𝑃 (Ω′) = 1.
For any 𝜔 ∈ Ω′, consider the following two cases.

First, consider any strictly increasing, divergent subsequence 𝜃𝑛(𝑘) = 𝜃𝑛(𝑘)(𝐿∞)(𝜔). Then,(
∫(𝜃𝑛(𝑘),𝜃∞]

𝑒−𝑟𝑡d𝐿∞
𝑡

)
(𝜔) ≤ 𝑒−𝑟𝜃𝑛(𝑘)∕2

(
∫(𝜃𝑛(𝑘),𝜃∞]

𝑒−𝑟𝑡∕2d𝐿∞
𝑡

)
(𝜔)

𝑘→∞
←←←←←←←←←←←←←←←←←←←←←→ 0,

because 𝜔 ∈ Ω′ ensures that the integral factor is bounded, and the exponential factor converges to 0.
Moreover, because 𝜃𝑛(𝑘) is strictly increasing,

∑
𝑘∈ℕ

𝑒−𝑟𝜃
𝑛(𝑘)Δ𝐿∞

𝜃𝑛(𝑘)
(𝜔) ≤ ∫

𝜃∞

0
𝑒−𝑟𝑡d𝐿∞

𝑡
(𝜔) < ∞,

which shows that the sum is convergent, so its terms must converge to zero. In other words,

lim
𝑘→∞

𝑒−𝑟𝜃
𝑛(𝑘)

(
Δ𝐿∞

𝜃𝑛(𝑘)
−𝑋𝑛

𝜃𝑛(𝑘)−

) ≤ lim
𝑘→∞

𝑒−𝑟𝜃
𝑛(𝑘)Δ𝐿∞

𝜃𝑛(𝑘)
= 0.

On the other hand, let 𝜃𝑛(𝑘) = 𝜃𝑛(𝑘)(𝐿∞)(𝜔) be a bounded subsequence. Then, because
sup𝑘 𝜃𝑛(𝑘)(𝜔) < ∞,

𝑋∞
𝜃𝑛(𝑘)− −𝑋𝑛(𝑘)

𝜃𝑛(𝑘)−
= 𝑥∞ − 𝑥𝑛(𝑘) + ∫

𝜃𝑛(𝑘)

0
𝜇∞
𝑡
− 𝜇𝑛(𝑘)

𝑡
d𝑡

𝑘→∞
←←←←←←←←←←←←←←←←←←←←←→ 0,

because of continuity with respect to initial points. Thus,

0 ≤ Δ𝐿∞
𝜃𝑛(𝑘)

−𝑋𝑛(𝑘)
𝜃𝑛(𝑘)−

≤ 𝑋∞
𝜃𝑛(𝑘)− −𝑋𝑛(𝑘)

𝜃𝑛(𝑘)−

𝑘→∞
←←←←←←←←←←←←←←←←←←←←←→ 0.

For the other term, first observe that

0 ≤ 𝑋∞
𝜃𝑘

= 𝑋∞
𝜃𝑘−

− Δ𝐿∞
𝜃𝑘

+𝑋𝑛(𝑘)
𝜃𝑛(𝑘)−

−𝑋𝑛(𝑘)
𝜃𝑛(𝑘)−

≤ 𝑋∞
𝜃𝑘−

−𝑋𝑛(𝑘)
𝜃𝑛(𝑘)−

𝑘→∞
←←←←←←←←←←←←←←←←←←←←←→ 0.

We wish to use the continuity of V, and therefore also of 𝑉 , at 0 to argue that

lim
𝑘→∞

𝑉

(
𝑋∞
𝜃𝑛(𝑘)

(𝜔), 𝜇∞
𝜃𝑛(𝑘)

(𝜔)
)
= 0.

As V is increasing, it is sufficient to find a bound to 𝜇∞
𝜃𝑛(𝑘)

(𝜔). Begin by considering the process𝑀∞
𝑡

=
sup0≤𝑠≤𝑡 𝜇∞𝑠 . Then, because 𝜃𝑛(𝑘) is a bounded sequence and𝑀∞

𝑡
is continuous,𝑀∞

𝜃𝑛(𝑘)
(𝜔) is bounded

by some constant C. Therefore, by Theorem 8.5,

lim
𝑘→∞

𝑉

(
𝑋∞
𝜃𝑛(𝑘)

(𝜔), 𝜇∞
𝜃𝑛(𝑘)

(𝜔)
) ≤ lim

𝑘→∞
𝑉

(
𝑋∞
𝜃𝑛(𝑘)

(𝜔), 𝐶
)
= 𝑉 (0, 𝐶) = 0.

By the preceding arguments, it holds that for any bounded subsequence and any divergent subse-
quence, (

𝑒−𝑟𝜃
𝑛(Δ𝐿∞

𝜃𝑛
−𝑋𝑛

𝜃𝑛−
)
+ ∫(𝜃𝑛,𝜃∞]

𝑒−𝑟𝑡d𝐿∞
𝑡

)
(𝜔)
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converges to 0 for every 𝜔 ∈ Ω′. As a consequence of this, the whole sequence converges to 0, for
every 𝜔 ∈ Ω′, that is, P-a.s. Returning to (8), this yields

𝑉 (𝑥∞, 𝜇∞) − 𝜀 ≤ lim
𝑛→∞

𝑉 (𝑥𝑛, 𝜇𝑛) ≤ 𝑉 (𝑥∞, 𝜇∞),

by monotonicity. As this holds for any choice of 𝜀 > 0, equality is obtained.
Now, let (𝑥𝑛, 𝜇𝑛) be nonincreasing in both coordinates and converge to (𝑥∞, 𝜇∞). Then, in the same

manner as above,

lim
𝑛→∞

𝑉 (𝑥𝑛, 𝜇𝑛) − 𝜀 ≤ 𝑉 (𝑥∞, 𝜇∞)

+𝔼
[
lim
𝑛→∞

𝑒−𝑟𝜃
∞(𝐿𝑛)

(
Δ𝐿𝑛

𝜃∞(𝐿𝑛) −𝑋
∞,𝐿𝑛
𝜃∞(𝐿𝑛)

)]
+ 𝔼

[
lim
𝑛→∞∫(𝜃∞(𝐿𝑛),𝜃𝑛(𝐿𝑛)]

𝑒−𝑟𝑡d𝐿𝑛
𝑡

]
,

for 𝜀-optimal strategies 𝐿𝑛 starting in (𝑥𝑛, 𝜇𝑛). By analogous arguments,

lim
𝑛→∞

𝑉 (𝑥𝑛, 𝜇𝑛) = 𝑉 (𝑥∞, 𝜇∞).

As a final step, consider an arbitrary convergent sequence (𝑥𝑛, 𝜇𝑛). By monotonicity,

𝑉

(
inf
𝑚≥𝑛 𝑥𝑚, inf𝑚≥𝑛 𝜇𝑚

)
≤ 𝑉 (𝑥𝑛, 𝜇𝑛) ≤ 𝑉

(
sup
𝑚≥𝑛 𝑥𝑚, sup𝑚≥𝑛 𝜇𝑚

)
.

As the sequences (inf𝑚≥𝑛 𝑥𝑚, inf𝑚≥𝑛 𝜇𝑚) and (sup𝑚≥𝑛 𝑥𝑚, sup𝑚≥𝑛 𝜇𝑚) are nondecreasing and nonin-
creasing, respectively, it follows that

lim
𝑛→∞

𝑉 (𝑥𝑛, 𝜇𝑛) = 𝑉 (𝑥∞, 𝜇∞),

and V is continuous everywhere. □

8.4 Comparison principle

Lemma 8.7. If a function u is a viscosity subsolution to (2), then

�̃�(𝑥, 𝜇) ∶= 𝑒−𝜂𝑥−𝜂𝑔(𝜇)𝑢(𝑥, 𝜇) (10)

is a viscosity subsolution to

min
{(
𝑟 − 𝜂𝜇 − 𝜂𝑔′(𝜇)𝜅(𝜇) − 𝜂2Σ11

− 𝜂2𝑔′(𝜇)2Σ22 − 𝜂𝑔′′(𝜇)Σ22 − 2𝜂2𝑔′(𝜇)Σ12
)
𝑉

− (𝜇 + 𝜂Σ11 + 2𝜂𝑔′(𝜇)Σ12)𝑉𝑥 (11)

− (𝜅(𝜇) + 𝜂𝑔′(𝜇)Σ22 + 2𝜂Σ12)𝑉𝜇 − Tr Σ𝐷2𝑉 ,

𝜂𝑉 + 𝑉𝑥 − 𝑒−𝜂𝑥−𝜂𝑔(𝜇)
}
= 0, in ℝ>0 ×,

for any given 𝜂 and 𝑔 ∈ 𝐶2(ℝ). A corresponding statement is true for supersolutions.
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Proof. Let u be a viscosity subsolution to (2). Let �̃� ∈ 𝐶2 and (𝑥0, 𝜇0) be a local maximum of �̃� − �̃�
where (�̃� − �̃�)(𝑥0, 𝜇0) = 0. Finally, define

𝜑(𝑥, 𝜇) ∶= 𝑒𝜂𝑥+𝜂𝑔(𝜇)�̃�(𝑥, 𝜇).

Then, (𝑥0, 𝜇0) is also a local maximum of 𝑢 − 𝜑. Using the viscosity property of u and plugging in 𝜑
yields the viscosity property for �̃� and the transformed equation (11). □

Lemma 8.8. The parameter 𝜂 and function g can be chosen in such a way that the coefficient of 𝑉 in
(11) is strictly positive.

Proof. Fix any large 𝑦 > 0 and let g be a twice differentiable function with

𝑔′(𝜇) =
{
− 𝜂−, if 𝜇 < −𝑦,

𝜂+, if 𝜇 > 𝑦,

for strictly positive constants 𝜂− and 𝜂+ as well as 𝜇 ∈ [−𝑦, 𝑦]𝑐 .15 For any such choice, the coefficient
is strictly positive in [−𝑦, 𝑦], provided 𝜂 is small enough. Moreover, with our choice of g, the condition
reduces to

𝑟 − 𝜂(𝜇 + 𝜂±𝜅(𝜇)) − 𝜂2(Σ11 + 𝜂2±Σ22 + 2𝜂±Σ12) > 0, in [−𝑦, 𝑦]𝑐 .

Note that the last two terms both grow at most linearly in 𝜇, by the growth conditions on 𝜅, �̃�, and 𝜎.
Furthermore, as 𝜅 is negative and linearly growing for large (positive) 𝜇, we can choose 𝜂+ such that
−(𝜇 + 𝜂+𝜅(𝜇)) is linearly increasing. Then, for sufficiently small 𝜂, the whole expression is increasing,
for large 𝜇.

Similarly, if both 𝜂− and 𝜂 are chosen sufficiently small, the same is true also for large, negative 𝜇.
Hence, for such a choice of 𝜂 and g, the coefficient is strictly positive.

Remark 8.9. Assumption 3.2 could possibly be generalized by finding strict supersolutions to the
equation

𝑟 − 𝜂𝜇 − 𝜂𝑔′(𝜇)𝜅(𝜇) − 𝜂2Σ11 − 𝜂2𝑔′(𝜇)2Σ22 − 𝜂𝑔′′(𝜇)Σ22 − 2𝜂2𝑔′(𝜇)Σ12 = 0,

as this is sufficient for the transformed equation to be proper.

Theorem 3.7 (Comparison). Let u and v be upper and lower semicontinuous, polynomially growing
viscosity sub- and supersolutions of (2). Then, under Assumption 3.3, 𝑢 ≤ 𝑣 for (𝑥, 𝜇) ∈ 0 × implies
that 𝑢 ≤ 𝑣 everywhere in  ∶= ℝ≥0 ×.

Proof of Theorem 3.7. Comparison is shown for the transformed DPE (11) with 𝜂 chosen as in
Lemma 8.8. Because the transformation (10) is sign-preserving, this is sufficient to establish com-
parison for (2) thanks to Lemma 8.7. For the sake of simpler presentation later on, (11) is shortened
to

min{𝑓𝑉 − 𝑓𝑥𝑉𝑥 − 𝑓𝜇𝑉𝜇 − Tr Σ𝐷2𝑉 ,

𝜂𝑉 + 𝑉𝑥 − 𝑒−𝜂𝑥−𝜂𝑔(𝜇)} = 0.

15 This can be done by a mollification argument on 𝑔′.
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Note that the coefficients 𝑓𝑥 and 𝑓𝜇 are locally Lipschitz continuous on the interior of the domain,
and the coefficient f is continuous.

Denote by �̃� and �̃� the functions transformed as in (10). We note that these tend to 0 at infinity
and that �̃� as well as �̃� are bounded. We distinguish between two cases to argue that, without loss of
generality, we may assume that the maximum of �̃� − �̃� is attained in the interior o:

1. The function �̃� − �̃� attains a maximum in [0,∞) ×o. If the maximum is at 𝑥 = 0, we are done.
Otherwise, the maximum is attained in the interior o.

2. There exists a maximizing sequence converging to a point (�̂�, �̂�) in [0,∞) × 𝜕. Without loss of
generality, assume that �̂� is a lower boundary point. An upper boundary point is handled anal-
ogously. The method employed here originates in Amadori (2007). For some small 𝛾 > 0, let
𝑁 = {(𝑥, 𝜇) ∶ 𝜇 − �̂� < 𝛾} ∩ ([0,∞) ×) and define

Ψ𝛿(𝑥, 𝜇) = �̃�(𝑥, 𝜇) − �̃�(𝑥, 𝜇) − 𝛿ℎ(𝜇), (𝑥, 𝜇) ∈ 𝑁,

for 𝛿 ≥ 0 and

ℎ(𝜇) = ∫
�̂�+𝛾

𝜇

𝑒𝐶(𝜉−�̂�)(𝜉 − �̂�)−1d𝜉, 𝜇 < 𝛾 + �̂�,

with

𝐶 = sup
{

1
𝜇 − �̂�

− 2𝑓𝜇(𝜇)
�̃�(𝜇)2

∶ 0 < 𝜇 − �̂� < 𝛾
}
.

Note that by Assumption 3.3, 𝐶 < ∞. It is easily verified that ℎ > 0, ℎ(𝜇) → ∞ as 𝜇 → �̂�, and that

𝑓𝜇ℎ′ + �̃�
2

2
ℎ′′ ≤ 0, in𝑁.

Hence, �̃�𝛿 ∶= �̃� − 𝛿ℎ is also a subsolution in N.

Let (𝑥𝑛, 𝜇𝑛) → (�̂�, �̂�) be the maximizing sequence, and set 𝛿 = 𝛿𝑛 = 1∕𝑛ℎ(𝜇𝑛). Then, 𝛿 → 0
as 𝜇 → �̂�. Thus,

sup
𝑁

(�̃� − �̃�) ≥ sup
𝑁

Ψ𝛿 ≥ Ψ𝛿(𝑥𝑛, 𝜇𝑛) = (�̃� − �̃�)(𝑥𝑛, 𝜇𝑛) − 1∕𝑛,

so

lim
𝛿→0

sup
𝑁

Ψ𝛿 = sup
𝑁

(�̃� − �̃�).

Moreover,Ψ𝛿 attains a maximum (𝑥𝛿, 𝜇𝛿) ∈ 𝑁 . For sufficiently small 𝛿 > 0, a maximum is attained
in the interior, or otherwise a maximum of �̃� − �̃� is attained for 𝜇 = �̂� + 𝛾 ∈ o. It follows that

sup
𝑁

(�̃� − �̃�) ≥ (�̃� − �̃�)(𝑥𝛿, 𝜇𝛿) = sup
𝑁

Ψ𝛿 + 𝛿ℎ(𝜇𝛿) ≥ sup
𝑁

Ψ𝛿,

so 𝛿ℎ(𝜇𝛿) → 0. If max𝑁 (�̃�𝛿 − �̃�) ≤ 0,

sup

(�̃� − �̃�) = lim

𝛿→0
max
𝑁

(�̃�𝛿 − �̃�) ≤ 0
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follows. It therefore leads to no loss of generality to assume that �̃� − �̃� attains a maximum in o.

By the preceding argument, we may assume that �̃� − �̃� attains local maximum (𝑥0, 𝜇0) ∈ o. Let
𝑁 ⊆ 𝑁 ′ ⊆  be two neighborhoods of (𝑥0, 𝜇0) in which (𝑥0, 𝜇0) is a maximum and with𝑁 ⊆ 𝑁 ′. For
all 𝜖 > 0, the function

Φ𝜖(𝑥, 𝜇, 𝑦, 𝜈) ∶= �̃�(𝑥, 𝜇) − �̃�(𝑦, 𝜈) −
1
2𝜖

(|𝑥 − 𝑦|2 + |𝜇 − 𝜈|2) − ‖(𝑥, 𝜇) − (𝑥0, 𝜇0)‖42
has a maximum in𝑁 ×𝑁 that we denote by (𝑥𝜖, 𝜇𝜖, 𝑦𝜖, 𝜈𝜖). In particular as 𝜖 → 0, the sequence con-
verges along a subsequence.

From the construction of Φ𝜖 , it follows that

1
2𝜖

(|𝑥𝜖 − 𝑦𝜖|2 + |𝜇𝜖 − 𝜈𝜖|2) ≤ �̃�(𝑥𝜖, 𝜇𝜖) − �̃�(𝑦𝜖, 𝜈𝜖) − max
𝑁

(�̃� − �̃�).

Observing that the superior limit of the right-hand side is bounded from above by 0 yields

lim sup
𝜖→0

1
2𝜖

(|𝑥𝜖 − 𝑦𝜖|2 + |𝜇𝜖 − 𝜈𝜖|2) ≤ 0.

This estimate is used later in the proof. Moreover, (𝑥𝜖, 𝜇𝜖) → (𝑥0, 𝜇0), which means they are local
maxima in𝑁 ′.

By the Crandall–Ishii lemma, there exist matrices 𝑋𝜖 and 𝑌𝜖 such that

(𝑝𝜖,𝑋𝜖) ∈ 𝐽 2,+𝑢(𝑥𝜖, 𝜇𝜖), (𝑝𝜖, 𝑌𝜖) ∈ 𝐽 2,−𝑣(𝑦𝜖, 𝜈𝜖)

and

𝑋𝜖 ≤ 𝑌𝜖 + 𝑂
(1
𝜖
‖(𝑥, 𝜇) − (𝑥0, 𝜇0)‖22 + ‖(𝑥, 𝜇) − (𝑥0, 𝜇0)‖42),

for

𝑝𝜖 =
1
𝜖
(𝑥𝜖 − 𝑦𝜖, 𝜇𝜖 − 𝜈𝜖).

In particular, 𝑋𝜖 ≤ 𝑌𝜖 + 𝑜(1) as 𝜖 → 0. Using the viscosity property of �̃� and �̃� yields

min
{
𝑓 (𝜇𝜖)�̃�(𝑥𝜖, 𝜇𝜖) − 𝑓𝑥(𝜇𝜖)

𝑥𝜖 − 𝑦𝜖
𝜖

− 𝑓𝜇(𝜇𝜖)
𝜇𝜖 − 𝜈𝜖
𝜖

− Tr Σ(𝜇𝜖)�̃�𝜖,

𝜂�̃�(𝑥𝜖, 𝜇𝜖) +
𝑥𝜖 − 𝑦𝜖
𝜖

− 𝑒−𝜂𝑥𝜖−𝜂𝑔(𝜇𝜖)
} ≤ 0,

and

min
{
𝑓 (𝜈𝜖)�̃�(𝑦𝜖, 𝜈𝜖) − 𝑓𝑥(𝜈𝜖)

𝑥𝜖 − 𝑦𝜖
𝜖

− 𝑓𝜇(𝜈𝜖)
𝜇𝜖 − 𝜈𝜖
𝜖

− Tr Σ(𝜈𝜖)𝑌𝜖,

𝜂�̃�(𝑦𝜖, 𝜈𝜖) +
𝑥𝜖 − 𝑦𝜖
𝜖

− 𝑒−𝜂𝑦𝜖−𝜂𝑔(𝜈𝜖 )
} ≥ 0. (12)

The rest of the proof is divided into two cases, depending on whether

𝑓 (𝜇𝜖)�̃�(𝑥𝜖, 𝜇𝜖) − 𝑓𝑥(𝜇𝜖)
𝑥𝜖 − 𝑦𝜖
𝜖

− 𝑓𝜇(𝜇𝜖)
𝜇𝜖 − 𝜈𝜖
𝜖

− Tr Σ(𝜇𝜖)�̃�𝜖 ≤ 0 (13)
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or

𝜂�̃�(𝑥𝜖, 𝜇𝜖) +
𝑥𝜖 − 𝑦𝜖
𝜖

− 𝑒−𝜂𝑥𝜖−𝜂𝑔(𝜇𝜖) ≤ 0. (14)

Case 1. Assume (13). Using (12), we arrive at

𝑓 (𝜇𝜖)(�̃�(𝑥𝜖, 𝜇𝜖) − �̃�(𝑦𝜖, 𝜈𝜖)) + (𝑓 (𝜇𝜖) − 𝑓 (𝜈𝜖))�̃�(𝑦𝜖, 𝜈𝜖)

− (𝑓𝑥(𝜇𝜖) − 𝑓𝑥(𝜈𝜖))
𝑥𝜖 − 𝑦𝜖
𝜖

− (𝑓𝜇(𝜇𝜖) − 𝑓𝜇(𝜈𝜖))
𝜇𝜖 − 𝜈𝜖
𝜖

− Tr(Σ(𝜇𝜖) − Σ(𝜈𝜖))𝑌𝜖 ≤ Tr Σ(𝜇𝜖)(𝑋𝜖 − 𝑌𝜖) ∈ 𝑜(1).

Using the (local) Lipschitz continuity of the coefficients as well as the quadratic convergence rates
of 𝑥𝜖 − 𝑦𝜖 and 𝜇𝜖 − 𝜈𝜖 , we find that

𝑓 (𝜇0)(�̃� − �̃�)(𝑥0, 𝜇0) = lim sup
𝜖→0

𝑓 (𝜇𝜖)(�̃�(𝑥𝜖, 𝜇𝜖) − �̃�(𝑦𝜖, 𝜈𝜖)) ≤ 0.

We conclude that

0 ≥ (�̃� − �̃�)(𝑥0, 𝜇0).

Case 2. Assume (14). Using (12) yields

𝜂(�̃�(𝑥𝜖, 𝜇𝜖) − �̃�(𝑦𝜖, 𝜈𝜖)) ≤ 𝑒−𝜂𝑥𝜖−𝜂𝑔(𝜇𝜖) − 𝑒−𝜂𝑦𝜖−𝜂𝑔(𝜈𝜖 ).
Once again we use the convergence results, and once again we conclude that

0 ≥ (�̃� − �̃�)(𝑥0, 𝜇0) = max (�̃� − �̃�).

The inequality �̃� ≤ �̃� holds at any local maximum. Moreover, as mentioned in the beginning of the
proof, we may assume that �̃� − �̃� attains its maximum on the interior. The theorem statement follows
from the fact that

�̃� ≤ �̃� ⇐⇒ 𝑢 ≤ 𝑣. □
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