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Recently, orbits of two-dimensional Markov chains have been used to gener-
ate computer images. These chains evolve according to products of i.i.d. affine
maps. We deal with mixing models, whereby one mixes together several of
these Markov chains, so as to create a mixed image. These mixtures involve
starting one Markov chain off at the stationary distribution of another, and
then running it for a geometrically distributed number of steps. We use this to
analyze various mixing scenarios.
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388 M. F. Barnsley et al.

1. INTRODUCTION

Let T: Rd -* IRrf be a (nonrandom) strictly contractive map. Then it has a
unique fixed point, and starting at any x0 the iterates xn = T"x0 converge to
this fixed point. In [6] and [7], a stochastic analogue of this is examined, where
3: Rd -» Rd is a random affine map, 3: x -> G,x + b. Here Ct = 0.(3) and b =
6(3) denote the random matrix and random vector parts of 3, respectively.
Theorem 2 of [6] asserts that if E log+| |«| < oo, E log+|6| < e», and if the
random matrix & has a negative Lyapunov exponent, then 3 has a unique fixed
distribution X satisfying 3 * X - X (equality in distribution). Furthermore, if
Xo is any finite random variable and if (3n) is an independent and identically
distributed (i.i.d.) sequence of random affine maps distributed like 3, then the
Markov chain Xn = 3n • • • 3, Xo converges in distribution to this fixed distribu-
tion. This means that the chain \Xn\ is asymptotically stationary.

This result is the basis of a popular probabilistic algorithm for image
generation. The algorithm runs as follows. Let T,,..., TK: R2 -> IR2 be non-
random affine maps, and assign to them respective weights px,... ,pK with
Pi > 0, Y,pj = 1. Initialize Xo and at stage n + 1, when Xo,..., Xn have already
been determined, randomly pick one of the maps 7} according to the weights
Pi. Say the chosen map is Tk. Apply this map to Xn, thereby obtaining the
next point Xn+1 = TkXn. Once n is sufficiently large, plot the successive points
Xn. In this way, one obtains an image from the orbit of the Markov chain
\Xn\. To generate a color image, record the frequencies and color the points
correspondingly according to the frequencies that [Xn] visits them. Figure 1 is
a flowchart of this algorithm, and Figure 2 is a schematic used to represent it.
For a discussion of this application, see [1-5], [8], [9], and [11]. Observe that
the random affine map 3 here is the one with atomic distribution P(3 = 7}) =
Pi, i s i s * [12].

The proof in [6] of the result mentioned above, that the chain Xn =
3n • • • 3! Xo converges in distribution to X, is based on a reversibility phenom-
enon. Define Xn = 3,---3nAr

0, with successive maps 3n applied from the
inside rather than from the outside. Then {A",,) is not a Markov process, but
it has two important properties.

1. For each fixed n, Xn and Xn have identical distributions. (Note that the
processes \Xn) and [Xn] have different distributions, in general, owing
to the noncommutativity of d x d matrices.)

2. For any constant initial value Xo = x, [Xn] converges a.s. to a limit
random variable X. To see why this is so, observe that

•ftn(3n+iAr
0 — XQ),
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MIXING MARKOV CHAINS AND THEIR IMAGES 389

Read Ti,---,TK

and Pl,---,PK

Initialize X

Pick a random number k from {1,---,K}

according to respective probabilities p i , • • •, PK

FIGURE 1. Basic image generation algorithm. To obtain a color image,
increase the frequency count of the pixel that X belongs to every time
the PLOT X command is executed. Use a color map to convert fre-
quencies to colors.

Screen

FIGURE 2. Schematic of the basic algorithm.
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390 M. F. Barnsley et al.

where G, = (2(3,) is the (random) matrix part of 3,. Since the Lyapunov
exponent of Q. is negative, ||Gi---(Jn|| behaves like r" for large n,
where r < 1. If in addition E log+13X0 - Xo\ < oo (which is the case if
Xo = x) then

lim - l o g + | 3 n + 1 X 0 - X 0 | =0 ,
n-»oo n

and thus \Xn+l — Xn\ also decays geometrically for large n. Refer to
[6] for details. We shall see, in Sections 2 and 3 below, the occurrence
of similar reversibility phenomena for the mixed chains as well.

As mentioned above, in the image generation application 3 has a discrete
distribution IP(3 = 7}) = p,, 1 < / < K. In this case, the stationary condition
3 * X = X becomes

K

»(B) = 'EPiHTr'B) (1)

for any Borel set BcRd, where v is the distribution of A". Let C = supp(i') be
the support of P. Then applying Eq. (1) to B = C and to B = U£i7}(C), we
arrive at the conclusion

C=\JT,(C). (2)
1=1

This shows that the maps 7} induce a covering of C by sets 7}(C) which are
each affinely similar to C. This is a sort of puzzle where the sets 7}(C) are the
pieces, but it is different from standard puzzles in that the pieces are allowed
to overlap. That is, there is no claim of disjointness on the right-hand side of
Eq. (2). For a discussion of the uniqueness of the set C satisfying Eq. (2), see
[6, Section 2]. The formula given by Eq. (2) plays a fundamental role in the the-
ory of iterated affine maps. It was first enunciated by Hutchinson [10].

We are concerned in this paper with mixing models, whereby one mixes
together the individual Markov chains generated by the random maps 3 and S.
Corresponding to them, there are algorithms (Figures 3,4 and 5,6 below) which
produce an image with the textures of the original images infused together. The
basic result underlying the mixing is the following.

THEOREM 1: Let [Xn] be a Markov chain with initial distribution ir0 and tran-
sition probabilities P(x,dy).LetO<p< 1 and let a be a random variable inde-
pendent of [Xn] with distribution JP(a = k) = pq", k > 0. Then the
distribution ir satisfies

= qJp(x,dy)Tr(dx)+pir(dy) (3)

if and only ifir is the distribution of Xa.
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MIXING MARKOV CHAINS AND THEIR IMAGES 391

PROOF: Sufficiency. Simply observe that

JP(Xa G B) = qJP(Xa+1 E B) + p1P(X0 E B).

Necessity. Iterate, obtaining

7 1 - 1 f

T(B) = YiPQkW(xk^B) + qn \P(n\x,B)v(dx),
*=o J

where P(n) is the n-step transition probability. •

2. A SIMPLE MIXING EXAMPLE

Let (3n) and {§„) be i.i.d. sequences of random affine maps, each sequence
independent of the other, and let U be a fixed (nonrandom) affine map. We
want to mix the individual Markov chains generated by the 3 and S sequences.
The X process will be generated exactly as before, i.e.,

X = 3 X n > 0 (4)

but the Y process is to have a selection mechanism,

{ UXn with probability p > 0,

(5)
Sn+i Yn with probability q = 1 - p.

The choice in Eq. (5) is to be independent of (3n) and {§„). It can be modeled
as an i.i.d. sequence (/„) of Bernoulli 0,1 random variables, with P ( / = 0) —p.
Then

i f / n + 1 = 0 ,

This corresponds to the algorithm and schematic in Figures 3 and 4.
The pair process {(Xn, Yn)\ is a Markov chain on IR" x Rd. We are con-

cerned with its asymptotic behavior. Let a be a random variable independent
of (3J and (Sn) with distribution P(CT = k) =pqk, k>0.

THEOREM 2: Assume that E log+|G|| < oo and E log+|6| < oo, and that the
Lyapunov exponent of 6. is negative, where GL = G(3) and b = 6(3). Then the
chain {(Xn, Yn)} defined in Eqs. (4) and (6) is asymptotically stationary, and
the limiting distribution of(Xn,Yn) is (3,---3ff+i * X, S, •••§„[/* X), where
X is the unique fixed distribution of 3, 3 * X = X. (If a = 0 then S, • • • So is
interpreted as the identity.)

PROOF: Define Io = 0 and set N(n) = max(fc < n: Ik = 0). Observe that

if N(n) = 0,

ifN(n)>0.
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Read

Read

Ti ,

Si,

•••,TK

••-,sL

and

and

Pi,-

Pi.-

•,PK

'.Pi

Read U

Initialize X, Y

Choose / = 0 or / = 1 with probabilities

p and 1 — p, respectively.

Pick a random number k from {1, • • •, K]

according to respective probabilities p\, • • • ,p

n <— TI + 1 yes

UX Pick a random number ( from {1, • • •, L]
according to respective probabilities p\, • • •, p'L

FIGURE 3. Simple mixing algorithm. This algorithm mixes the individ-
ual images which are generated from the mappings T, and S,.

Since the /process is reversible, N{n) and max(0,/j - a) have identical distri-
butions. (This can also be checked directly by computation, as in the proof of
Lemma 4 in Section 3 below.) Let (3^j be another i.i.d. sequence distributed
like (3n), but independent of (3n) and {§>„}; and let [Xn] be the correspond-
ing reversed process discussed in Section 1, Xn = 3J • • -3^0- As mentioned
above it; follows from [6, Section 1] that as long as E log+| 3X0 - Xo\ < oo (in
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MIXING MARKOV CHAINS AND THEIR IMAGES 393

Screen I

/—A. • •u/ Screen 2

FIGURE 4. Schematic of the simple mixing algorithm. Only screen 2
gets plotted.

particular, this holds if Xo — x), that Xn converges a.s. to a limit random vari-

able X, whose distribution is fixed under 3; i.e., 3 * X = X.

Next define

i • • • onX0 it a > n,

r
§i • • -§inY0

if a > n,

It can be checked using Eq. (7) that for any fixed n, the pairs (Xn, Yn) and
(Xn, Yn) have identical distributions. Since

lim (Xn, Yn) = (3, • • -3o+1Jf, S, • --&.UX) a.s.
n-*co

our result follows. •

Since the limiting distribution of Yn is S, • • •§„[/* X, we are put into the
setting of Theorem 1. Indeed, let [Zn] be the Markov chain evolving as Zn+1 =
Sn+1Zn, with initial distribution Zo = UX. Then Y = Zo, and thus by Eq. (3)

F(Y(=B) = qP(SYG B) + pJP(UXE B), (8)
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394 M. F. Barnsley et al.

where § and Y are independent. In case S has the atomic distribution P(S =
Si) = p!, 1 < i ^ L, then Eq. (8) takes the form

y(S-lB) + pvx(U~xB), (9)

where vx and vY are the distributions of X and Y, respectively. Let Cx and CY

be the respective supports of vx and vY. Then applying Eq. (9) to B = CY and
to B = Uf=1S,(Cy) U U(CX) leads to

CY= \JS,(CY)UU(CX).

This shows in what sense Y consists of a mixture of X and the chain generated
from S. The set CY is now covered by L pieces S,-(Cy) which are affinely sim-
ilar to CY, and one piece which is affinely similar to Cx.

3. MORE COUPLING

This time we want to let [Xn] and [Yn] each have switching mechanisms. So
let

( VYn with probability px > 0,

(10)
3 n + , Xn with probability qx = 1 - px,

( UXn with probability pY > 0,

(11)
Sn+iYn with probability qY = 1 - / ' y .

Assume px + pY < 2. (This is needed below in Section 4.) The setting is like
that above: |3nJ and {§>„} are i.i.d. sequences of affine maps, independent of
one another, while Uand Fare fixed (nonrandom) affine maps. The choices
in the [Xn] and [Yn] chains are to be made independently of (3n) and (Sn),
and independently of one another. This corresponds then to the algorithm and
schematic shown in Figures 5 and 6. Let ox and oY be random variables inde-
pendent of (3n) and {§„) and independent of each other, with distributions
JP(ax = k)= pxq

k
x and IP(CT>' = k) = pYqY, k>0. Define

<R = 3, •••3a^FS1 •••SarU. (12)
THEOREM 3: Assume that E log+1|(2(3)1 > E !«g+1G(S)|, E log+1b(3)|, and E
log+| 6(S)| are all finite, and that the Lyapunov exponent ofGL((R) is negative.
Then for any constant initial values Xo = x, Yo = y the random variable Xn

defined in Eq. (10) converges in distribution to the unique fixed distribution,
X, of 01, (R * X = X; and the random variable Yn defined in Eq. (11) con-
verges in distribution to %x- • • 8a>-L/ * X.
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Read Ti,--,TK and pi,--,Ptf Read 1/

Read Si,---,SL and p\,-,p'L Read V

_L
Initialize X, Y

n = l

Choose Ix = 0 or / * = 1 with

probabilities px an<^ 1 ~ PJC t respectively.

Choose IY = 0 or IY = 1 with

probabilities py and 1 — py, respectively.

Pick a random number it from {1, • • •, K}

according to respective probabilities p\, • • •,

TkX

Pick a random number ( from {1, • • •, L]

according to respective probabilities p\, • • •,

StY

STOP

FIGURE 5. Two-screen mixing algorithm. This algorithm mixes the
individual images which are generated from the mappings T, and 5,.

PROOF: Begin as above by introducing i.i.d. Bernoulli 0,1 sequences {/^) and
(/,n with W(IX = 0) = px and JP(IY = 0) = pY. These sequences are to be
independent of Xo, Yo> (3n], {§„] and of one another. Accordingly,

VY

!I In+l = 1>
(13)
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396 M. F. Barnsley et at.

Screen I

Screen 2

FIGURE 6. Schematic of the two-screen mixing algorithm. Only screen
2 gets plotted.

UXn i f /£ ,=<>,
(14)

Define if = /o
y = 0 and set Nx{n) = max(£ < n: I? = 0), and NY{n) =

max(k < « : / / = 0). Recursively define times dfi = n,

02,-1 = NX(82i-2) ~ 1, 02/ = Nr(^,._, ) - 1, I > 1,

until such / = t(n) + 1 when Op = - 1 . From then on, define df = -\,j > t{n).
Set

for 1 < / <

and

= — . Then

(15)

(16)

See the illustration in Figure 7.

even,

odd.
(17)
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MIXING MARKOV CHAINS AND THEIR IMAGES 397

Let [of} and (a,y) be i.i.d. sequences independent of one another, distrib-
uted like ax and aY, respectively. Set Mo = 1 and define recursively

M2,_, = M2i-2 + of + 1, M2i = M2/_i + ff,r + 1, / > 1.

Let i(n) = max(; > 0: M, < /? + 1), s(«) = -~- . Now define

and let

where

o ( ) odd.

The maps {(R,-) are i.i.d., each distributed like (R.

LEMMA 4: For eac/i //xerf n, Xn and Xn have the same distribution.

PROOF: By comparing Eqs. (15)-(17) with Eqs. (18)-(20), we see that it suffices
to show that for each fixed n the sequences {6": i > 0) and (max( — \,n + 1 —
M;)\ i > 0) are identically distributed. To this end, observe that if £, >
k2 > • • • k, > 0, / odd, then (refer to Figure 8)

= JP(Nx{n) = kx + \,NY(kx) = k2 + 1,. . . ,Afr(*/-i) = k, + 1),

—PxQx PYQY PXQX >

and likewise

P ( / J + 1 - M , = ki,...,n+ 1 - M, = k,),

= P ( C T ( V = « - k i - l,o? = k i - k2- I,...,

°U+D/2 = k,-t - k,- 1) ,

—PxQx PYQY PXQX

Similar calculations apply when / is even, or when some of the kt are —1. •

Continuing with the proof of Theorem 3, it follows from the definition of
s(n) that

s(n) j(n) + l
2s(n) = 2 (of + ff,y) < n< 2 + 2s(n) + £ (a;* + a,y).
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MIXING MARKOV CHAINS AND THEIR IMAGES 399

By the law of large numbers, then,

limJ^=2+^ + ^ , a.s.
n—oo s(n) Px PY

Thus, if d, = <I((R,) then

1
lim - log|Gi • • •ftifnjfl

+ ^ + ?z\ ' i i m i l o g l d r - ' d J I <0 a.s., (21)
Px PY I "-°° n

the last step by virtue of our hypothesis on (2((R).
Consider the differences

X — X = & • • • & • F (22)

where

t(n + 1) = /(«) = even,

Sn(Sn+1 Yo - Yo) t(n + 1) = t(n) = odd,

" ~ Z 3 { V Y X ) f ( 1) f ( ) 1 = o d d ,

%a(UX0-Y0) t(n + 1) = t(n) + 1 = even.

Accordingly, set

log Gn = log 13, • • • 3n+1_M2i(n)(3'^o - *o) |

+ log 13, • ••3M2Sln)+1-M2S(n)-iV$\ • ••$n+i-M2Sln)+1{S'Y0 - Yo)\

+ log 13, • • •3M2i{a)+1-M2iln)-iV$\ • ••§>n+i-M2Hn)+l(UXo ~ Yo)\,

where 3' and S' are independent of (3n) and {§„). Observe that for any a > 0

P(log|Fn| > a) < P(log Gn > a) . (23)

Set

ft = max(log+|G(3,.)|,

Then

/1+

logGn<4

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964800000139
Downloaded from https://www.cambridge.org/core. Princeton Univ, on 11 Dec 2020 at 22:37:25, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964800000139
https://www.cambridge.org/core


400 M. F. Barnsley et al.

where

JC = l o g | 3 ' * 0 - Xo\ + log|S'F0 - Yo\ + log | VY0 - Xo\ + \og\UX0 - Yo\.

Thus, since the /3, are independent of the of and a}',

P(log Gn > a ) < IP 4 S ft + JC 2: a = IP 4 S 0, + JC > a
V 1=1 / \ (=i

(24)

It follows from our hypothesis that

and if vfo = x, Yo= y, then also E3C < oo. Thus, by the Borel-Cantelli lemma,
using Eqs. (23) and (24),

lim - log"** | /%, | = 0, a.s.
n—oo n

Using this together with Eqs. (21) and (22), we see that Xn -»X a.s., where X
is a random variable whose distribution is fixed under (R. Using Lemma 4, it
follows that Xn converges in distribution to X. From the arguments in Sec-
tion 2, it now follows also that Yn converges in distribution to Sf •••§„>-(/*X.

•
There is a heuristic way of obtaining the limiting distributions X and Y for

Xn and Yn, respectively. According to Theorem 1, these limits must satisfy

X=Zx---ZaxV*Y, Y= S, • • • § „ > • [ / * X.

These can be "solved simultaneously" to yield X = (R * X, where (R is given by
Eq. (12).

Suppose 3 and S have the respective atomic distributions IP (3 = T,) =p,,
1 <i<K and IP(S = S,) = p,', 1 < / < L. Let Cx and CY be the supports of
X and Y, respectively. One can argue as in Section 2 and show that

Cx= U 7XC7)U V\Cy),
7 = 1

= U $(Cy) U

These equations clearly show the additional coupling that is involved.

4. JOINT ASYMPTOTIC STATIONARITY

In this section, we show that the Markov chain \(Xn, Yn)), constructed above
in Eqs. (13) and (14), is in fact (jointly) asymptotically stationary, so that the
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MIXING MARKOV CHAINS AND THEIR IMAGES 401

joint distribution of (Xn, Yn) converges weakly to a limiting distribution which
does not depend on the initial condition (Xo, Yo). Our previous result, The-
orem 3, established the convergence in distribution of each of the individual
marginals Xn and Yn to respective limits X and Y which do not depend on the
constant initial values Xo = x, Yo — y. We are thus led to investigate special
conditions under which convergence of the individual marginals suffices to infer
joint convergence.

THEOREM 5: Let Xn and Yn, n > 1, be random variables which converge in dis-
tribution to respective limits X and Y. Let T be a nonnegative integer-valued ran-
dom variable which is finite a.s., and let Zn,n > 1, be a random variable
having the property that

U{Xn-rET) on [T<n\C\ A,

"~\<t>(Yn-T,FT) on \T<n\C\Ac.

The random variables [En,Fn: « > 0), the event A, and T are all assumed to be
independent of[Xn, Yn}; and <j> is assumed to be a continuous function. Then
Zn converges in distribution to <I)(X,ET)XA + <$>(Y,FT)XAC (where \A denotes the
indicator function of the set A).

PROOF:

L e t / b e any bounded continuous function. For each fixed n

"-' r r c
f(<P(Yn-k,Fk))

(25)

f(Zn).

For each fixed k
I

lim f f(<t>(Xn_k,Ek)) = ( f{cj>{X,Ek)),
" - 0 0 J \r=k\CiA J\r=k\nA

lim [ f(<HYn.k,Fk)) = [ f(<HY,Fk)).
" - 0 0 J [T=k)nAc J\T=k\C\Ac

Thus, we can pass to the limit in Eq. (25) as n -» oo. •

We want to use this result with Zn having the same distribution as the pair
(Xn, Yn) for our Markov chain constructed above in Eqs. (13) and (14). Using
the sequences [of] and [of] defined above in Section 3, set a = min(; > 1:
af * a,y). Observe that a < oo a.s., since px + PY G (0,2). Define

T = E ( f f f + D + ff^ AffJ,
1=1

and let A be the event A = (CTJ < o£}.
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402 M. F. Barnsley et al.

To construct the appropriate random variables En and Fn, we introduce an
auxiliary Markov chain. For this purpose, let [3'N: N>0] and {S ,̂: JV> 0} be
i.i.d. sequences distributed like 3 and S, respectively, but independent of our
original sequences (3n), (§„), [I*], and ( / / ) , and also of one another. Let
[lfiY] be an i.i.d. Bernoulli 0,1 sequence, independent of all six sequences
mentioned just above, with

^ ^ ( 2 6 )| ) .
PXPY+ QXQY

Define the Markov chain {(X^, y^)) similar in spirit to \{Xn, Yn)}, but with
simultaneous mixing, so that the selection mechanisms in Eqs. (10) and (11)
operate simultaneously. We want the crossover times depicted in Figure 7 to all
coincide. Precisely,

(vrN if/tf.}', = 0,
X'N+\ = 1 (27)

T Y' if T*Y _ 1

ux'N if /$:, = o,
Y'N+1 =\ (28)

s' y if iXY = 1
Let {(Aiv, YN): N> 0) denote the chain of Eq. (27) and (28) with initial con-
dition

V T V V TIV

and similarly let [(XN, YN): N > 0) denote the same chain of Eqs. (27) and
(28) but with the different initial condition

y _ yv Y — S' V
- ^ o — " * •> •'o — « o ' •

THEOREM 6: Under the same assumptions as in Theorem 3 above, the Markov
chain {(Xn, Yn)] constructed above in Eqs. (13) and (14) is asymptotically sta-
tionary. It has the stationary distribution

(XT, YT)\A + (^r. YT)XAC-

PROOF: For each fixed n, let {(.Xfr, ?£,): N> 0} be the chain of Eqs. (27) and
(28) with initial condition

_

\

vn .
uxn_T_x

if

if

if

if

T

T

7

7

<

>

<

>

n,

n,

n,

n.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964800000139
Downloaded from https://www.cambridge.org/core. Princeton Univ, on 11 Dec 2020 at 22:37:25, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964800000139
https://www.cambridge.org/core


MIXING MARKOV CHAINS AND THEIR IMAGES 403

Similarly, let [(XR,, f#) : N > 0) be the same chain of Eqs. (27) and (28) but
with initial condition

if T < n,

if T > n,

i if T < n,

0 it 7 > rt.

LEMMA 7: For each fixed n, the pairs (Xn, Yn) and

have identical distributions.

PROOF: The main idea here is that we trace the chain \(Xn, Yn)) backwards
from stage n to arrive at a "common parent," or antecedent Xiin) or Y^n),
from which Xn and Yn both stem. Then from stage £(«) + 1 on we let
\(Xk, Yk)] re-evolve forward in time, but with simultaneous, or coalesced mix-
ing transitions. For this purpose, define

I max(& < n: Ik + Ik = 1) — 1 if such k exists,

1—1 otherwise.

Then whenever £(n) s 0, both Xn and Yn have a common antecedent at stage
!(«)• This is illustrated in Figure 9.

7 a 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25
• I » • I Or* - 1 • Oj » i i i » I « O/-»-H 1 « O/-»-t 1—

7 8 9 10 II 12 13 (4 15 16 17 18 19 20 21 22 23 24 25

FIGURE 9. Tracing back to a common parent. Here £(25) = 9, and
-*75 > Y25 can both be traced back to Y9, as indicated. The crossovers
after stage 10 are all simultaneous.
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404 M. F. Barnsley et al.

The connection between the original chain {(Xn, Yn)\ and the auxiliary
chain \{X'N, Y'N)) can be formulated in terms of £. The basic relationship is

», Yn) e C\Hn) = -1) = n \ , ( W , YD e C), » > 1. (29)

The point is that although £(«) is not a (Markov) stopping time, nevertheless
the conditioned process \(Xk, Yk): 0 < k < «), given that £(n) = —1, is still
Markov —in fact it is simply the simultaneous process [(Xk, Yk): 0 < k < n\.
The reason for this is that our original process {{Xn, Yn)\ defined in Eqs. (13)
and (14) is really compound Markov. It has the effect of the random affine
products and the effect of the Bernoulli crossover mechanisms. Knowing that
£(«) = — i only allows us to foresee something about the switching mechanisms
(namely, that they coalesce), but tells nothing about the random affine maps.
Thus, even though £(/i) is predictive, the resulting conditioned process is still
Markov. This is what Eq. (29) is saying. It can be verified by conditioning on
the Ix and IY processes, and using Eq. (26).

From the definition of £(/?) a nd the time homogeneity of our Markov pro-
cess, we also have the relationships

y l l \ \ O ] (30)

and

*«,((*„ y.) e c |$(i) = 0) = p«3x,ux) e c)JP{iY = o\ix * iY)

+ IP((Ky,S.y)eC)IP(/1'= \\IX ± IY). (31)

Combining these, we infer that for any 0 < k < n

^ „ _ * , Yn_k) E

(by the Markov property),

rB_*_,, Yn_k_x) eC\$(n-k-\) = - 1 )

(byEq. (30)),

= Exy[PXk+lYk+l((XU-i,Y^k^ G C ) \ H k + l ) = k]

(by Eq. (29)), (32)

= ExyEXkYk[JPXlYl((X^u Y^_k_x) e C)|S(D = 0]

(by the Markov property),

uYLk-i) E C)JP(/r =

'n^uY^k_x) 6 C)W(IY =

(byEq. (31)).
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MIXING MARKOV CHAINS AND THEIR IMAGES 405

Likewise, we have the series of computations

_*-,, ?„"_*_,) € C, AC\T = n - k - 1), (33)

Lk-u y«-*-i) € O P M I T = /i - A: - 1)

i-k-uY^k_l G C)P(AC\T = n - k - \ ) .

Similarly, for T > n

Pxy((Xn,Yn) eC| r>«)

, ?„") G C, ̂ | r > n) + Wxy((X"n, Y"n) G C, , 4 C | T > «),

Y^) E C, >1C|T > «),

Observe now that for 0 < k < n

I P ( ^ | T = « - A : - 1) = W(IY = 0\Ix

From this we conclude, using Eqs. (32) and (33), that

Yn)eC\T = n - k - l ) , 0<k<n.

In addition, using Eqs. (29) and (34), it follows that

Vxy{(Xn,Yn) e c | $ ( « ) = - l ) = iP

Next observe that £(n) and n — (T A n) — 1 have identical distributions. This
is argued by a success/failure analysis, as in the proof of Lemma 4 above. (See
Figure 8 there.) From this we conclude, by conditioning on £(«) and T, that

Continuing with the proof of Theorem 6, we want to apply Theorem 5 to
the random variable Zn = (Xn, Yn). Observe that if T < n, then

where E'k and Ek are (A: + l)-fold products from among the affine maps
{3.v)> (Sjv), U, and V. Similarly, if r < n, then
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406 M. F. Barnsley et al.

where F£ and FH are likewise (k + l)-fold products from among these same
affine maps. We can apply Theorem 5 now, with <£ being affine in x:

4>(x,E) = <t>(x,(E',E")) = (E'x,E"x).

This leads to our desired conclusion.

5. GENERAL MIXING

It should be clear from the arguments in Sections 2-4 that it is straightforward
indeed to extend the mixing models so that the crossover maps U and V them-
selves be random, independent of everything else. Thus, Eqs. (13) and (14) now
become

if / n
r
+ 1=0,

Here [Vn] and CUn) are i.i.d. sequences of affine maps, independent of [3J ,
(S«)» Un]> and {In\ and of one another. The conclusions of Theorems 3 and
6 remain valid if we add the hypotheses that IE log+1| d{V)\, E log"1" | QH%)\,
E log+1 b(V)\ and E log+16CU)| also all be finite. If -V and 01 are atomic dis-
tributions with atoms at Vt and Uh respectively, then the support equations for
the limiting distributions X and Y become

c Y =

We can further generalize our model so as to allow for more than two
screens, or processes. Some typical models are schematized in Figures 10 and
11. To formulate an N-screen setup, we introduce an N x N transition proba-
bility matrix Q and N2 i.i.d. sequences (3n(/,y): n > 1} for 1 < /, j < N, all
mutually independent. We also introduce TV i.i.d. sequences {/„(/): n > 1) for
1 < i < N, with JP(/n(i) = j) = Qij for our switching mechanisms. These
sequences {/„(/)) are to be independent of the sequences {3n (/,./)) and also of
one another.
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MIXING MARKOV CHAINS AND THEIR IMAGES 407

r(u)

Screen 3

FIGURE 10. 3-screen mixing schematic. The switching is governed by

Q= i 0
I

2 2 J

Using these ingredients, we can specify the evolution of our mixed chain

N times

Xn+l(i) = 3n+1 (/,/„+,(i))Xn(In+1(i)), n > 0.

In Section 2, our model corresponds to

1 0"

(35)

6 =

and in Section 3, it corresponds to

Q =

P Q

Qx Px

PY QY
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(1,4)

Screen 4 — / -

FIGURE 11. 4-screen mixing schematic. The switching is governed by

Q =

3 3 U 3

0 0 1 0

0 I 0

0 0 2 2

Suppose the marginals Xn(i) converge in distribution to limits X(i). Then the
invariance condition becomes

MB) = S QuMZ-lVJ)B), 1 < / < N, (36)
j
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MIXING MARKOV CHAINS AND THEIR IMAGES 409

where vt denotes the distribution of X(i). In particular, if the 3(/,y) are dis-
crete with atoms Tk(i,j), then the supports C, of i>, will satisfy the coupled set
equations

C,= U \jTk(UHCj).
j:Qij>0 k

(37)

The results of Sections 2 and 3 lead us to investigate the influence of the
Markov chain [Tn: n > 0) on ( 1 , . . . ,N\ with transition probability matrix Q.
If we start at stage n and trace the evolution of [Xk(i)} backwards in time,
then the screen crossovers follow this chain (Tk}, with initial condition r0 = /.
Thus, the reversed process jumps from screen to screen in a Markovian fash-
ion. This is the key point — reversibility. Analysis of this general mixing model
will be presented in a subsequent work.

6. ILLUSTRATIONS

Figures 12 and 13 illustrate the supports of the stationary distribution for two
(unmixed) Markov chains arising from products of i.i.d. affine maps. The ran-

K l l
-.04j

.8x +
.8y +

.5x + .25

.5y + .4

.355i-.366y + .266]

.355z+ .355y + .078 j

.355i + .355y_ + .378
-.355z + .355y + .434

Pi = 4

FIGURE 12. This image is generated from the four mappings above.
The window here is 0 < x,y < 1.
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t i -
l l ] -

.856x + .0414y + .07
--02051 + .858a + I4 7

.244x-.385y + .393

PI = 7

T3:
-.144x + .39y +.527]
.181x + .259y - .014 J

.486
.031x + .216y +

FIGURE 13. This image is generated from the four mappings above.
The window here is 0 < x,y < 1.

dom maps for the chains are discrete, each having four atoms, as indicated in
each figure. This corresponds then to the basic algorithm depicted in Figure 1.
Observe, in particular, the self-similarity of the fern —each branch is a copy of
the whole fern. The leaf has a similar structure, which can be detected by study-
ing its boundary.

Figure 14 illustrates a mixed image constructed from the fern and the leaf.
The schematic for the mixing model is given in Figure 15. Observe that unlike
Figures 12 and 13, the mixed image no longer exhibits self-similarity. The
branch is no longer simply a copy of the whole tree—it has leaves, but not its
own branches, growing from it.

7. A COMPARISON WITH [2]

In [2] is formulated a model whereby products of affine maps (more generally,
Lipschitz maps) are generated through a Markovian index chain. Precisely, let
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:,><?A

411

FIGURE 14. This mixed image combines the textures of the fern and
the leaf. The branch is not a copy of the whole tree.

TU...,TN: JRm -* JRm be affine maps and let {/„: n > 1J be a Markov chain
on ( 1 , . . . ,7V). Then the process [Xn\ on IRm evolves according to

Xn+\ = T,n+iXn.

This process {Xn} is not by itself Markov, but the joint process {(Xn,In)) is.
We would like to show that the various W" marginals of any stationary distri-
bution for l(Xn,In)) on Rm x ( 1 , . . . ,N] obey conditions like Eq. (36). More
generally, let 3 ( 1 ) , . . . ,3(/V): Rm -> lRm be (jointly) random affine maps, and
let the sequence ( ( 3 n ( l ) , . . . ,3n(/V)): n > 1} be i.i.d., each TV-tuple being dis-
tributed like (3 (1 ) , . . . ,3(/V)); and independent of the chain (/„). As above,
let [Xn] evolve according to

Xn+\ — (38)

Let v be any stationary distribution for {(Xn,In)} on IRm x (1,. . . ,TV). It
follows from the stationarity that ir(/) = i>(Um X (/}) is stationary for {/„).
Let K - supp(ir) C (1,...,TV) and define the marginals

HBx[i))

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964800000139
Downloaded from https://www.cambridge.org/core. Princeton Univ, on 11 Dec 2020 at 22:37:25, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964800000139
https://www.cambridge.org/core


412 M. F. Barns ley et al.

Leaf - 4 maps

Cx = supp(X)

C x *UT j (C x >
Leaf • U(Leaves)

Move the
leaf down.

Screen 1

2 maps

(left aright)

Branch - 4 maps

(3 degenerate)

CY = supp(Y)

CY= USj(CY) U U U|(CX)

Branch » U( Branches) U( Leaves) Move the
branch down

Screen 2

2 maps
(left 4 right)

Screen 3

C Z -UR| (C Z ) UU V|(CY)
Tree • U (Trees) U (Branches)

FIGURE 15. Schematic for the mixing model of Figure 14. This model
involves 3 screens and 2 crossovers. Only screen 3 gets plotted.

for Borel subsets B C Rm. Let P = (Py) be the N x N transition probability
matrix for {/„}. Then it follows again from the stationarity of v that

MB) = E/iv.O-'a-)/*) = £ Puvj(3-l{i)B), i G K, (39)

where P = (Py) is the transition probability matrix on K for the reversed chain
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MIXING MARKOV CHAINS AND THEIR IMAGES 413

If the 3(/) are all atomic with atoms Tk(i), then the supports C, of e, will
satisfy the coupled set equations

Q= U U TkU)(C(j)) = U nU)( U
jGK k k \ jek
Pji>0 Pji>0

The Eq. (39) should be contrasted with Eq. (36). In particular, if we let /*/,-
and /x, denote the distributions of 3 (/,,/) from Section 5 and 3(0 here, respec-
tively, then Eq. (36) becomes

j

and Eq. (39) becomes

vt = m * IE, vh = m * 12 Pv PA . (41)2 Pv PA .

In particular, Eq. (41) is the special case of Eq. (40) where the chain \Tn} cor-
responding to Q is irreducible, and where n,j = iit; i.e., all maps leading into
the same screen are the same. The reversed chain here corresponds then to the
chain (Tn) from Section 5 above. Generating the process {Xn} from Eq. (38)
is equivalent algorithmically to generating it from Eq. (35). In the framework
of Section 5, screen / corresponds here to the event / = /. In case the chain
[(Xn,In)} is ergodic, we have

S / ( * ) [f()(d x {/}) a.s.,

for / G K, where/: Rm -• R is bounded continuous. Thus, e, can be generated
as the empirical distribution of [Xk], but sampled only over those times k
when Ik = i. This should be contrasted with the TV screen simulation of Section
5, whereby the sampling is done over all times k.

Regarding conditions for ergodicity, the sufficient condition given in [2] for
the chain {(Xn,In)} to be ergodic goes as follows. The chain (/„) is irreducible,
and if {I'n \ is the stationary chain then the Lyapunov exponent for the station-
ary ergodic process ((J(3n(/^)): n > 1) is negative. For the 2-screen model of
Sections 3 and 4, if V = 3 and U = S, then this should be contrasted with the
condition that G((R) have a negative Lyapunov exponent, (R being given by Eq.
(12).

In summary, the state space for (Tn} in Section 5 above corresponds to
the TV screens; and the state space for {/„) here corresponds to the ./Vmaps. In
terms of the general model described at the end of [7], the process in [2] evolves
as

where (£,) is Markov (rather than just i.i.d.).
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