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1. INTRODUCTION 

Let {w( t ) ,  t z O )  be a Feller-Markov process taking values in a 
compact metric space X .  Suppose that there is an invariant measure 
p* corresponding to this process. Then, under some conditions (see 
(2.1)-(2.3)), the occupation measure p,(A) = ( l l t )  6 X,(w(s)) ds, where 
X ,  is the indicator function of any Borel subset A of X ,  converges 
to p* exponentially fast. More precisely, one has the well-known 
result, Theorem 1.1 below, due to M.D. Donsker and S. R. S. 
Varadhan [2] .  

We introduce the following notation. Let C ( X )  denote the space of 
continuous functions on X,&?(X)  the Borel subsets of X ,  and P ( X )  
the space of probability measures on (X,&?(X)) .  Let L be the 
infinitesimal generator of the process, 9 + ( L )  be the space of positive 
functions which are in the domain of L and ( p ,  f )  =I, f ( x )p (dx ) .  
Then the Donsker-Varadhan rate function I (p )  is given by 

I (p)  = sup - y,- . 
u€Y + ( L )  ( 3 

THEOREM 1.1 For any weak*-continuous function 4 on P ( X )  we have, 

1 
lim -In E x  exp(tq5(pi)) = - inf [I(,u) - 4(,u)]. 
t -m t  PEP(X) 

(1.1) 

Moreover, there are extensions of this theorem for the empirical 
distributions of the process and non-compact X ,  [2, 121. In fact, 
Theorem 1.1 follows from these 'higher level' results via the con- 
taction principle. Also, different approaches to these problems are 
developed by J. Gartner [5]  and D. Stroock [ l l ] .  J. Gartner made 
use of the spectral radius function i ( k )  = lim,, , ( l l t )  In E exp(t(k, pi ) )  
for k~ C ( X ) .  He proved Theorem 1.1 under the assumption that A(k) 
is Gateaux-differentiable. Notice that, A(k) is the dominant eigen- 
value of the operator L + k ,  if there is one. Also, the differentiability 
of i ( k )  follows from the uniqueness of the positive eigenfunction. To 
this end, we note that the existence and the uniqueness of such an 
eigenfunction is just a simple consequence of the Assumptions (2.1) 
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and (2.2), see Theorem 4.1. Finally, we refer to [I] and [7] for 
related problems. 

In this paper, we give another proof of Theorem 1.1, via a 
"linearization" argument. The outline of our proof is as follows. A 
straightforward argument yields an upper bound. Then, using the 
measure transformation introduced by S. J. Sheu [9] we obtain the 
following lower bound, 

1 
lim inf- ln E exp (t$(p,)) 2 - inf [ - $(pu) + I(pU)], 
t 'ru t u s 9 +  (L) 

where pu is the invariant measure of the Feller-Markov process 
generated by the operator Lu( f )  = (l/u)[L(u f )  - f L(u)]. When 
$(u) = (p, k) for some k E C(X), the map p+l(p) - +(p) is minimized 
at pU* where u* is the positive eigenfunction corresponding to 
L+ k. Consequently, the upper and the lower bounds are the same 
for linear 4. To complete the proof we reduce the problem to the 
linear case. To do so, we consider functions of the type 
4 ( p )  = F((p, fi>, . . . , (p, fk)) for some FE C1(Rk) and fi E C(W. 
Then, inf [I@) - $@)I = inf,,., [i(c) - F(c)] where T(c) = inf {I@): 
((p, fi), . . . , (p ,  fk)) =c). Note that i i s  a convex function on Rk and the 
minimum of a convex plus a C1-function is the same as the minimum 
of the same convex function plus a properly chosen linear function, 
see Lemma 6.3. Thus, the problem reduces to the linear case. 

The paper is organized as follows: notation is introduced in 
Section 2, in Section 3 the measure transformation is defined, the 
eigenvalue problem is studied in Section 4, Section 5 is devoted to 
the upper and lower bounds, finally Theorem 1.1 is proved in 
Section 6. 

2. PRELIMINARIES 

Let L be the infinitesimal generator of a Markov process w(t), and IT; 
be the semigroup on C(X), generated by L. Since we assume that 
w( t )  is a Feller-Markov process, L and IT; satisfy the following (see 
~ 4 1 )  
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b) 9 ( L ) ,  the domain of L, is dense in C ( X ) ,  I . . 
c) L satisfies the maximum principle, i.e. iff E 9 ( L )  

and, (2.1) 

f ( x o )  = max f ( x ) ,  then L f ( x o )  5 0 ,  

d) Range (3, - L)  = C ( X )  for some 1. > 0. 

We also assume that there is v  E P ( X )  and p(t, x ,  y) such that 

O<a(t) ,<p( t ,x ,y)sA( t )  V x , y€X  and t>O, i 
where L1(X ,v )  is the set of functions on X ,  which are integrable with 
respect to v.  We note that condition (2.2) is also used in C2.11. 

Let R, be the space of right continuous functions w ( t ) ~ X  with 
w(O)=x, which also have left limits at every t z O .  Note that, the 
Markov process w(t) induces a measure P, on Bore1 subsets of 0,. 
Finally, for t  > 0, w E R, and A G B(X), we define the occupation time 
by, 

1 '  
P,(A, w) = - j X A w ( 4 )  ds, 

t 0 

where X ,  is the indicator of A. The probability measure y,(w)= 
p,(., w) is called the occupation measure. 

3. THE MEASURE TRANSFORMATION 

Let 9 + ( L )  = {u  E 9 ( L ) : u  > 0). For each u  E 9 + ( L )  we define on 
operator Lu by 
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with the domain .9(Lu) = { f E C(X):  uf E .9(9)). Notice that, Lu satisfies 
(2.1) (b)-(c), and consequently generates a Feller-Markov process 
(see [4]). Let P: be the measure induced by this process on 0,. In 
[9], S.-J. Sheu showed that P: is absolutely continuous with respect 
to P, on 8,= a(w(s):ss t), and 

dP; u(w(t)) exp [ - t $)I. E(w)l .$,  = xj- (3.2) 

Next we shall show that the condition (2.2) is also satisfied by the 
semigroup T: f (x) = E: f (w(t)), where E: denotes the mathematical 
expectation with respect to P:. 

LEMMA 3.1 T: satisfies (2.2). 

Proof Using (3.1) we obtain the following 

where 

Due to the above representation, (2.2) (a) and (b) hold. Now, 
approximate pu by 

where 

&(t, x, Y )  = ~,[exp (- j g b s ) )  d s l w  = Y ] .  

Then, it is easy to show that 
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Therefore, g,(t, x;) E L1(v) is continuous in x. One completes the 
proof, after observing that p:(t,x,.) converges to pU(t,x;) in L1, 
uniformly in x, as E-0. 0 

Now observe that (2.2) implies that the corresponding Markov 
process is ergodic (see [3]). This observation together with the above 
lemma yield that for each u ~ 9 + ( L )  there is a unique invariant 
measure pu corresponding to {PFX E X), i.e. (pu, Lu f )  = 0 for all 
f E 9(Lu). The following result indicates the relation between this 
transformation and the rate function. 

LEMMA 3.2 I(p) = - (u, Lulu) for some U E  9 + ( L )  if and only if 
p = pu. 

Proof First, suppose that I(p) = - (p, Lu/u). Consider the map 
f -J( f )  = - < y, Lfl f )  for f E ~ + ( L ) .  Since J is maximized at u, we 
have (?/d&)J(u + &h) = 0 for all h E 9(L).  But, (?/a&)J(u + ~ h ) l , , ~  = 
- (p, LU(h/u)). Therefore, p = pu. 

To prove the converse, observe that T: f ( x )  5 log T: ef(x) for all 
f E C(X). Therefore, 

and 

Also, 

and as t tends to zero, it converges to LUv/v for all v ~ 9 + ( L " ) .  Thus, 
- (pu, Luv/v) 5 0 .  The following calculation together with this ob- 
servation complete the proof of the lemma. 

I(pU) = sup - pu,- 
V . ~ + ( L )  { 3 
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4. THE EIGENVALUE PROBLEM 

The following result follows from [6 ] .  But under the Assumptions 
(2.1) and (2.2) a simpler proof is available. 

THEOREM 4.1 For any k~ C ( X )  there is a solution 
(uk, A(k)) E Q+(L) x R of the following equation 

Moreover, the eigenfunction uk is unique up to a multiplicative 
constant. 

Proof Let ;i; be the semigroup generated by L+ k. Then, 

where 

Proceeding as in the proof of Lemma 3.1, one can show that 
G(t, x, y) satisfies (2.2). This implies the existence (Krasnoselski [8], 
Theorem 2.8, p. 72), and the uniqueness ([8], Theorem 2.10, p. 76) of 
(u:, ;l,(k)) E C ( X )  x R satisfying, 

i) 'j;u:(x) = L,(k)u:(x), V t > 0 
ii) u:>O, ;lt(k) >O 

iii) max[u:(x): x E X I  = 1. I 
Set u, = ut , i,, = l,(k). Then, PI Zu, = 2Tlu, = i,, 224,. Due to the 
uniqueness of u:, ~ u l = c s u l  for some constant c,>O. Also, c,+,u, 
= t+p, = t T u ,  = c,ctu,. Therefore, by strong continuity cs= e" for 
some I. E R. Moreover, 

lim t- ' ( t -~)u,=i .u , .  
t -m 
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From the Feynman-Kac representation of t, (4.1), and the right- 
continuity of sample paths at t=O,  one concludes that 9 ( L ) =  
9 ( L + k ) .  Then u ,  E ~ + ( L )  and the pair (u,,A) is a solution of (4.1). 

The last assertion of the Theorem follows from the uniqueness 
of u:. 0 

5. UPPER AND LOWER BOUNDS 

The following theorem is proved in [2] ,  but for completeness we give 
the proof. 

THEOREM 5.1 For all weak* continuous functions 4 on  P ( X )  we have 

1 
lim sup - ln Ex exp(t$(p,))  5 - inf [ I ( p )  - 4 ( p ) ]  
t - m  t p o P ( X )  

(5.1) 

1 
lim inf - In Ex exp (t$(p,)) 2 - inf [ l (pu)  - 4 (pu ) ]  (5.2) 
t'oo t  U E ~ + ( L )  

where I (p )  is as in Theorem 1.1. 

Proof For any u E 9 + ( L ) ,  (3.1) yields 

Choose a neighborhood U,(pu) of pU such that ( 4 ( p )  - ~ ( P ) I  < E and 
( ( p ,  Lu lu )  - ( p U ,  ~ u l u )  ( 5 E ,  for all p E U,(pU). Then, (5.3) yields that 

where E;[.  .. .; A] denotes the integral over the set A. Recall that 
- (pu ,  Lu lu )  = I(pu)  and P:(p, E U,(pU)) converges to one. Therefore, 
(5.4) yields the lower bound. 
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Let V =  {Cj: j=  I , .  . . , K )  be a finite open covering of P ( X )  and 
~ ~ ( L ) = { ~ E ~ + ( L ) : E S U ( X ) S ~ / E ) .  For each (u,, ..., u , ) ~ g : ( L ) ,  we 
have 

Therefore, 

-In - +sup inf sup $ ( y ) + ~ y , -  
t (5) j ueB:(L) peCj  [ 31 

Since the above inequality holds for every t >O, E>O and open 
covering %?, we obtain 

1 
lim sup - E x  exp [t+(pt)] 5 inf sup inf sup 

t + m  t ( C j }  j u e P + ( L )  w C j  

(5.5) 

In the rest of the proof, we will show that the right-hand side of (5.5) 
is in fact equal to sup,,,(,, [$(y)  -I@)] = 1. Given E > 0 and y E P ( X )  
there is u, E C ( X )  such that +(y)  + ( y ,  Lu,/u,)) 5 1 + E.  Since the map 
p+(p,Lu/u) is continuous for each u ~ 9 + ( L ) ,  there is an open 
neighborhood N ,  of every p E P(X) such that +(q) + ( q ,  Lu,/u,) 5 1 + 28 
for all q E N,. Pick a finite covering (N,,: i = 1,. . . , K } .  
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The construction of N,,'s implies that 

Therefore, the left-hand side of (5.5) is less than 1. 

6. PROOF OF THEOREM 1 .I 
We will first prove the theorem when @(p) = ( p ,  k ) .  

LEMMA 6.1 Let k E C ( X )  and b* E P ( X )  be such that 

Then, p* =puk where uk is the positive eigenfunction of the operator 
L+k. 

Prooj' The choice of p*, Lemma 3.2 and Eq. 4.1 yield 

Therefore, I(p*)= - <p*,Luk/uk) and Lemma 3.2 implies that 
u* = puk. 0 

Remark 6.2 In view of Theorem 5.1, the above result proves (1 .1 )  
for linear 4. But, in the linear case a sharper asymptotic formula is 
available. That is, 

lim E x  ap [b k(w(s)) dsIe  -'(L)'= u~( . x )  (Pk, i) . (6.1) 
t - m  

One proves (6.1) by choosing u=uk in (5.3). 
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We need one final result in the proof of Theorem 1.1. 

LEMMA 6.3 Let i be a real-valued, convex, lower-semicontinuous 
function on Rk and F be a real valued, bounded, continuously 
differentiable function on Rk. Then, 

sup [F(c) - i ( c ) ]  = sup [F(c*) + VF(c*j .(c - c*) - i ( c ) ] ,  
C E R ~  C E R ~  

where V denotes the gradient and C * E R ~  is an extremal point of 
F(c) - i(c),  i.e. 

Proof Suppose to the contrary. Then, there are C,E Rk and 6 >0 
such that 

For each z E [O,1] we have, 

The above inequality yields, 

But this inequality contradicts the differentiability of F at c*. 0 

Proof of Theorem 1.1 Since the class of functions 4 of the form 
&p) = F((p ,  f i ) ,  . . . , (p, f K ) )  for some fi E C ( X )  and F as in Lemma 
6.3 is dense in C(P(X)) ,  it suffices to prove Theorem 1.1 for this 



198 W. H. FLEMING, S.-J. SHEU AND H. M. SONER 

class of functions. Pick p* E P ( X )  such that +(I*) -I(p*) = 
sup{$(p) - I (p):p  E P ( X ) J .  We will show that p* = pu for some u E C ( X )  
and in view of Theorem 5.1 this implies (1 .1 ) .  For c E: R K  define i ( c )  by 

(we use the convention that inf over an empty set is + a). Therefore, 

where c*=((p*, f , )  ,..., (p*,  f K ) ) .  NOW, Lemma 6.3 and the defi- 
nition of i yield 

= (p*,  k )  -I(p*). 

where 

k(x)  = F(c*) + VF(c*).[(  f,(x), . . . , f,(x)) - c*]. 

Therefore, Lemma 6.1 implies that p* 

Remark 6.4 The technique, developed in this paper, also applies 
to discrete-time Markov processes. In this case, the Donsker- 
Varadhan rate function I(p) is given by 

where C f ( X )  is the set of strictly positive continuous functions on X, 
and m ( x )  = E,u(w(~)).  Then, the analogue of the transformation (3.1) 
is, 

nu f  ( x )  = u f x ,  U E C + ( X ) .  
74-4 
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The only other change is the form of the eigenvalue problem (4.1), 
that is: for k~ C ( X )  one needs to study the following equation: 

n U k ( X )  = e 4 k ) k ( x )  4 x 1  
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