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Introduction 
In this paper we study the singularities and the uniqueness properties 

of cylindrically symmetric hypersurfaces which move by mean curvature in 
ElN, with N 2 3. More precisely, we study the properties of the evolution 
I't of ro by mean curvature, where ro is a smooth cylindrically symmetric 
surface in lRN parametrized by 

where ho may be multivalued with the several branches matching together in 
a smooth way. Throughout this paper we consider torus-like ro as opposed 
to bar-bell looking shapes, although our arguments can be modified to apply 
to the latter case. 

Following recent work of Evans and Spruck [ES] and Chen, Giga and 
Goto [CGG], rt is defined as the zero level set of the solution u of the 
geometric pde 

Du @ Du ut = trace [ ( I  - )D%] in IRN x (O,oo), 
(0.2) IW2 
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where the continuous function 210 : lRN + lR is chosen so that 
l?o = {x E lRhr : uo(z) = 0) and (0.2) is interpreted in the viscosity sense 
of Crandall and Lions. (For the precise definitions as well as a general 
overview of the theory of viscosity solutions we refer to the "user's guide" 
by Crandall, Ishii and Lions [CIL]). This approach, known as the level set 
approach, provides rt ,  which is defined globally in time, but leaves open 
the question of its regularity. Another intriguing question related to the 
above definition is whether rt has non-empty interior. Partial regularity 
results for motion by mean curvature were obtained by Evans and Spruck 
[ES] and Ilmanen [I], who actually reconciled, under some assumptions, the 
level set approach with the geometric measure theory approach of Brakke 
[B]. General, but not necessary, conditions on Po, which guarantee empty 
interior for r t ,  were given in Barles, Soner and Souganidis [BSS]. DeGiorgi 
[DG] has also conjectured several results related to interior of rt. 

We continue by formulating the main results. As long as rt is smooth, 
(since Po is smooth, I't will be smooth for small time (cf. Evans, Spruck 
[ES])), it can be parametrized by 

where the, possibly multivalued, smooth function h solves the equation 

in some time dependent domains for each branch of ho, and, therefore, h. It  
is, of course, immediate that as long as h # 0, (0.4) has classical solutions, 
and, therefore, I't is smooth. The only potential singularities of rt may 
therefore occur when h = 0 for the first time. To formulate our first result, 
let us specify that h vanishes for the first time at  (0, T) and that (0.4) holds 
in 

(0.5) C? = (-2A, 2A) x (0, T), 

for some A > 0. Throughout this discussion we will be assuming that for 
all (z, t )  E ( - 2 4  2A) x [0, TI, 

(0.6) h(z, t) = h(-z, t) and zh,(z, t) 2 0. 

It  is immediate that (0.6) yields that h(., t) has only one minimum at the 
origin. Although the above assumption will be used extensively throughout 
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the paper we believe that our arguments can be easily modified to allow for 
more local minima which vary in time. 

Theorem 1: Assume that (0.6) holds. Then 

with the limit uniform for lyl bounded. 

The following corollary is an immediate consequence. 

Corollary 2: Up to a parabolic scaling, at the singularity the surface I't 
converges to a cylinder. 

A similar result was obtained by Huisken [HI when N = 3 under the 
condition that ro has positive mean curvature but without assuming (0.6). 
Note that if ro has positive mean curvature, then rt has empty interior for 
all t 2 0 (see [BSS] or Theorem 3.1, below). 

Another consequence of Theorem 1 is that rt does not develop interior 
at t = T and that i t  continues as a smooth surface for t > T till the time 
it becomes extinct. We will prove this result for the special case of a torus. 
A brief discussion of how to extend this result for other initial data is given 
before Theorem 3.8. 

Consider the evolution t H I't by mean curvature of the torus To, which 
is given by 

N - 1  
where r 2  = x?. 

i = l  
Proposition 3: I't never develops interior. Moreover, there exists 
& E (0 , l )  such that for all R E (O,&),rt shrinks to a circle and then 
becomes extinct. For R E (&, l ) , r t  '~ocuses" at 0 at some time TR. It 
then "opens up" and flows smoothly until it becomes extinct. Finally, for 
R = &, rt focuses at exactly the same time it becomes a circle. 

The above result is related to a conjecture of DeGiorgi [DG]. Numerical 
evidence suggesting the above described behavior were obtained by Paolini 
and Verdi [PV]. 

The paper is organized as follows: In Section 1 we prove a curvature 
bound. Section 2 is devoted to analyzing the behavior of rt at  the focusing 
point. In Section 3 we show that rt does not develop interior and study 
its behavior after the focusing occurs. Finally, in the Appendix we state a 
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result about the number of zeroe's of solutions of linear parabolic equations, 
which we will be using repeatedly throughout the paper. 

The results of this paper were announced in [SS]. By the time this paper 
was completed, the authors learned that Altschuler, Angenent and Giga 
[AAG1,2] also studied the motion by mean curvature of bodies of rotation. 
Their set up is and their results are formulated for "barbell" type shapes. 
On the other hand, they do not need assumption (0.6). 

1 A curvature bound 

In this section we obtain an upper bound for the ratio of the radial and 
angular components of the curvature of rt near the singularity. This bound 
plays a fundamental role in the proof of Theorem 1 and its consequences. 

More precisely, let 

and recall that h solves in (0.4) in (-2A,2A) x (0,T). 

Proposi t ion 1.1: There exist E > 0 and co > 0 such that 

and 

The meaning of (1.3) is that near the singularity a t  (O,T), the radial 
component of the curvature is strictly dominated by the angular one. As 
a matter of fact, the ratio between the radial and angular components of 
the curvature is strictly below of the same ratio of the curvature of the 
catenoid, the stationary solution of (0.4). This, in turn, yields (as we will 
see in Section 2.4) that 0 @ int rT. 

The proof of Proposition 1.1 is based on the existence of an one-parameter 
family of barriers ( q x ) ,  with A E [Ao, A11 for some 0 < Ao < X I ,  which are 
defined on 

bl = [-B/2, B/2] x [O,T), 
with 0 < B 5 A, and a result of Angenent ([All and Lemma A, below) on 
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the number of zeroes of solutions of linear parabolic equations in one space 
dimension. The idea of using the bariers goes back to Angenent [A2]. Our 
construction of bariers here is, however, new. 

In the sequel we will need the following notation. For A E [Ao,  A l l ,  
t E (0, T )  and 101 < B we define: 

R1 = (-B/2, B/2)  x (O,T),fi = (-2B,2B) x [O,T), 

I ( t ,  = (14 < B/2 : qx(z,t) I h(z - O,t)), 
n( t ,  A, 0) = #{It1 5 B/2 : qx(z, t )  = h(z - 0, t ) ) .  

Next we state two lemmas which assert the existence of the barriers with 
the necessary properties. 

Lemma 1.3: There exist B > 0,0 < X o  < X I ,  an one-parameter family 

qx : f i ,  -, ( 0 , ~ )  , ( A  E [Xo, A l l ) ,  

and constants c, 6 > 0 such that for every 101 5 B and t E [0, T ) :  

5 ( N  - 2) - c, whenever qx < 6, 
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Lemma 1.4: For every (zo,to) E ~ 1 ,  there ezists (X8,8*) E [Xo,Xl] x 
[ -B/2  - zo, B / 2  - zo] such that 

We continue with the proof of Proposition 1.1 and then return to Lemmas 
1.3 and 1.4. 
Proof  of  Proposi t ion 1.1: Let (X*,d8) be as in Lemma 1.4. We claim 
that 

qP,*z(zo + d*, to) 2 M z o ,  to). 

Indeed, if not, then by (1.9) and (1.11), the difference qx. ( a ,  to) - h(. - d*, to) 
would have more than two zeroes, which contradicts (1.6). 

Therefore 
+(zo, to) 5 (20 + e*, to). 

Suppose now that h(z0, to) 5 6, where 6 is the constant appearing in (1.10). 
Since h(z0, to) = qx- (zo + e*, to), (1.10) yields 

(20 + d*, to) < (N - 2) - c. 

Using (0.4) we conclude that 

ht(zo, to) < 0 and $(zo, to) 5 ( N  - 2) - c. 

A simple iteration of the above argument then yields that, for all t E [to, T), 

Since h(0, t)  -, 0 as t + T and h(. ,  t) is continuous for every t E [0, T), there 
exist 7 > 0 and to < T such that 

h(-, t o )  2 6  in [-7,7] 
and 

$ 5 (N - 2) - c in [ -7,~l  X [to, TI. 
Hence (1.3) holds with E = min(7,T - to). 

To prove (1.2), we first observe that a simple but tedious calculation 
yields that 4 satisfies the equation 

where to simplify the notation we write 
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Since (0.4) holds in ( -2A,  2A) x (0 ,  T )  and inf h ( f  A, t )  > 0 ,  interior 
tEiO,T) 

elliptic regularity yields that sup J $ l ( f A , t )  < m. Finally, applying the 
t~ l0 .T)  . .  . 

maximum principle to (1.12), we see that $ cannot have an interior minimum 
smaller than -1. Combining all the above yields 

$(z ,O) ,  inf $ ( f A , t ) , - 1  
i o m  

Arguing in a similar way and also using (1.3), we obtain an upper bound 
for ~. 

We continue with several preliminaries leading to the proof of Lemma 
1.3. The construction of the qx's is based on catenoids, which are stationary 
solutions of (0.4),  i.e. functions z  H Xq(z/X), where 

-- qqrz - N - 2 and q(0) = 1. 
1 + 92 

An elementary calculation gives 

with the function 
G(T) = Lr(p2(N-2) - l)-!dp 

defined for r < T N  with ~ 3  = +m and TN < +m for N 2 4. Let 

The existence of such a A* and B follows from the facts that the function 
X -+ A q ( $ )  is decreasing for X near zero and q ( r N )  = q z ( r N )  = 4-00. 

Next we consider an one-parameter family of solutions p ( - ,  .; p )  (p E 
[ h ,  11) of 
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where 

and T,, 5 rn is the "focusing" time of p(.,.,.p), i.e., the first time such that 
p(0 ,  t ;  p )  = 0. A simple calculation yields that there exists co > 0 such that 

It  is also immediate that the p ( z ,  t ;  p )  depends smoothly on p whenever ' 

p(t, z ;  p)  > 0 and, therefore, the focusing times T,,'s, depend smoothly on p  
and that TI = + c o ; p ( . ,  ., 1) being a stationary solution of (0.4). Moreover, 
the maximum principle yields 

pr(z, t; P )  < - 4 ~ )  I -co(l - p2).  
Hence T,, < rn for every p  < 1. Since q 2 1, co 2 (N - 2)/A*. Therefore by 
(1.16) (c) for every t E 10, T1p), 

Since p(0 ,Tl12;  112) = 0 ,  the above inequality implies that Tl12 < T. In 
view of (1.16) (c), there exists p* E (i, 1 )  such that  

Tp* = 2T. 

Set 

(1.17) L* = X*q(- P * ~ )  2 L 
2X* 

and define, for X E (0, A*], the functions 

so that 
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B  B q, solves (0.4) on [-7i, ] x [o,TA), 

where Tx is the focusing time and 

z*(X) being the solution of ~ ~ ( 9 )  = 1;" in [0, B]. An explicit computation 
based on (1.14) and the fact that qA(z,O) 5 L* for IzI 5 z*(X) gives o > 0. 
On the other hand, the maximum principle yields 

and, in particular, 

0 5 qx(0, t )  I qx(0,O) - at < X - at; 

hence Tx 5 X/a, i.e. Tx -, 0 as X -t 0. 

Recall that p* is chosen so that Tp* = 2T. Moreover, a 5 cr(p*) and by 
the maximum principle, qx. ( r ,  t) >_ p(z ,  t ,  p*)  and 2 T,* = 2T. Define 

Xo = inf A 5 A* such that FA 2 T for all A E [A, A*]}. { 
It is clear that FA, = T; hence all the qA7s are defined on fil for A E [Ao, A*]. 

Finally set X I  = A* f 1 and define qx, for X E [A*, XI], to be the solution 
of (1.18) (a),(c) with initial datum 

(1.20) 
B B  

qx(a,O) = (A - A*)L* + (Xi - A)qx*(z,O), in [-- -1. 2 '  2 

the maximum principle again yields that 
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In particular the focusing time Tx for qx is larger than T, and, hence, qx is 
defined on fil .  Moreover, 

Proof of Lemma 1.3: It is immediate from the construction described 
above, that (1.7) and (1.8) hold. Also (1.9) follows from (1.15), (1.17), 
(1.20), (1.21) and the observation that, for all X E [Ao, XI], 

To prove (1.10), observe that, for X E [Ao, A*], 

Hence, by (1.19), there exists a co > 0 such that 

for every X E [Xo,X*],z E [-+, $1 and t E [O,T). Applying the maximum 
principle to the equation satisfied by the $x's, which similar to (1.12), we 
conclude that, for all X E [Ao, A*], 

The definition of 6 in (1.21) completes the proof of (1.10). 
Next observe that qx, (z,0) L*. We will prove (1.5) by constructing 

an appropriate subsolution to (0.4). To this end define 

Then, by (1.15), (1.17), 

Therefore, for all ( z ,  t )  E 61,  

The above inequality implies that v is a subsolution of (0.4). Also the choice 
of a yields 
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v ( f  B,t)  5 qxl (r tB,t)  for t E [O,T). 

Using again the maximum principle and (1.15), (1.17) we obtain 

(1.5) follows from the above inequality. 
To verify (1.4) and (1.6), we fix (61 < B and define 

We now claim that z I+ WA(z,t) has at most two zeroes for each t and 
exactly two, when X = Xo. 

Indeed, if A > A* + 4, then (1.20), (1.15) and (1.17 ) yield 

If X E [A*, A* + $1, then 

Since p* 2 4 and q,, = (N - 2)(1+ q;)qc1 = (N - 2)q2N-5 > (N - 2), 

and, in view of (1.16)(b), Wx,,,(z,O) > 0. But Wx(fB,O) > 0. Therefore 
WA (z, 0) has at  most two zeroes. 

When A E [Ao, A*], (1.18)(b) yields either qA (z, 0) = L* or 

if qA (z, 0) < L*. On the other hand, Wx (z, 0) > 0, whenever qx (z, 0) = L* 
(by the choice of L*). Hence Wx(z,O) has at most two zeroes. Finally, 
Wx,, (z,O) has exactly two zeroes, if there is a z such that Wxo (z, 0) < 0. 
Suppose Wxo (z, 0) 1 0 for all lzl 5 B/2. Since Wxo (A+, t) > 0 for all 
t E [0, T), the strong maximum principle implies that Wx, (2, t) > 0 for all 
I z I  < B/2,t E (O,T]. Recall, however, that Xo is chosen so that TXo = T. 
Hence lim Wxo (0, t )  = 0. Consequently Wxo (z, 0) must be strictly negative 

1--rT 
for some lzl < B/2. 

Finally, since Wx(f B,  t) > 0, the maximum principle yields that the 
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number of zeroes of WA is a nondecreasing function of time and therefore 
less or equal to two, i.e. (1.8). Arguing as above we conclude that for every 
t < T, Wxo (z, t) must be strictly negative for some lzl 5 B/2. 

0 
We conclude this section with the proof of Lemma 1.4, which is similar 

to an argument used by Angenent in [A2, pg 1921. 

Proof of Lemma 1.4. For fixed (zO,tO) E fil set 

and define w : [Ao,  A l l  x A(zo) -, lR2 by 

We will prove the lemma by showing that the winding number of w is one. 
To this end, let wl(A, 9), w2(A, 8) denote the first and second components of 
w respectively. 

First, observe that by the definitions of I ( t ,  A ,  8) and wl(X, 8), 

wl(A, 8) _< 0 iff zo + 8 E I( to,  A, 8). 

Hence (1.5) yields 

Also 

On the other hand, since n(to, Xo, 8) = 2 for all 181 5 B, the equation 

has exactly two solutions in [-9, Q] for all 181 5 B, which we denote by 
p(B) and z(8), with 4 8 )  5 ~ ( 8 ) .  It is immediate that p and z depend 
continuously on 9 E [-B, B]. Moreover, since 

B B z(B)-  B 5  -- and z ( -B)+B 2 -, 2 2 
there exists E [-B, B] such that 
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in other words 

(1.24) wl(Xo,81) = 0 and 01 E A(z0). 

Similarly there exists 82 E A(%) such that ~ ( 8 ~ )  - O2 = zo. 
Now suppose that there exists 6 E A(zo)  such that wl(Xo,  6 )  = 0. Then 

either z(d) - 8 = zo or p(8) - 8 = zo. Since (1.9) yields f (f ~ / 2 , d )  > 0 and 
f ( z ( l ) ,  8 )  = f (p(d) ,  i )  = 0, we have 

We have proved the following: if w l  (Ao, 9 )  = 0 for some 8 E A(zo),  then 

(a) w 2 ( ~ 0 , 8 )  2 0  if 8 + z g = z ( j ) ,  
(1.25) 

(a) w 2 ( ~ 0 ,  6 )  5 0 if 14 + zg = ~ ( 6 ) .  
Suppose now that wl(Xo,8)  = 0 for some E A(%). Then 

qx, (20 + 8, t o )  = 9Xo (ZO 4 8, t o )  = Nzo, to) .  
Using (1.8), we conclude that 

Q + t - = ~ ( ~ O + e ) .  

In summary we find that there are at  most two 8's such that w l  (Ao, 8 )  = 0. 
But we also know that there are e l ,  192 E A(.zo) such that 

Hence 81 < and consequently w has the following properties, 

I (a) wl (xo ,e )  > 0 ,  for e (81,02), 

(1.26) ( b )  w l ( A o , h )  = 0, wz(Ao,81) < 0, 

(4 wl(X0,ez) = 0, w2(Xo, 02) 2 0. 
Using (1.22), (1.23) and (1.26), we conclude that the winding number of w 
is one. 

2 Behavior of rt at the focusing point. 
In this section we prove Theorem 1 and discuss some of its immediate con- 
sequences. As mentioned in the Introduction, a result similar to (0.7) was 
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proved, for N = 3, by Huisken [HI, under several assumptions, the most 
important one being a bound on the blow-up rate of the curvature, which 
was verified in (HI only for barbell-type surfaces, which have strictly positive 
mean curvature. A similar result was also obtained by Dziuk and Kawohl 
PKI .  

We will organize this section in several subsections where we will explain 
the basic steps of the proof of Theorem 1. 

2.1 Scaling and preliminary estimates. 

One of the main estimates in our analysis is 

which is essentially equivalent to the assumption in [H,(2) page 2861. 
To obtain (2.1) we rewrite (0.4) as 

and observe that (0.6) yields 

$(O,t) 2 0 for all t E [O,T). 

Combining this with h(0, T) = 0 we obtain an easy upper bound 

The lower bound follows from the nontrivial curvature estimate (1.3), which 
yields 

Actually (1.3) yields a more general result than (2.4). Indeed, for 0 < 
1.1 5 E and t E [T - E,T)  we have 

where 

and, therefore, 
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Next we follow some of the ideas in [HI and the techniques developed by 
Giga and Kohn [GK] to study the blow-up of the solution of semilinear heat 
equation. 

To this end, we define 

v ( y ,  s )  = (T - t ) - t h ( y m , t )  with s  = - log(T - t ) .  

Observe that v ( y ,  s )  is d e h e d  for (ye-:, T-e- ' )  in (-2A, 2A)  x (0 ,  T )  c $2, 
i.e. v is d e h e d  on 

K ( A )  = { ( y ,  s )  : s  > - log T, lyl 5 2 ~ e ' I ~ ) .  

We now write 
v ( y ,  s )  = e ; h ( y e A f ,  T - e-') 

and calculate 

v y  ( y ,  s )  = h, (ye-'I2, T - e-'), 

v y y  ( y ,  S )  = e-s/2hzz(ye-s/2,  T - e-'). 

Using (2.4) and (2.7) we get 

(2.8) 4 0 , s )  2 6, 
and 

To obtain more pointwise estimates for v ,  v,, vyy  sad vs we use the equa- 
tion which is satisfied by v ,  namely 

and recall that (1.10) holds in [-&,&I x [T - E ,  T). Finally, denote 
K ( E )  = { ( y ,  s )  E K ( A )  such that lyl 5 &eSI2 and s > -log&). 

Proposition 2.1: There exists ci > 0 (i = 1,2,3) such that for all 
( 9 ,  s )  E K ( E ) ,  
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Proof: Integrating (2.9) yields that there are Q, E ,  a > 0 satisfying 

0 < v ( y ,  s )  < co for ( y ,  s) such that lyl < E and s 2 a. 

and observe that 

( N  - 2 )  v;, v,* + - - 1 
v + - (yv;  - v*)  > 0 in K(A)\{O) x (- log T,  m). 

1 + ( v j ) 2  2 

But 
v(+2Aesl2, s )  5 es/2(lhl(, 5 v * ( + 2 ~ e " / ~ ,  s )  

if c > llh11,/2A. Applying the maximum principle on 
0 = K ( A )  n {lyl > E ,  s 2 a )  we get v 5 v* on 0 provided that c 2 llh11,/2A 
and c 2 CO/E.  NOW (2.11a) follows if cl is sufficiently large. 

For the second derivative estimate we have 

with the inequality following from (1.2) and (2.7). 
Hence, by (2.11) (a), 

for some 122 > 0. 
Finally, 

1 u,(y, s) = iv(y ,  s)  - yv, ( y ,  s )  - e-s/2ht(yes12, T - e-") 

1 1C,(ye"I2,~ - e-") - ( N  - 2)  
= - 4 Y ,  s )  - Y ~ Y ( Y ,  s )  - 2 v(y1 s )  
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We now obtain (2.11)(c) using v(y,s) > v(O,s), (1.2), (2.7) and (2.11)(a), 
(b). 

0 

2.2 A monotonicity formula. 
As we will explain in the next subsection, Proposition 2.1 yields the lo- 
cal uniform compactness of v as s + co. To show that the whole family 
converges, it is sufficient (cf. [GK]) to come up with an "energy-type" func- 
tional, which will play the role of a Lyaponov function as E 4 oo. To this 
end, following [HI we define 

where 

1 p(y, s) = exp(- 4(v2(y, s) + y2)) and R(s) = sesI2. 

Proposition 2.2: 

and 

(2.13) lim e(s) = 0. 
3'00 

We will prove (2.12) by an elementary computation using (2.10). The 
error e(s) is due to the boundary lyl = &e3I2 we are imposing in the formula 
for E. Finally, we refer the reader to [H,Section 31 for a more elegant proof 
(using differential geometric arguments). 

Proof: We directly calculate 

d 
-E(v(., s)) = A(s) + B(s) + C(s) + e(s), ds 

where 
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and 

el ( s )  = ~ e ' ~ ~ { ( p u ( l  + v i ) ? ) ( 2 ~ e ' / ~ ,  s )  - ( p ( 1  + v : ) i ) ( - 2 ~ e ' i ~ ,  s ) } .  

Since p(f eesl2,  s )  I: exp( -$s ) ,  (2.11) yields 

(2.14) lim el ( s )  = 0.  
5-03 

Next we will show that 

with e2(s) -+ 0 as s  --+ m. This will conclude that proof with e = el + e2. 
To obtain (2.15) we calculate 

W 
C ( S )  = s p v  Y -  "" , ) y v s + e 2 ( s )  

( 1  + w2) 1 ( 1  + w2)T 

with 

pvwvs ) ( 2 ~ e ' / ~ ,  s )  - ( pvwvs e2(s) = ( , )(-2AeSl2, s ) .  
( 1  + w2)  : ( 1  + w 2 )  T 

where all the integrals are over the interval [ - R ( s ) , R ( s ) ] ,  w  = vg and we 
used that 

1  1  
py = - r (vw + y ) p ,  p, = --vwp. 2 

Now a straightforward computation gives (2.15). The fact that e2 + 0 as 
E -+ m, follows again from (2.11) and the form of p. 

0 



CYLINDRICALLY SYMMETRIC HYPERSURFACES 

In view of (2.9) and (2.11), there exists s j  -t oo with sj+l - sj  2 2 such 
that 

v j ( y ,  s )  V ( Y ,  3 + s j )  -+ v ~ ( Y ,  s) as j --+ 00, 

with the limit uniform on compact subsets of 1~~ and 

vj,, - v,,~ in weak* Lgc. 

By passing to a further subsequence, which we again denote by s j ,  we also 
have that 

~ j , ~  -+ for almost every ( ~ , s ) .  

If for some s ,  v ~ , ~  ( y ,  s)  -+ urn (y, s )  for almost every y ,  then (2.11) (b) yields 
that this convergence is uniform for bounded y's. Hence for every integer k, 
there is a n k  E [ k ,  k + 1)  such that 

uniformly for bounded y for each n k .  
Applying the dominated convergence theorem and using the exponential 

decay of p we get, that, for each n k ,  

On the other hand, v j ( . ,  n k )  = v ( . ,  s j  + nk). Therefore, 

Finally, in view of (2.7) and (2.11)(a), 

for some c > 0. Since vj > 0, this yields 

Using the exponential decay of p, the uniform convergence of v j  (2.11) and 
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the fact that by construction sj+l - sj 2 2, we get, for each nk, 

and 

Hence 

But, in view of (2.11) (a), 
v, 2 6, 

therefore, for almost every y, 

V,,~(Y, S) = 0 for almost every s, 

which, by (2.11) (c), yields 

v,(y, s) = v, (y) for all y E R. 

Passing to the limit in (2.10) we get that v, solves 

As a matter of fact, the estimates of Proposition 2.1 yield that v, is a 
classical solution of (2.17) and, moreover, 

A direct calculation also shows that if 
2 

Q = =v,v,,yy(l+ ~ , , ~ ) - l ,  

then 

In view of (1.3), if Sf2 has an interior maximum at yo, then 
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We now claim that P 5 0 in R. Indeed suppose that there exists y* E IR 
such that Ik(y*) > 0. Without any loss of generality we may assume that 
Iky(y*) > 0, since, else we consider the point -y*. But then 

since, in view of the discussion above, P cannot have a positive interior 
maximum. This, however, contradicts (2.18). Hence 9 < 0 in IR. Hence 
v, is concave and, in view of (2.18), constant. Using (2.17) we see that the 
only constant solution is d m .  Since any limit of v(y, s + sj) is equal 
to d m ,  we have concluded the proof of Theorem 1. 

Corollary 2.3: For any E > 0 there exists 6 > 0 satisfying 

(2.19) lim h(z ,  t)  < for z E [-6,S]. 
t-T 

Note that in view of (1.3) the above limit exists for sufficiently small \zl. 

Proof: Suppose that for a given E there is a sequence zn --+ 0 such that 

lirn h(zn,t) > E(Z,/. 
t -T 

Recall that ht ( t ,  z) < 0 for all a near zero and t E [0, T ] .  Hence for sficiently 
large n, 

(2.20) h(zn,t) 2 ~lznI,  Vt E [O,T]. 

then 

Since zn -4 0, s, --+ oo and, by (2.20), 

which contradicts Theorem 1. 
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Corollary 2.4: As t -+ T,  h(., t )  converges, uniformly in [-2A, 2A] ,  to 
h( . ,  T ) ,  which is smooth for z # 0 and differentiable at z = 0 and h( . ,  T )  > 0 
for a l l y  # 0. 

Proof. In view of (1.3), 

h l ( z , t )  5 0 for lzl 5 E and T - t < E .  

Hence h ( z ,  t )  converges to a limit which we call h ( z ,  T )  for lzl < E.  On 
the other hand, (0.6) implies that h ( - ,  T )  is nondecreasing on [ O , E )  and 
nonincreasing on ( - E ,  01. 

Suppose now that h(2zo,  T )  = 0 for some 2zo E (0, E ) .  Then h ( z , T )  0 
for z E [ 0 , 2 ~ ]  and by Dini's Theorem h ( z ,  t )  --+ 0 uniformly on [O,  2zO]. 

Set 
@ ( z , t )  = h ( z  + zo,t)  - h ( z , t )  , ( z ,  t )  E 0, 

where 
0 = (0, zo) x (T - e ,  T ) .  

I t  is immediate that @ satisfies 

b(z ,  t )  = -hzz(z + zo, t )[h , (z  + 20, t )  + h,(z, t ) ] a ( z  + 20, t ) a ( z ,  t ) .  
But0  I a 5 1 and Jb(z , t ) l  I IhZz(z+zo,t)l I h-l(z+zo,t)l$((z+zo,t)(h(z+ 
zo, t)h-"0, t))*7. Using (1.3), we conclude that,  for ( z ,  t )  E 0, 

i ( a )  Ib(z,t)l < c ( T - t ) - a  
(2.22) 

( b )  Ic(z, t)l < c(T - t)-l. 

Moreover, again using (1.3), we see that, for some appropriate constant K, 

(2co(T - t ) ) )  2 -ht 2 (K(T  - t))-i in [-e,e] x [T - e ,  t ) .  

Integrating we obtain 

For /I > 0 consider the auxiliary function 
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A direct calculation yield 

Using (2.22) and (2.23), we conclude that, there is to < T such that for all 

Moreover, for all sufficiently small p there is i! < T such that 

Hence 6 has an interior minimum, which contradicts with the fact that & 
is a supersolution to a linear equation. 

In summary we have shown that 

Similarly we show that 

Using (0.6), we 
inf{h(z,t) : Izl 2 ~ , t  E [O,T)) > 0. 

Finally, equation (0.4) for JzJ  > E ,  we can easily show that h(z, t )  has a limit 
as t --, T. 

0 

2.4 No interior at the focusing point 
We conclude this long section with a brief discussion, without any proofs, 
of why the focusing point 0 cannot be in the interior of rT+p for p > 0 and 
very small. This will be a consequence of (1.3). 

To this end, we consider the solution u of (0.2) with initial datum g, 
such that {g = 0) = { r  = ho(z) ) .  It  foliows (cf. [ES]) that, for t < T, 

where here, as usual, we denote by h the solutions of (0.4) which correspond 
to the different branches of ho. Assume now that 0 E lRN belongs to the 
interior of rT+p for p > 0. This implies that there exist R(P) > 0 such 
that B(0, R(p)) C rT+p. On the other hand, (1.3) yields that we can bound 
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the part of h which focuses by catenoids as close to (0,T) as we want. 
Recall that catenoids are stationary solutions to (0.2). Finally, we recall 
that the distance between two surfaces which move by mean curvature is a 
nondecreasing function in time (cf. [ES]). 

To conclude this heuristic discussion we argue as follows. If 0 E r ~ + ~ ,  
choose E > 0 so small that h(0, T -E) = 4 ~ ( p )  and bound h by the catenoid 
passing through (%R(p), 0). In view of the above discussion, the set 
{u(. ,  T+p) = 0) cannot touch the catenoid which contradicts the choice of E .  

This argument can be made rigorous at  the expense of technical arguments. 
We choose, therefore, to omit the details. 

3 No interior - Motion after the focusing 
Our goal here is to show that, under certain assumtions, if rt "focuses at 
(O,T), then, for t > T, I?*: (i) does not develop interior and (ii) "opens" up. 

As mentioned in the Introduction, in general, rt will develop interior, 
(see for example: Soner [S], [ES]). On the other hand, [BSS] gives a fairly 
general geometric condition on ro, which yields no interior. We next state 
this result of [BSS] as it applies to the case of cylindrically symmetric surfaces 
moving by mean curvature. 

Theorem 3.1 ([BSS]): Assume that To i s  C2 surface and that there exists 
a constant C such that 

where d is  the signed distance to roe Then rt has empty interior i n  (0, +oo). 
Condition (3.1) has a geometric meaning, since the left hand side is the 

generator of dilations and translations in (x,t) evaluated a t  t = 0 on Fo. 
If ro is smooth, then rt is smooth for t E [0, tl)(tl > 0) and, therefore, 

has empty interior in (0, tl). As remarked in [BSS], if the solution u of (0.2) 
which defines rt satisfies, for some to E (O,tl), 

then I't has empty interior in (0, oo). Indeed let a(., t )  be the signed distance 
to rt. Then at to - 

dl = ut/lDul, DZ = Du/lDul. 
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Also - 
dt = A ~ / ( N  - I) ,  

since rt is a classical solution of the mean curvature flow and AJ is equal 
to (N - 1) times the mean curvature. 

Since in this paper we assume that ro is smooth, the main goal in this 
section will be to show that, under some additional assumptions on ro, (3.2) 
holds near the focusing time T, although it may not hold at  t = 0. 

Throughout the discussion below we will need to go back and forth 
to parametrizing r t ,  for t E (O,T), in terms of both z and r .  More pre- 
cisely, we will need the existence of positive numbers z(t), ri(t)(i = 1,2,3) 
with t E [O,T) and smooth functions h, H : [-z(t),z(t)] -4 [0,m) and 
g : [rl (t), ~ ( t ) ]  + [O, co) such that: 

hzz N - 2  Hzz N - 2 
(3.5) ht = - - - 1 + h $  h 

and Hi=-+- 1+H,2 H in [-z(t), z(t)l, 

and 

It  is immediate that if (3.3)-(3.8) hold, then 
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The existence of such z(t), ri(t)(i = 1,2,3) and h, H and g with the 
above properties follows from the next proposition. 

Proposi t ion 3.2: Assume that there exist positive numbers zo, ro,;(i = 
1,2,3) and smooth functions ho, Ho : [-zO, zO] -' (0, a) and go : [TOJ,  TO,^] -' 
[O,+co) such that (3.3), (3.4), (3.7) and (3.8) hold at ro. Then there exist 
smooth z, ri : [0, T )  -, (0, +oo)(i = 1,2,3) and h(., t ) ,  H ( . ,  t )  : [ - ~ ( t ) ,  z(t)] -+ 

(0, w), g : [rl(t), r3(t)] --+ (0, +oo)(t E [0, T)) satisfying (3.3)-(3.8) for all 
t E (0,T). 

Proof: Consider the solution u of (0.2) with initial data uo satisfying 

N-1 
where, for x = (xl , .  . . ,x,) E IllN, s = X N  and r2 = x!. Since the zero 

i=l 
level set r0 of uo is smooth, the mean curvature flow has a, local in time, 
smooth solution r t .  The resulting smooth rt  can be parametrized as in 
(3.4) where h, H and g solve (3.5) and (3.6) with initial data ho, Ha and go 
respectively. Moreover, u satisfies 

On the other hand, (3.5) admits a smooth solution as long as the solution 
stays positive. This yields that u is smooth as long as rt does not focus 
i.e. for t E (0, T). Finally (3.8) follows from analyzing the properties of the 
number of zeroe's of g, as in the Appendix. 

0 

Next we use (3.10) to write the expresion in (3.2) as 

The f i s t  important result in this section is: 

Proposi t ion 3.3: Assume that # { T  E [rol ,  ro3] : rgo, -go - 2Tgot = 0) 5 2. 
Then there exists to E [0, T) and B > 0 such that 

In particular I't has no interior for all t 2 0. 
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Before we begin with some preliminaries which will lead to the proof 
of Proposition 3.3, let us first comment on why (3.12) seems reasonable to 
hold. Indeed that analysis in Section 2 yields that ht(0, t)  -, -co as t -, T, 
which, in turn, suggests, by (3.9), that gt(ro(t), t)  -+ +oo as t -+ T. This 
would yield (3.12), provided one is able to control, away from the singularity, 
the term rg, - g. Keeping this in mind, we define 

Using (3.6) we obtain 

The above equation is derived after observing that 

and that  gX solves (3.6) for every X > 0. 
We will also need to define the functions 

J : U ~ ~ ~ O , T ) ( ( - Z ( ~ ) , Z ( ~ ) )  it)) -+ by 

I(z ,  t )  = h(z, t)  - zh,(z, t) + 2(T - t)ht(z, t), 
(3.15) 

J (z , t )  = H(z,t)  - zHz(z,t) + 2(T - t)Ht(z,t). 

It follows from (3.7) and (3.9) that 
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Finally, the same computation used to derive (3.14) gives 

(3.17) It = E(h, I) and Jt = E(H, J) in UtE(O,T) ( ( - ~ ( t ) ,  z(t)) x {t)): 

where 

To state the next result we define n : [0, T )  -t Z+ by 

where 0 < 6 < min{ra(t) - r2(t), rq(t) - rl(t)) is arbitrary. In view of (3.16) 
the above definition is independent of 6. 

Lemma 3.4: Assume n(0)) < co. Then n(t)  < n(0) and t w n(t) is 
nonincreasing in [0, T )  . 

Lemma 3.4 follows by applying the lemma in the Appendix about the 
number of zeroe's of solutions to linear parabolic equations in one dimension. 
Of course, special care has to be taken for the fact that, in principle, the 
boundary UtEIO,T)({~l (t), r2(t)} x { t } )  of the domain where K satisfies (3.14) 
may generate new zeroe's. This difficulty, however, may be overcome, in 
view of (3.16), by applying the aforementioned lemma to K, I and J and the 
equations they satisfy. The proof is long but rather standard, we, therefore, 
omit it. 

Next we will extend the statement of Lemma 3.4 up to T.  This is not 
immediate, since the coefficients of L: and 2 are no longer bounded a t  t = T. 
But Corollary 2.4 asserts that h and, therefore, by (3.7) and Proposition 3.2, 
H and g are defined in a continuous way up to t = T. I t  follows that K, I 
and J can be extended up to t = T away from their respective singularities. 
Finally, Proposition 2.1 and Corollary 2.4 also yield that 

and 
I(0, T )  = 0. 

Moreover I is continuous on its domain possibly except at (0, T). 
The next result asserts that z H I (z ,T)  is negative in a neighborhood 

of z = 0. 
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Lemma 3.5: If n(0) < co, then there exists E > 0 such that 

I ( z ,T )  < 0 in [-E,E]\{~).  

Proof: If I ( . ,  T) 2 0 in (zl, z2) C (0, z(T)), then 

a qz T )  1 -(-) = --I(z,T) 5 0. az .2 

Hence 

(3.18) h(z2,T) h(z1,T) -2-. 
22 z1 

Let 
inf{z E (0, z(T)) : I(z ,T) = 0) 

z(T) , if  I ( . ,T)  # 0 in (0, z(T)). 

Since n(0) < m, Lemma 3.4 yields z* > 0. Hence I(.,T) is either negative 
or positive in (0, z*). If the latter holds, then 

and, since h, (0, T) = 0, 
h(z*,T) = 0 

which contradicts the positivity of h(.,T) in (0, z(T)). 

Lemma 3.6: If n(0) < oo, then 

(3.19) n(T) = #{z 2 0 : I(z ,T) = 0 or J ( z , T )  = 0) 5 n(0) 

and 

(3.20) n* = # { r  > 0 : K(r ,  T)  = 0) 5 n(0) - 1. 

Proof: In view of (3.16) and I(0, T) = 0, (3.19) and (3.20) are equivalent. 
To prove (3.20), we first claim that, for sufficiently small 7 > 0, 
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where, for t E [0, TI, 

To this end, choose 7 > 0 sufficiently small so that 

Then, by (3.16), K(h(r , t ) , t )  < 0 for t near T,  hence (3.21) follows from 
(3.14) and an application of Lemma A. As in the proof of Lemma 3.4, again 
we need to apply Lemma A to K, I and J. 

We will conclude by showing 

Since n7(t) < n(t) ,  if 
lim n, (t) = lim n(t), 
tTT tTT 

there must exist cr > 0 such that 

I < 0 in [O,a] x [T - a , T )  U (O,a] x {T) and I (0 ,T)  = 0. 

Since I solves a linear parabolic equation in the interior of Qa,T and I < 0 
on the parabolic boundary of Qa,T ,  I(0, T) can not be equal to zero. 

0 

Lemma 3.7: If n* > 0, then n* > 2. In  particular, if n(0) 5 2, then 
K(r ,T) < 0 for all r > 0. 

Proof: Since J ( 0 ,  T )  = H(0, T )  > 0, there exists > 0 such that J ( z ,  T) > 
0 in [-z,F]. Combining this with Lemma 3.5 and (3.16) we get 

K(r ,T) < 0 for r E (O,E] U [rg(T) - c ,n(T)] .  

Hence, if K(r, T) has any zeroe's for r > 0, there have to be at least two. 
Finally, (3.20) and n(0) < 2 yield nu < 1, which in view of the previous 

discussion implies that n* = 0. 
0 
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We are now in a position to prove Proposition 3.3. 
Proof: In view of (1.3) and Lemma 3.5, there exists R1 E (0, rz(T)) such 
that, for all C > 0, 

lim sup (I(z , t )  + 2Cht(z,t)) < 0 
t T T  J ~ I I s ( R I , T )  

and, therefore by 

(3.23) 

(3.9) and the formulae before (3.16) we have 
- 
lim sup [K(T, t) - 2Cgt (r, t)] < 0. 
t lT ~ €( r ~ ( t ) &  

Next, choose R2 E (r2(T), r3(T)) and set 

k = sup K(r ,T)  < 0. 
~EIRI ,&I 

Hence, for any C < k sup Igt(r,~)I- ' ,  
re[& ,&I 

lim sup [K(T, t )  - 2Cgt ( r ,  t ) ]  < 0. 
rE[Rl,Rz] 

Also 
J ( z , T )  = H(z,T)  - zH,(z,T) > 0 in [-z(T),z(T)]. 

In fact 
k l =  inf J ( z , T ) > O  

141m 

inf [J(z, t) + 2CHt (z,  t)] > 0, u t ~  ~ z ~ < g ( R ~ , T )  

and, consequently, 
- 
lim sup [K(r, t) - 2Cgt (T, t)] < 0. 
t lT  , d T ) )  

Combining (3.23), (3.24) and (3.25) we obtain (3.12). 
0 

In view of the discussion at  this beginning of this section, Proposition 
3.3 yields 
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with B = 2 [ ( T  - t o )  + C].  By  (3.10) and the smoothness of g, there exists 
a K > 0 and 7 > 0 such that 

(3.26) -x - D u  + Lt + K I U ~  > on IRN x { to ) .  

The maximum principle and the properties of equation (0.2) then yield 

(3.27) -x  . D u  3- 2 [ ( T  - t )  + C]ut + Klul 2 7 on I R ~  x [to, m), 

in the viscosity sense. Suppose now that u is smooth. Then 

where, for every ( 2 ,  t )  and s > 0 ,  

x ( s )  = xe-S 

Hence 

Although (3.28) was derived under the assumption that u is smooth, it 
follows that it holds for al l  s ,  since (3.27) holds in the viscosity sense. But 
then, for x = 0 and t = T, (3.29) yield x ( s )  G O , t ( s )  = T + C - ~ e - ~ ~ .  
Hence by (3.28), for e > 0 ,  

i.e. r~ "opens up". (Recall that u(0 ,  t )  < 0 for ad t E [0, T )  and u ( 0 ,  T )  = 
0.) 

Finally, in order to show that is smooth after the singularity, it suffices 
to show that the equation 

admits a smooth solution for t > 0, even if G(., 0 )  has a singularity like the 
one of g( . ,T) .  This can be shown by a number of approximations using a 
combination of standard parabolic regularity [LSU], the gradient estimate of 
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Evans-Spruck [ES], Angenent's lemma (Lemma A of the Appendix) and the 
stability properties of surfaces moving by mean curvature (cf. [S]). (Indeed 
the details of this argument have been caried out in [AAG].) As a matter of 
fact, such arguments can be used from the beginning to show that rt never 
develops interior. This is the approach of [AAG] for "barbell" type domains. 
In this paper, however, we chose to follow the approach described above since 
it gives rise to (3.27), which has a very nice geometric interpretation. 

We now combine all the above to state the main result of the section. 

Theorem 3.8: Suppose that the assumptions of Proposition 3.2 hold and 
the n(0) 5 2.  Then the evolution t rt never develops interior. Moreover, 
it 'opens up" instanteneously after the focusing time and continuous moving 
as a smooth surface. 

We continue checking that a torus 

whose evolution t H I't by mean curvature focuses at (0, T), satisfies n(0) < 
2. This will yield Proposition 3 in the Introduction. 

A simple calculation yields 

where 
go(.) = [ R ~  - ( r  - 1)2]i. 

The above claim is then obvious. 
We finally conclude this section with the: 

Proof of Proposition 3: Let I't(R) be the solution of the mean curvature 
flow with initial data 

Let Te,t(R) be the extinction time of I't(R). We have already shown that 
either Ft (R) is smooth for all t < Text (R) or it focuses at some time 
T(R) 5 Text(R). If the solution focuses before the extinction time, we have 
already argued in the paragraph right before Theorem 3.8 that it evolves 
smoothly after t > T(R) until the extinction. Now we will show that for 
exactly one value of the parameter R, the extinction and the focusing times 
are the same. Set 
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I t  is easy to see that & E ( 0 , l ) .  Now if R > & then we have shown that 
r t ( R )  LLfocuses" at zero at t = T ( R )  and then "opens up" and finally goes 
extinct smoothly. If R < & we claim that r 2 ( R )  evolves smoothly to a circle 
at Tex t (R)  without focusing. Indeed the properties of the mean curvature 
flow imply that 

for all t > 0. Moreover r t ( R )  = a R ( t ,  R) for all R and t for some closed 
region Q ( t  , R) C L R ~ ,  Since R (0 ,  R) is included in Q(0,  &) we have 

Now choose t" = t'(R) satisfying 

Then in view of (3.29) and (3.30), we conclude that Text(R) < t*. Using 
(3.29) and (3.30) it is also easy to show that 0 $! Q ( t ,  R) for all t 5 T,,,(R). 
Hence r t (R )  is smooth for all t < T(R) .  

0 

Appendix. 
In this Appendix we state a result of Angenent for the convenience of 

the reader. The statement of this lemma is taken from [A2]. However its 
proof is in [All. 
Lemma A. Let u : [xO,  x l ]  x (0 ,  to) + R be a ~ont inuous  classical solution 
of 

ut = a ( x ,  t)u,, + b(x,  t ) u ,  + C ( X ,  t ) u  

with u ( x o ,  t )  # 0 ,  u(x1,  t )  # 0 for all t E ( 0 ,  to). 
Assume that a ,  b,  c satisfy 

(i) 6 5 a(%,  t )  < 6-' for some 6 > 0 ,  

(ii) a, at ,  a,, a,,, b, bt, b, and c are bounded measurable functions of 
[so, ~ l l  X (0 ,  t o ) .  

Then the number of zeroes of u(., t )  

i s  finite and non-increasing i n  t .  



CYLINDRICALLY SYMMETRIC HYPERSURFACES 

ACKNOWLEDGEMENTS 

The second author wishes to thank Luis Caffarelli for several very in- 
teresting discussions about this problem. We also would like to thank the 
anonymous referee for numerous suggestions and corrections. 

Soner's research was partially supported in part by NSF grant DMS- 
9002249 and by the Army Office of Research through the Center for Non- 
linear Analysis at  CMU. 

Souganidis' research was partially supported in part by NSF grants DMS- 
9024617 and DMS-8657464 (PYI), ARO contract DAAL03-90-G-0012 and 
the Sloan Foundation. Part of this work was done while Souganidis was 
visiting the Institute for Advanced Study at Princeton and the Division of 
Applied Mathematics a t  Brown University. 

References 
(AAGl] S.J. Altschuler, S.B. Angenent, and Y. Giga, Generalized motion 

by mean curvature for surfaces of rotation, Advanced Studies in Pure 
Mathematics, to appear. 

[AAGP] S.J. Altschuler, S.B. Angenent, and Y. Giga, Mean curvature flow 
through singularities for surfaces of rotation, Hokkaido Un. Preprint 
Series #130, December 1991. 

[All S.B. Angenent, The zero set of a solution of a parabolic equation, J. 
Reine Ang. Math., 390 (1988), 79-96. 

[A21 S.B. Angenent, Parabolic equations for curves on surfaces - part 2, 
Annals Math., 133 (1991), 171-215. 

[BSS] G. Barles, H.M. Soner, and P.E. Souganidis, Front propagation and 
phase field theory, SIAM J. Cont. Optim., to appear. 

[B] K.A. Brakke, The motion of a surface by its mean curvature, Math. 
Notes, Princeton, New Jersey, Princeton Univ, Press (1978). 

[CGG] Y.-G. Chen, Y. Giga, and S. Goto, Uniqueness and existence of 
viscosity solutions of generalized mean curvature flow equations, J. 
Diff. Geom., 33 (1991), 749-786. 

[CIL] M.G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity so- 



894 SONER AND SOUGANIDIS 

lutions of second order partial differential equations, Bulletin A.M.S., 
26 (1992), 1-67. 

[DG] E. DeGiorgi, Some conjectures on flow by mean curvature, preprint. 

[DK] G. Dziuk and B. Kawohl, On rotationally symmetric mean curvature 
flow, J. Diff. Eqns. 93 (1991), 142-149. 

[ES] L.C. Evans, and J. Spruck, Motion of level sets by mean curvature I, 
J. of Diff. Geom. 33 (1991), 635-681, 11, Trans. AMS, to appear, 111, 
preprint. 

[GK] Y. Giga, and R.V. Kohn, Asymptotically self-similar blow-up of semi- 
linear heat equation, Comm. Pure and Appl. Math., 38 (1985), 297- 
319. 

[HI G. Huisken, Asymptotic behaviour for singularities of the mean cur- 
vature flow, J. Diff. Geom., 31 (1991), 285-299. 

[I] T. Ilmanen, Generalized flow of sets by mean curvature on a manifold, 
Indiana U. Math J., to appear. 

[LSU] O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Uralceva, Linear and 
Quasilinear Equations of Parabolic Type, AMS, Translations, (1968). 

[PV] Paolini and Verdi, Asymptotic and numerical analysis of the mean 
curvature flow with a space-dependent relaxation parameter, Asymp- 
totic Analysis, 5 (1992), to appear. 

[S] H.M. Soner, Motion of a set by the curvature of its boundary, J. Diff. 
Eqns., to appear. 

[SS] H.M. Soner and P.E. Souganidis, Uniqueness and singularities of 
cylindrically symmetric surfaces moving by mean curvature, LCDS 
preprint, April 1991. 

Received April 1992 
Revised January 1993 


