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TURNPIKE SETS AND THEIR ANALYSIS IN STOCHASTIC
PRODUCTION PLANNING PROBLEMS*

S. SETHI, H. M. SONER, Q. ZHANG anp J. JIANG

This paper considers optimal infinite horizon stochastic production planning problems with
capacity and demand to be finite state Markov chains. The existence of the optimal feedback
control is shown with the aid of viscosity solutions to the dynamic programming equations.
Turnpike set concepts are introduced to characterize the optimal inventory levels. It is
proved that the turnpike set is an attractor set for the optimal trajectories provided that the
capacity is assumed to be fixed at a level exceeding the maximum possible demand.
Conditions under which the optimal trajectories enter the convex closure of the set in finite
time are given. The structure of turnpike sets is analyzed. Last but not least, it is shown that
the turnpike sets exhibit a monotone property with respect to capacity and demand. It turns
out that the monotonicity property helps in solving the optimal production problem numeri-
cally, and in some cases, analytically.

1. Introduction. The convex production planning model is an important
paradigm in the operations management/operations research literature. Earliest
formulation of the model dates back to Modigliani and Hohn [16] in 1955. They were
interested in obtaining a production plan over a finite horizon in order to satisfy a
deterministic demand and minimize the total discounted convex costs of production
and inventory holding. Since then the model has been further studied and extended
in both continuous and discrete times by a number of researchers including Johnson
[12], Arrow, Karlin and Scarf [3], Veinott [23], Adiri and Ben-Israel [1], Sprzeuzkouski
[20], Lieber [15], and Hartl and Sethi [9]. A rigorous formulation of the prob-
lem, along with a comprehensive discussion of the relevant literature, appears in
Bensoussan, Crouhy and Proth [4].

A major characteristic of the optimal policy in convex production planning with a
sufficiently long horizon is that there exists a time-dependent threshold or turnpike
level (see Thompson and Sethi [21]) such that production takes place in order to
reach the turnpike level if the inventory is below the turnpike level and no production
takes place if the inventory is above the level. Once on the turnpike level, only
necessary production takes place so as to remain on the turnpike. Such a policy is
commonly referred to as the ‘order-up-to’ production policy. In a finite horizon case,
the above policy holds at every instant sufficiently removed from the horizon. In the
infinite horizon case with usual assumption of constant demand, the turnpike level
will be a constant and the policy will hold everywhere.

Extensions of the convex production planning problem to handle stochastic de-
mand have been analyzed mostly in the discrete-time framework. A rigorous analysis
of the stochastic model has been carried out in Bensoussan et al. [4]. Recently,
continuous-time versions of the model that incorporate additive white noise terms in
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TURNPIKE SETS AND THEIR ANALYSIS 933

the dynamics of the inventory process were analyzed by Sethi and Thompson [17] and
Bensoussan, Sethi, Vickson and Derzko [5].

Preceding works that relate most closely to our formulation of the problem include
Kimemia and Gershwin [13], Akella and Krumar [2], Fleming, Sethi and Soner [7],
and Lehoczky, Sethi, Soner and Taksar [14]. These works incorporate piecewise
deterministic processes either in the dynamics or in the constraints of the model.
Fleming et al. [7] considered the demand to be a finite state Markov process. In the
models of Kimemia an Gershwin [13], Akllea and Kumar [2], and Lehoczky et al. [14],
inspired by flexible manufacturing systems, the production capacity rather than the
demand for production is modelled as a stochastic process. In particular, the process
of machine breakdown and repair is modelled as a birth-death process, thus making
the production capacity over time a finite state Markov process.

It is the purpose of this paper to present a general model that considers uncertain-
ties in both production capacity and demand. The concept of turnpike sets is
generalized to such a formulation (see (2.6)) and analyzed in a greater detail than in
the existing literature.

In this paper we study the elementary properties of the value function v. We show
that v is a convex function and that it is strictly convex provided the inventory cost is
strictly convex. Moreover, v is shown to be a viscosity solution to a dynamic
programming equation and has upper and lower bounds with polynomial growths. An
exact definition of the turnpike sets is given in terms of the value function. We prove
that the turnpike sets are attractors of the optimal trajectories as well as provide
sufficient conditions under which the optimal trajectories enter the convex closure in
finite time. Also, we give conditions to ensure that the turnpike sets are nonempty.

A main result in this article is the monotonicity of the turnpike sets in terms of the
capacity level or the demand level. By and large, the problem of solving the optimal
production planning is equivalent to the problem of locating the turnpike sets.
Therefore, the knowledge about the monotone property of the turnpike sets definitely
helps to solve the optimal production problem. On the one hand, the monotonicity
can be used to solve some optimal control problems in a closed form (see Examples
4.1 and 5.2) which are very difficult to handle in general. On the other, it can greatly
reduce the computation needed for numerical approaches for solving the optimal
control problem (cf. Sharifnia [18]).

The plan of the paper is as follows. In the next section, we state the production-
inventory model under consideration with stochastic demands and unreliable ma-
chines. In §3, we develop the convexity and smoothness properties of the value
function by using the method of viscosity solution to the dynamic programming
equation. Optimal feedback controls are then given in terms of the partial derivatives
of the value function. In §4, we deal with the model with random capacity and
deterministic demand and show that the turnpike sets possess a monotone property
with respect to the capacity. In §5, we consider the model with a fixed capacity and
random demand. It is shown that the convex closure of the turnpike set is an attractor
set for the optimal inventory trajectories (see Theorems 5.1 and 5.2). Moreover, the
monotonicity of the turnpike sets is proved in two particular cases. It is pointed out
by a counter-example (Example 5.1) that such a monotone property does not exist in
general. In §§84 and 5, we also apply the results obtained to solve two optimal
production planning problems explicitly (Examples 4.1 and 5.2). Finally to conclude
the paper, we give an example (Example 5.3) to show that the strict convexity of the
cost function is not a necessary condition for the strict convexity of the value function.

2. Problem formulation. We are concerned with a one-dimensional continuous-
time production-inventory model with stochastic machine capacity and demand.

Copyright © 2001 All Rights Reserved



934 S. SETHI, H. M. SONER, Q. ZHANG & J. JIANG

While the results to be derived in the next section can be extended to a multi-dimen-
sional framework, the monotonicity properties obtained later in §§4 and 5 make sense
only in the one-dimensional case. It is for this reason that we have chosen to deal
only with the one-dimensional model. It should also be noted that the classical
literature on the convex production planning problem is concerned mainly with
one-dimensional problems.

Let y(¢), p(¢), m(¢) and z(¢) denote, respectively, the inventory level, the produc-
tion rate, the capacity level, and the demand rate at time ¢ € [0, ). We assume that
y(t) € R, p(t) R, m(t) € #, and z2(t) € P, where # and @ are finite sets.
Moreover, we assume that the capacity m(¢) and the demand rate z(¢) are finite state
continuous-time Markov chains defined on some underlying probability space
{Q, &, #}. The associated generators L,, and L, of the Markov chains m(¢) and
z(t), respectively, have the following forms: For any function ¢,

1) Lob(m) = L @uuld(m') = d(m)],
(22) Lo(z) = T a.[6(z) - 8(2)],

where ¢,,,,» > 0 and q,,, > 0.

A control process (production rate) p(-) = {p(t,w) €R: t > 0, w € Q} is called
admissible if: (i) p(-) is adapted to &, = a{m(s), z(s): 0 < s < t}, (i) 0 < p(t, ) <
m(t,w) for all t >0 and w € Q. The w-dependence will be suppressed if no
confusion arises. Let &7 denote the set of admissible control processes. Then for any
p(+) € &7, the dynamics of the system have the following form:

(2.3) y(t) =p(t) — z(1), t > 0.
Let h(y) and c(p) denote the holding cost and the production cost functions,

respectively. For every p(:) € &7, y = y(0), m = m(0), z = z(0), let the objective
functional be as follows:

(24) J(yom,z,p(:)) = E[ ™ [h(x(1)) + c(p(1)] dr,
where a > 0 is the given discount rate. The value function is
(2.5) v(y,m,z) =inf{J(y,m,z,p(*)): p(+) € &}.
We make the following assumptions on the cost functions 4(y) and c¢(p) through-
out the paper.

(A1) h(y) is a nonnegative, convex function with 4(0) = 0. There are positive
constants c;, ¢,, ¢; and ky, > 1, ki > 1 such that

cilyl¥o — ¢, < h(y) < cs(1 + 1y[*).
(A2) c(p) is a nonnegative function, c(0) = 0, and c(p) is twice differentiable.

Moreover, c( p) is either strictly convex or linear.
(A3) The capacity and the demand processes have the state spaces:

H=1{0,1,...,M} and D= {zy,2,,...,2,},

=N I D004 B+ ey 1 ol
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TURNPIKE SETS AND THEIR ANALYSIS 935
respectively. Moreover,
2, <z;< -+ <z, <M and @nNn.A#=O.

Remark. (i) The representation for .# stands for the case of M identical
machines, each with a unit capacity.

(ii) Usually, the demand levels are taken to be nonnegative numbers. The restric-
tion is not required and therefore it is not assumed here.

(iii) The assumption 2N .#= @ is innocuous and is used for the purpose of
ensuring the differentiability of the value function v.

Now let us define the turnpike sets.

DEeriniTION.  We call

(2.6)

G0, 2) = {3z 0o, 2) + (2D = min{o(y,m, 2) + ¢(2)3})s

the turnpike sets associated with (m, z).

RemARK. (i) Note that for each (m, z) the value function v(y, m, z) is a convex
function, so is v(y, m, z) + ¢’(z)y. Thus, the point y,, , in &(m, z) coincides with
the point y, . such that D~ v(y,m, z) + ¢'(z) = 0 where D v(y,m,z) is the
subdifferential of v(y, m, z). In particular, if the value function v is differentiable in
y, then the turnpike set becomes (see Lemma 3.1)

f(m,z) = {ym,z: V(Y. .om,z) +'(2) = O}.

Thus, &Z(m, z) is a natural generalization of the well-known hedging point concept.

(ii) By Lemma 3.1 in the next section, it is seen that the turnpike sets Z(m, z) is a
nonempty set. Another condition is stated in Theorem 5.1(i).

(iii) An original motivation to define the turnpike sets £(m, z) is to characterize
the equilibrium points of the optimal trajectories. However, if the capacity m is less
than the demand z, such an equilibrium point no longer exists. Hence the definition
of Z(m,z) in (2.6) does not have any dynamical meaning when m < z. It is
introduced for every m and z because of notational brevity and completeness.

In later sections (§§4 and 5), we will study the inner structure of the turnpike sets
under certain conditions. A major concern is the monotonicity of { Y, .} in terms of m
and z.

3. Properties of the value function. In this section, we examine the properties of
the value function. We will show that the value function is a convex function and
satisfies a dynamic programming equation. Then optimal feedback controls will be
given in terms of the partial derivatives of the value function.

Lemma 3.1. (i) For each (m, z), v(-, m, z) is convex on R and v(-, m, z) is strictly
convex if h(-) is so.
(ii) There exist positive constants C,, C, and C; such that for each (m, z)

Cilyl* — C, <v(y,m, z) < C5(1 + |yI*)

where k and kj, are the power indices in assumption (A1l).

Copyright © 2001 All Rights Reserved



936 S. SETHI, H. M. SONER, Q. ZHANG & J. JIANG

ReMARK. This lemma tells us that for each (m, z), the turnpike set £(m, z) will
not be empty. Moreover, the strict convexity of 4 implies that &(m, z) is a singleton
due to the strict convexity of v.

Proor. Under assumptions (A1) and (A2), it is clear that J(-, m, z, ) is jointly
convex in (y, p) for each (m, z). As a consequence, the value function v(-, m, z) is
convex for each (m, z).

To show the strict convexity of v, let us assume to the contrary. Then there exist
My, 29, ¥1, ¥4, such that v(y, mg, z,) is linear on (y,, y,), i.e.,

(3.1) U((yl +¥,)/2,my, 25) = %[U(yl’ my, zg) + v(yy, My, zo)]-
For i = 1,2, let p¥(-) € & denote the optimal production rates (the existence of

p¥(-) is given in [22]) and let y*(-) denote the corresponding optimal inventory level
with y*(0) = y,. Then

yi(t) =y + fot[p,*(t) —z(t)]dt, i=1,2, and

U(yl’mO’ZO) =‘I(yt’m05 ZO’pt*(.))‘

y(1) = 1 +92)72 % [[(p1(0) +pE(0))/2 = 2(1)] .
Then (3.1) and the fact that (p¥(-) + p3(-))/2 € & imply
%[J(yl,mo,zo,p’l"(-)) +J(y2,m0,zo,p§('))]

<J((v1 +2)/2,my, 2o, (PT(-) +P3(+))/2).

The convexity of A(y) and ¢(p) implies the opposite inequality. Therefore,
h(yT(1)) + h(¥3 (1)) + c(pT(1)) + c(P3(1))
= 2h((¥¥ (1) +¥5(2))/2) + 2c((PT(2) +P3(1))/2),

a.e. in ¢ and a.s. in w. Owing to the convexity of ¢ and strict convexity of &, y¥(¢) =
y3(#) a.e. in ¢ and a.s. in w. But this is not true for ¢ small and, therefore, (i) is
proved.

We now show (ii). The upper bound on v comes from assumption (A1) and the fact
that p(¢) = 0, ¢t > 0, is an admissible control.

Now, let y*(¢) denote the optimal inventory level with y*(0) =y and let y(¢) =
y — z4t, y,(t) =y + (M — z)t. Then

yi(t) <y*(t) <y,(t) Vi>0.

Therefore,

(32) |y*()|=]y()| ify(r) >0 and  [y*(t)] >|yo()| if y5(¢) <O.

o - I.J./'\ﬁf\l'\»],l\ll Rliculad, 0D &l
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TURNPIKE SETS AND THEIR ANALYSIS 937

Let V(y,m, z) = Efg’e_“’ly*(t)lk" dt. By our definition of the value function and
the assumption on £ in (A1),

v(y,m,z) > Efme""’h(y*(t)) dt > cV(y,m,z) —c,/a.
0

We are to show that V(y, m, z) > ¢}|y|“* — ¢} for some constants ¢} > 0, ¢, > 0. For
y*0) =y >0,

V(y,m,z) > E OY/Zle_‘”lyl(t)Ik” dt (by (3.2))

= fy/zle_""[y —z e} dr
0

> f”z‘e‘“’[zl"“llylk" - |zlt|"°] dt
0

> a” 121 kol yko — ¢,

for some constant c,. Similarly, for y*(0) =y < 0,
Vinm,2) 5 [ ey ar (by (3.2)

> a2 kolylko — ¢f

for some constant c,. Thus we conclude v(y, m, z) > C,| yko — C, for some con-
stants C;, > 0,C,. O
ReMARK. In this lemma we only require that the inventory cost A is strictly
convex. So the lemma extends a similar strict convexity result in Bensoussan et al. [5].
Let P, denote the control points P, = {p: p > 0, p < m} and let F(m, z, r) be
the following function of (m, z, r) for r € R:

(3.3) F(m,z,ry=inf{(p —z) - r +c(p): p € P,).

Then the dynamic programming equation associated with our optimal control prob-
lem is written formally as follows:

(3.4) av(y,m, z) =F(m,z,vy(y,m,z)) + h(y)

+Lyo(y,,z)(m) + Lo(y,m,-)(z),

for ye R, me . #, z € @, where v (y, m, z) is the gradient with respect to y and
L,,, L, are the infinitesimal generators given in (2.1) and (2.2), respectively.

In general, the value function v may not be differentiable. In order to handle the
nondifferentiability, we consider the viscosity solution to the dynamic programming
equation. We show that the value function (cf. (2.5)) is a viscosity solution to (3.4) and
then show that v is continuously differentiable. Therefore, v satisfies the dynamic
programming equation.

Copyright © 2001 All Rights Reserved



938 S. SETHI, H. M. SONER, Q. ZHANG & J. JIANG

To start with, we define (as in [7]) the convex subsets D *v(y, m, z) of R as follows:

D*v(y,m,z) = {r € R: limsup ¥(y,m,z,r,h) < 0},
B0

D v(y,m,z) = {r € R: li}rtnigf Y(y,m,z,r,h) > 0},

where W(y, m, z,r, h) = (u(y + h,m, z) — v(y,m, z) — r - KA.

We discuss viscosity solutions in the following sense.

DEerFINITION.  Any continuous function v is a viscosity solution of (3.4) if for all
r € DY uv(y, m, z),

av(y,m,z) < F(m,z,r) + h(y) + L,v(y, ,z)(m) + Lu(y,m, )(z),
and for all r € D~ uv(y, m, z),

av(y,m,z) = F(m,z,ry + h(y) + L, v(y, ,z)(m) + Lv(y,m,")(z).

LemMa 3.2.  The value function v(y, m, z) defined in (2.5) is a viscosity solution to
the dynamic programming equation (3.4).

Proor. The proof follows from a straightforward modification of the proof of
Theorem 1.1 in {19]. o

In later sections, we will study optimal feedback controls, which are functions of
the gradient v,. Therefore, we are interested in establishing the C! property of the
value function v.

THEOREM 3.1. The value function v(-,m, z) is continuously differentiable and
satisfies the dynamic programming equation (3.4).

Proor. If the value function v is differentiable, then the two differentials
D*v(y,m, z) and D~ uv(y, m, z) are both equal to {v(y, m, z)}. Therefore, the two
inequalities in the definition of viscosity solution yield an equality; thus, v satisfies the
dynamic programming equation.

To finish the proof, it remains to show that v is continuously differentiable. By
assumption (A3), it can be shown that the map r — F(m, z, r) is not constant on any
nontrivial convex subset of R. Then following from the same arguments as in
[7, Theorem 2.2}, we can show that v(-,m, z) is differentiable with continuous
derivatives. O

THEOREM 3.2 (VERIFICATION THEOREM). If there exists p*(-) € &, for which the
corresponding y*(t) satisfies (2.3) with y = y*(0), r*(¢) = v (y*(2), m(2), 2(1)), and

F(m(t),z(t),r*(¢)) = (p*(t) —z(t)) - r*(t) + c(p*(1))
a.e. in t with probability one, then p*(-) is optimal, i.e.,
v(y,m,z) =I(y,m,z,p*(")).

Proor. The proof is standard; we refer the readers to [6] for details. ©

o H I.J.f'\ﬁl'\l'\»] H
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Based on the above verification theorem, the optimal feedback production policies
should have the following form:

0 if o,(y,m,z) >0,
(3.5) p*(y,m,z) = (c’)'l(—uy(y,m,z)) if —c'(m) <v,(y,m,z) <0,
m if v,(y,m,z) < —c'(m),

when ¢”(p) is strictly positive and

0 if v,(y,m,z)> —c,
(3.6) p*(y,m,z) = {min{z,m} ifv(y,m, z) = —c,
m ifv,(y,m,z) < —c,

when ¢(p) = cp for some constant ¢ > 0. Note that in (3.6), the value of p* could be
set arbitrarily at y = y,, , for which v, (y,, ., m, z) + ¢ = 0. We take p* = min{z, m}
at y =y, ,, only because we want the optimal trajectory y to stay at the level Vm, » @S
long as possible.

Recall that v(-, m, z) is a convex function. Thus p*(y, m, z) is nonincreasing in y.
From a result on differential equations (see [10, Theorem 6.2]),

(3.7) y(t) =p*(y(1), m(1), 2(1)) —z(t), t>0

has a unique solution y*(¢) for each sample path (m(t), z(¢)). Hence, we conclude
the following theorem.

THeOREM 3.3. The feedback control functions in (3.5) and (3.6) are optimal
feedback controls.

In the rest of the paper, we are concerned with the behavior of the optimal
trajectories and the monotonicity of the turnpike sets. We shall only consider the
systems with constant demand and stochastic capacity or the systems with stochastic
demand and constant capacity. This is because our proof does not extend to systems
in which both capacity and demand are stochastic (see the remark following the proof
of Theorem 4.1).

4. Turnpike sets with unreliable machines. In this section we concentrate on the
case with constant demand z(¢) = z,, ¢ > 0 and randomly fluctuating capacity m(z).
The other case will be dealt with in the following section.

We assume 0 < z, < M, i.e., demand is not zero and that it can be satisfied by the
maximum available capacity. For brevity, we suppress z in the value function, i.e., we
use v(y,m) instead of v(y,m, z,). The dynamic programming equation (3.4) be-
comes

(4. av(y,m) = F(m,Uy(y,m)) +h(y) + Lo(y, )(m),

where F(m,r) == F(m, z,, r) as in (3.4).

Copyright © 2001 All Rights Reserved



940 S. SETHI, H. M. SONER, Q. ZHANG & J. JIANG

We assume in this section that m(¢) is a birth-death process, i.e., the generator L,,
of m(¢t) for any function ¢ has the following form:

mo(d(1) — ¢(0)) ifi=0
(42) L) = {m(d(i + 1) = d(i)) + A($(i = 1) = 6(i)) 0 <i<M,
Ay(d(M — 1) — ¢(M)) ifi=M,
where the machine breakdown rates A,, i = 1,2,..., M and the machine repair rates
u,i=0,1,..., M — 1 are nonnegative constants.

RemArk. Our assumption on the process m(t) is based on two reasons: (i) In
many practical situations, the probability of two breakdown and/or repair events
occurring simultaneously can be assumed to be small. Moreover, the assumption is
fairly standard in the relevant literature dealing with unreliable machines.

(ii) The monotonicity of the turnpike sets cannot be expected to hold in general.
Intuitively, the capacity process needs to be skip-free. If it were not, then one could
imagine, say, in a four machine case to have a transition from m = 4 to m = 2, and
thus skip m = 3, with a sufficiently high probability to conceivably have

yl.zo = y2,zo >y4,z0 > y3:20’

provided the turnpike sets are singletons, thus violating the monotonicity property.

Indeed, a counterexample could be easily constructed. However, since we will

construct a similar example (Example 5.1) in the next section, we will not do so here.
Now the turnpike set £(m, z) becomes

(4.3) G(m) = {y ER:v(y,m) = —c’(zo)}.

Let y*(¢) denote the optimal inventory level with y*(0) = y, m(0) = m. Then
* ook
y (t)=y+f0[p (y(s), m(s)) — zq] ds, t > 0.

Observe that when the capacity state m is absorbing, then y*(¢) converges to the set
#&(m) provided m > z, (this is a particular case of Lemma 5.1).

Recall that v(-, m) is a convex function and is bounded by two functions as shown
in Lemma 3.1. Thus, #(m) is a bounded interval. In particular, if v(-, m) is strictly
convex, Z(m) shrinks to a singleton.

Define i, € # to be such that iy <z, <i, + 1. Observe that for m < iy,

yE(t) <sm —zp<ig— 2z <0.

Therefore y*(¢)  —o as t — o provided m is absorbing. Hence only those m € .#
for which m > i, + 1 are of special interest to us.

As mentioned in §1, one of the major purposes of this paper is to analyze the
monotonicity of the turnpike sets. From Lemma 3.1, if & is strictly convex, each
turnpike set defined in (4.3) reduces to a singleton. That is, there exists y,, such that
G(m) ={y,), me 4.

If the production cost is linear, i.e., ¢(p) = cp for some constant c, then y,, is the
threshold inventory level with capacity m. Specifically, if y >y, p*(y,m,z) =0
and if y <y,,, p*(y, m, z) = m (full available capacity).
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Let us make the following observation. If the capacity m > z,, then the optimal
trajectory will move towards the turnpike y,,. Suppose the inventory level is y,, and
then capacity increases to m, > m, it then becomes costly to keep the inventory at
level y,. So the turnpike inventory level y, —should be smaller than y,. The
remaining section is devoted to proving this intuitive observation.

To begin with, we provide a technical lemma concerning the evaluation of the
dynamic programming equation at points in the turnpike sets.

Lemma 4.1. Assume that the inventory cost function h(y) is differentiable and
strictly convex. Let

(4.4) K, =H(y,) + Lw, (Y, )(m) —av,(y,,m), me.4.
Then
K, >0 form<i and K,=0 formzi,+1.

Proor. For m < iy, the dynamic programming equation (4.1) on (—x, ¥,,) be-
comes

av(y,m) = (m —zy)v,(y,m) + h(y) +c(m) + L,v(y, )(m).
Taking the derivative on both sides of the equation at y € (=, y,) and letting
y T ¥, We obtain K,, > 0 for m < i,.
For each m > i, + 1, note that F(m, r) is a concave function in r for each m and
it reaches its unique maximum at r = —c'(z,). Note that the strict convexity of h(y)

implies the strict convexity of v(:,m) (by Lemma 3.1). Therefore, there exist
sequences 0 < 8,(k) < 1/k and 0 < 8,(k) < 1/k, such that

F(m,v,(y, + 8,(k)y,m)) = F(m,v,(y, — 8,(k), m)).

Then, subtracting the two equalities of the dynamic programming equation valued,
respectively, at (y,, + 8,(k), m) and (y,, — 8,(k), m) yields

a[v(y,, + 81(k),m) = v(y,, — B,(k), m)]
= [A(y,, + 8:(k), m) — h(y,, — 8,(k), m)]
Lo [0(y + 81(K), ) = v(y = 85(K), )] (m).

Dividing both sides by 8,(k) + 8,(k) and letting k — =, we conclude that K,, =0
form=zi,+1. o
Now we are in a position to show the monotonicity of the turnpike sets.

THEOREM 4.1. Assume h(y) to be differentiable and strictly convex. Then
yto >y10+1 = " >-yM = Czo’

where ¢, = (')~ '(—ac'(z()).
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Proor. Let h,, =W (y,) + ac'(zy) and B,, , = v,(y,,, 1) + c'(z,), Vm,| € .#. By
the definition of y,,, we have B, , = v,(y,,,]) — v ( ¥, 1. Therefore, the strict con-
vexity of A(y) and v(y, !) (by Lemma 3. 1) implies the following:
Ym <yl th <hl <I>:Bm,l < O’ Vm,lE/

Rewrite K,, defined in (4.4) in terms of 4,, and B,, ; as follows:

hy + moBo.y ifm=0,
K=t tpmBmmir Y AuBpmy {0 <m<M,
Ry + ApBas -1 if m=M.

Suppose y, > yy_;. Then hy > hy, |, and B, ., > 0. K,, = 0 implies that
hy < 0. Thus h,,_, <h, <0. Furthermore Par—1 <0, By <0and Kp,_; >0
vield Ay, Brr i pr—2 > 0. Thus h,,_, < h,,_,. We can carry on this procedure back
to m = 1. Then we obtain

hg<hy < -+ <h,<0.

But s, <h, implies B,; < 0. Hence K, < h, < 0. This contradicts with K, > 0.
Thus, we can conclude y,, < y,,_,.

Recall the fact that K,, = 0 for m > i, + 1. We can derive the following induction
chain:

Y S Vp-1

P <hy_i1s Bu-1m20, Bypy_1 <0
hy_1>0 (by K,, = 0)

Bru-1,m—2<0 (byKy_,=0)
Yrm-1 S Ym-2
O<hy<hy ;< - - <h

(4.5)

Luu vl

10'

Note also that hy = h'(yy) + ac'(zg) = K'(y,) — H(c,) > 0. This completes the
proof. O

ReMARrk. Observe that if both capacity and demand were to be stochastic pro-
cesses, then there would be an extra term L .U, involved in (4.4) and the argument in
(4.5) would not go through. Our proof is based directly on the dynamic programming
equation. A study of possible monotonicity property for systems with stochastic
capacity and demand processes would require a further study of the properties of the
value function. At present, we do not know how to do this.

Now let us consider our problem when some machines are reliable. Let us as-
sume that m, of the M machines are reliable. Then the set of capacity levels .#=
{my,my + 1,..., M}, and the jumping rates in (2.1) satisfy
(4.6) 0=A=A= " =2,, 0=M0=P«1="’=Mm0—1-

THEOREM 4.2.  Assume (4.6) and assume h(y) to be a differentiable and strictly
convex function. We then have the following:

() if zg > my, theny, > Vg1 2 T B>y

(D) if zg <my, then y,, = Vmgr1 = T = Ym =y
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ProOOF. It is similar to the proof of Theorem 4.1, except that K, =0 implies the
equalities in (iD). O

Before we finish this section, we solve a particular optimal control problem with
the aid of the above theorem.

ExampLE 4.1. Let the production cost ¢(p) = cp and the inventory cost h(y) =
y2/2. We assume that demand z, < m,. Then the turnpike sets are

ymo = ym(,+1 = ' =Yy T —ac.
The optimal production policy is given by the following:

0 ify> —ac,
p*(y,m) = {2y if y = —ac,
m if y < —ac.

For another application of Theorem 4.2, see Jiang and Sethi [11].

5. Turnpike sets with reliable machines. In this section, we consider turnpike
sets with M reliable machines and randomly fluctuating demand. We shall study the
optimal inventory levels under capacity M and stochastic demand z(¢) € @ with
z, <z, < '+ <z, <M. As before in the last section, the dependence of the value
function on the capacity level m will be suppressed, i.e., v(y, z) will be used in place
of v(y, m, z).

The turnpike set #(m, z) becomes

G(z) = {y: vy, z) = —c’(z)}.

Then £(z) is a bounded closed interval in view of Lemma 3.1. Note that under the
strict convexity of v, the turnpike sets #(z) become singletons, say #(z) = {y_}.
Now let us define a set # to be the convex hull of £(z):

(5.1) 7= co[zgg)f(z)].

Since the convex closure of finite bounded closed intervals is a bounded closed
interval, there exist y7, y5, such that &= [y7, y7].

Observe that the optimal policy p*(y, z) is monotone in y and equals z for
y € #(z), which yields

() p*(y,z) —z <0,if y >y5;

() p*(y,2) —z > 0,if y <y{.

Hence for the stochastic demand process, - is an attractor set for the optimal
inventory trajectories. More precisely, we have the following lemma.

Lemma 5.1, dist(y*(¢), &) = inf,, . ,|y*(¢t) — w| decreases to zero monotonically
as t — ». Moreover, if c(p) is linear, then for 7 = max{ly*(0) — vZl/z,
ly*(0) — yZ1 /(M — z )}, dist(y*(7), &) = 0.

Proor. To prove the first assertion, it suffices to show that dist(y*(¢), &) — 0 as
¢t — . Suppose now that the production cost c(p) is strictly convex. If y*(0) < v,
then y*(¢) increases over time ¢ before it enters . Let ¥ = limsup, ., y*(¢). It
remains to show that y > yZ. If y < y‘f , then Lemma A.1 in the Appendix applies to
vo = (7 +¥)/2 <y{. Thus, there exists a 6 >0, such that p*(y,z) —z > 9,
Yy <y Yz € 2. So y*(t) > 8, V¢t > 0. This in turn implies that y*(¢) reaches y,
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before time ¢ = (y, — y*(0))/5. This contradicts with the definition of 7.
Hence, dist(y*(#), #) — 0. Similarly, it can be shown that when y*(0) > vy,
dist(y*(¢), #) - 0 as t = « as well.

If the production cost ¢(p) is linear, then for y*(0) > y5, p*(y,z) = 0, Vz € 2.
This implies y*(¢) = —z(t) < —z, < 0. So, y*(¢) reaches & prior to ¢ = (y*(0) —
y¥)/z,. On the other hand, for y*(0) < vy p*(y,2) =M if y <yZ So y*(t) >
M — z,. Therefore, y*(¢) enters & before t = (y;7 — y*(0)) /(M — z ). The proof is
now completed. O

An analog of Lemma 4.1 for the stochastic demand case is useful to provide.

LemMma 5.2.  Assume that h(y) is differentiable and strictly convex. Let
K. =HW(y,) + Loy, )(z) —av(y,,2), z€.

ThenK,=10,VYz € 2.

Proor. The proof uses similar arguments to those in the proof of Lemma 4.1. o
REMARK. As an immediate result of this lemma, the turnpike set

£(2) = {y: W (y,) = —ac'(2)} = (W) " (~ac'(2)))},

provided that the demand state z is absorbing.
ReMARK. For the case of a constant deterministic demand, i.e., z(¢) = z,, for all
t > 0, it is immediate that the turnpike set #(z,) is given by the following:

H(zo) ={y €R: —ac'(z,y) = H(y)}.

An economic interpretation of this is useful to provide. Let y = ¥, be a turnpike
point. Then p*(¢) =z, Let p(t) =z, + ¢, t €[0,8) with €6 > 0 and p(t) =
p*(t) = z;, t € (8,®). Then, the marginal production cost is c'(z9)ed + o0(ed) and
the marginal inventory cost is

J e (yo)es di + o(eb) = a”W(yo)ed + o(es).
8

Setting the total marginal production cost to zero and dividing through by €8 gives
the relation —ac’(zy) = #'(y,) for y,. Furthermore, note that z, > 0 implies y, < 0.
Thus, if the initial inventory y(0) = 0, then it pays to produce less than the demand
until y(¢) = y,. This results in savings in production cost. This is exactly offset by the
increased shortage cost along the optimal path. Note that the discounting plays an
essential role in this balancing act. In fact, in the absence of discounting, i.e., a = 0,
the turnpike point y, = 0.

Taeorem 5.1. (i) Let & be defined in (5.1), &= [y{, yS]. Then yZ<0.

(ii) Let ¥(z) = L(c'(-)Xz) — ac'(2), Vz € 9. Assume that either there exists z,
such that W(z) > 0 or there exist z,,z,, such that W(z,) + W(z,). Furthermore,
assume that h(y) is differentiable. Then & is a nondegenerate interval, i.e., yZ< vy

Proor. It is obvious that there exists Z € @, such that vy € £(z). Now suppose
that y;¥> 0. Let y*(¢), p*(¢) be, respectively, the optimal inventory level and the
optimal production rate with y*(0) = 0, z(0) = Z.

ol amedede -0} - A H-Ducddad L) <l
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Construct p(-) as follows:
p(t) = Z([)X[O,‘r)(t) + p*(t)/\/[rr,oo)(t)a

where x , is the indicator function of any given set 4 and 7 is the stopping time
defined by 7 = inf{r > 0: y*(¢) > y;?/2}). Then by Lemma 5.1, 7 is finite a.s. and

yE(t) = y*(7) =y{/2>0 Vix>r,

and p(t) < p*(¢), Vt > 0. Therefore,
(52) y*(r) =y*(7) = [(p*(s) = 2(5)) ds

- /’(p(s) —2(s))ds >0 Vt>r.

Let y(¢) be the inventory trajectory corresponding to p(-) with y(0) = 0, z(0) = Zz.
Then

0 if t € {0,71),

y(t) = f:(p(s) —z(S)) ds ift e [T,°°),

and (5.2) implies y(¢) > 0, Vt > 0.
Observe that p(t) < p*(¢) for t < 7. Therefore, y(¢) < y*(¢), Yt = 0. Thus, we
obtain

J(0, %, p(+)) <J(0, %, p*(*)) = v(0, 7).

This contradicts with the optimality of p*, which completes the proof of (i).

To see (i), let us assume to the contrary that y;¥ = y57 =y, is the only element of
#.Thenforall z € 2,v,(y, z) = —c'(2). By Lemma 5.2, one obtains ¥(z) = H(ygy),
Vz € 2. Recalling (i) and assumption (A1), ¥(z) is a nonpositive constant on 2.
This contradicts with the assumption on ¥, thus completing the proof. ©

By Lemma 5.1, the optimal inventory y*(¢) goes to & monotonically over time.
The next theorem tells us that under certain conditions, y*(¢) enters ¢ in a finite
time.

THEOREM 5.2. Let

A, = {0 € Q: Lebesgue measure of {t: (1) = zo} = =}.
Suppose that there exists z, € §, such that vy(yf, 2o) < —c'(zy). Then on A, y*(t)
enters £ in a finite time. In particular, if z(t) is ergodic, then y*(t) enters & in a finite
time a.s.

Proor. In view of the proof of Lemma 5.1, it suffices to show that for each
y*(0) <y, y*(¢) enters & in a finite time.

Let y, = min £(zy). Then y, > ylf by our assumption. Take y, = (y, + yf)/
2> yfﬂ Then Lemma A.1 implies that there exists a positive constant 8, such that

p*(y,2z9) — 20> 6 Vy<y,.
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Therefore, y*(¢) increases to y, with at least the rate 8. Consequently, y*(¢) reaches
y{’ in a finite time on 4,. O
Combining Theorem 5.1(ii) and Theorem 5.2, we have the following.

CoroLLARY 5.1.  Suppose the conditions of Theorem 5.1(ii) hold. Assume that z(t)
is ergodic. Then y*(t) enters & in a finite time a.s.

Let z(¢) be given by the following infinitesimal generator L,:

Kl(d’(zz) - ¢(Z1)) ifi=1,
(53) Lz¢(zz) = Kt(d’(21+l) - d)(Zl)) + Vl(d)(zi_]) - (]5(21)) ifl <i< d,
va(#(z4-1) — #(z,)) ifi=d.

THEOREM 5.3.  Assume that the condition of Theorem 4.1 and (5.3) hold. Then

@) if c(p) = cp, then Yoy =¥, = 0 =Y, = —ac;

(1) if d = 2, then Ve 2 Y.,

Proor. The proof of (i) is the same as that of Theorem 4.1 on account of Lemma
5.2. Now let us show (ii). By Lemma 5.2,

h'(yz,) = —(a+k)c(z)) - Klvy(yz,’ 23),
(5:4)
hl(yzz) = —(CM + VZ)C’(Z2) - Vzv,v(yzz’ Zl)‘

If y, <., then

H(y.) <H(y.,)
(5.5) vy(¥2,,23) < =¢'(2),

Uy(y227 Zl) = _Cl(zl)'

Combine (5.4) and (5.5) to conclude (a + «, + v,)c'(z;) > (@ + k, + v,)c'(z,). But
this contradicts with the convexity of ¢(p), thereby proving (ii). O

The following example shows that the monotonicity of the turnpike sets does not
hold in general.

ExampLE 5.1. Take c(p) = cp, h(y) = y?/2, 2={1,2,3}, a = 1, and

. {0 ifz=1,2,
(2) = {y(qb(l) —#(3) ifz=3.

Let v”(y, z) be the corresponding value function. We shall show that for certain
values of vy, the monotonicity of the turnpike sets breaks down.

First observe that v”(y,1) and v”(y,2) are independent of 7y, so they will be
denoted by v(y, 1) and v(y, 2), respectively. Also we have the following:

lim v”(y,3) = v(y,1).
2l

Note that Lemma 3.1 implies that v” is strictly convex. Consequently, the turnpike
sets #(z) are singletons. Let y(1), y(2), and y”(3) denote the points of the
corresponding turnpike sets (1), £(2), and £7(3). We also write £%z) = {y%2)}
and & *(z) = {y™(2)} to be the turnpike sets with y = 0 and y = =, respectively, for

Al n <l
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each z € 2. Then the uniform convergence of v implies
y*(3) = lim y*(3) =y(1),  ¥y'(3) = lim y*(3).
As a result of the remark to Lemma 5.2,
(1) ={-1}, £ =(-2, L0)={-3, £ ={-1}

Since y”(3) is continuous in v, there exists a constant y such that y?(3) = —=3/2, i.e,,
#£7(3) = {—3/2}. Hence for this y, the monotonicity of £4(z) breaks down.

Let us give another example, for which the optimal control problem could be
solved with the aid of the monotonicity of turnpike sets.

ExampLE 5.2. Let z(t) be the demand process governed by L, given in (5.3).
Take ¢(p) = ¢p, h(y) = y?/2, a = 1. Then the optimal control policy is given by the
following:

0 ify> —ac,
p¥(y,z) =<z ify= —ac
M ify < —ac.

Finally, we give an example, which shows that it is possible to have a strictly convex
value function, even if the inventory cost is not strictly convex.

ExamprLE 5.3. We give an example with a constant demand z,, a quadratic
production cost c(p) = p?, and a nonstrictly convex piecewise differentiable inventory
cost

—-Ky ify<0,
h(y)_{o if y > 0.

It is easy to show that the turnpike set
Z(zy) = {y € R: —ac'(zy) € D"h(y)},

where D~ is defined in §3.
Case (a). Low shortage cost: K < 2az,.
For K < 2az,, the value function

oo —a'Ky + a K[ zy - (42) K] if y <0,
UDLY,2p) = _
| @ad) K [2e 0z, — (20) T KeTO] ity > 0,

where T(y) is the first time at which the optimal inventory y*(T(y)) = 0, given the
initial level y > 0. Moreover, T(y) is the unique positive solution of

2a? ﬁlKe_“T‘”-i—z T(y)=y + 2a? _1, y > 0.
0
Furthermore,

for K < 2az,

F(zy) = (—,0] forK>2az,.
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We note that for K < 2az,, v, > —a™ 'K > —2z, with the consequence that there
exists no turnpike set, i.e., &= &. Although, we can think of {—c} to be the turnpike
point in the extended sense, as the optimal inventory level in this case approaches
—© as f — o,

The case K = 2az, is the critical case. In this case,

=22y + a712? ify<0,

v(y, zp) = @ 122[2e79TD) — ¢=22TD] £y > 0,

where T(y) is the unique positive solution of
a”lem T+ T(y) =y/zo+a”!, y>0.

Since v, = —2z, for y € (—,0], the turnpike set £(z,) = (—x,0]. For y > 0, the
optimal inventory level reaches 0 at #+ = T(y) and then it stays there. For y < 0, the
optimal production p*(¢) = z, and y*(t) =y for all ¢ € [0, x).

Case (b). High shortage cost: K > 2az,.

For K > 2az,, the value function

—a 'Ky - (403) K2 + a" 2Kz,
U(y, ZO) = +(a—lzg + (4(13)_1K2 _ a—ZKZO)[ze—aB(y) — e—2a9()’)] ify<O,
a 267270 — =2eTN] if y >0,
where T(y) is as defined in the critical case above and 6(y) is the first time the

optimal inventory level y*(8(y)) = 0 from a given initial inventory level y < 0.
Moreover, #(y) is given by the unique positive solution of

A
=

a le M 4 g(y) = —y/((2a)_1K —zg)+at,

In this case, the turnpike set #(z,) = {0}.

For K > 2az,, the value function is strictly convex and passes through the point
(0,0™'z{), which in turn tells us that the strict convexity of the cost function A(y) is
not necessary for the strict convexity of the value function.
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Appendix. We provide a technical lemma which is used in §5.

LemMma A.l.  Let y, = min #(z). Then for each y, <y,, there exists & > 0, such
that

P (y,z) —z>8 Vy<y,.
Moreover, if y, < min &, then there exist & > 0, such that

p*(y,z2) —z2>8 Vze P, Vy<y,.
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Proor. Suppose that c(p) is strictly convex. Let y, <y,. Then there exists
8, > 0, such that

v,(y,2z) < =c'(z) =&, Yy<y,.
So there exists 8 > 0, such that

(c’)_l(—vy(y,z)) >z+8% Vy<y,.
These imply that

M if v,(y,2z) < —c'(M),

PO TN (T a2y ey (r.2) >~ (M),

Therefore,
p¥(y,z) —z> min{M - z,(c’)_l(—uy(y, z)) - z}

> min{M — z, 57}

If yo < min &, take § = min{§,: z € @} > 0, then p*(y,z) —z > 8.
If the production cost ¢(p) is linear, then for all y <y,,

p*(y,2) —z=M-2z=86>0. O
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