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Abstract

We reconsider the microeconomic foundations of financial economics
under Knightian Uncertainty. We remove the (implicit) assumption of a
common prior and base our analysis on a common order instead. Eco-
nomic viability of asset prices and the absence of arbitrage are equivalent.
We show how the different versions of the Efficient Market Hypothesis are
related to the assumptions one is willing to impose on the common order.
We also obtain a version of the Fundamental Theorem of Asset Pricing us-
ing the notion of sublinear pricing measures. Our approach unifies recent
versions of the Fundamental Theorem under a common framework.
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1 Introduction

Recently, a large and increasing body of literature has focused on decisions, mar-
kets, and economic interactions under uncertainty. Frank Knight’s pioneering
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work (Knight [1921]) distinguishes risk – a situation that allows for an objec-
tive probabilistic description – from uncertainty – a situation that cannot be
modelled by a single probability distribution.

In this paper, we discuss the foundations of no–arbitrage pricing and its
relation to economic equilibrium under Knightian Uncertainty.

Asset pricing models typically take a basic set of securities as given and
determine the range of option prices that is consistent with the absence of
arbitrage. From an economic point of view, it is crucial to know if modeling
security prices directly is justified; an asset pricing model is called viable if its
security prices can be thought of as (endogenous) equilibrium outcomes of a
competitive economy.

Under risk, this question has been investigated in Harrison and Kreps’ sem-
inal work (Harrison and Kreps [1979]). Their approach is based on a common
prior (or reference probability) that determines the null sets, the topology, and
the order of the model. The common prior assumption1 is made in almost all
asset pricing models. In recent years, Knightian uncertainty has emerged as a
major topic in financial economics. It is widely acknowledged that drift and
volatility of asset prices, the term structure of interest rates, and credit risk
are important instances in which the probability distribution of the relevant
parameters is imprecisely known, if not completely unknown (compare, e.g.,
Epstein and Ji [2013]).

We replace the common prior with a common order with respect to which
agents’ preferences are monotone. The minimal example we can think of is when
agents will prefer a contingent consumption plan over their endowment if the
new plan pays off more in every state of the world. This (rather incomplete)
pointwise order does not require any probabilistic assumption. Knightian un-
certainty is frequently modeled by a set of priors; one might then derive the
common order from the set of priors as we discuss below.

Our main result shows that the absence of arbitrage and the (properly de-
fined) economic viability of the model are equivalent. In equilibrium, there are
no arbitrage opportunities; conversely, for arbitrage–free asset pricing models,
it is possible to construct a heterogeneous agent economy such that the asset
prices are equilibrium prices of that economy.

The main result is based on a number of other results that are of independent
interest. To start with, in contrast to risk, it is no longer possible to characterize
viability through the existence of a single linear pricing measure (or equivalent
martingale measure). Instead, it is necessary to use a suitable nonlinear pricing
expectation, that we call a sublinear martingale expectation. A sublinear ex-
pectation has the common properties of an expectation including monotonicity,
preservation of constants, and positive homogeneity, yet it is no longer additive.
Indeed, sublinear expectations can be represented as the supremum of a class of
(linear) expectations, an operation that does not preserve linearity2. Nonlinear

1Here and in the following, we speak of a common prior model, or alternatively a situation
of risk, whenever there is a reference probability space that serves as a state space for the
economy.

2In economics, such a representation theorem appears first in Gilboa and Schmeidler [1989].
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expectations arise in decision–theoretic models of ambiguity–averse preferences
(Gilboa and Schmeidler [1989], Maccheroni et al. [2006]). It is interesting to see
that a similar nonlinearity arises here for the pricing functional. A general the-
ory of equilibrium with such sublinear prices is developed in Beißner and Riedel
[2016]3.

The common order shapes equilibrium asset prices. We study various com-
mon orders and how they are related to versions of the Efficient Market Hypoth-
esis (Fama [1970]) in Section 4. The original (strong) version of the Efficient
Market Hypothesis posits a common prior and states that properly discounted
expected returns of assets are equal to the return of a safe bond. We obtain this
conclusion when the common order is based on expected payoffs with respect to
the reference measure. When the common order is given by the almost sure or-
der under a common prior, one obtains the weak version of the EMH: under an
equivalent pricing measure, expected returns are equal4. In situations of Knigh-
tian uncertainty, different specifications of the common order can be made. An
example is the quasi-sure order induced by a set of priors: a claim dominates
quasi– surely another claim if it is almost surely greater or equal under all con-
sidered probability measures. Another example is the order induced by smooth
ambiguity preferences, as introduced by Klibanoff et al. [2005], where Knightian
uncertainty is modeled by a second-order prior over a class of multiple priors.
We show that weaker versions of the Efficient Market Hypothesis prevail, de-
pending on the strength of the assumptions we are willing to impose on the
common order, and how the related fundamental theorem of asset pricing needs
to be suitably adapted.

Further Related Literature

The relation of arbitrage and viability has been discussed in various contexts.
Jouini and Kallal [1995b] and Jouini and Kallal [1999] discuss models with trans-
action cost and other frictions. Werner [1987] and Dana et al. [1999] study the
absence of arbitrage in its relation to equilibrium when a finite set of agents is
fixed a priori whereas Cassese [2017] characterizes the absence of arbitrage in
an order-theoretic framework derived from coherent risk measures. Knightian
uncertainty is also closely related to robustness concerns that play an important
role in macroeconomic models that deal with the fear of model misspecification
(Hansen and Sargent [2001, 2008]). The pointwise order corresponds to the
“model-independent” (or rather “probability–free”) approach in finance that

Sublinear expectations also arise in Robust Statistics, compare Huber [1981], and they play
a fundamental role in theory of risk measures in Finance, see Artzner et al. [1999] and
Föllmer and Schied [2011].

3Given that we have a nonlinear price system, one might wonder whether agents can
generate arbitrage gains by splitting a consumption bundle into two or more plans. The
convexity of our price functional excludes such arbitrage opportunities, see Proposition 1 in
Beissner and Riedel [2019].

4This statement is equivalent to the classic version of the Fundamental Theorem of As-
set Pricing Harrison and Kreps [1979], Harrison and Pliska [1981], Duffie and Huang [1985],
Dalang et al. [1990], Delbaen and Schachermayer [1998].
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has been discussed, e.g., in Riedel [2015], Acciaio et al. [2016], Burzoni et al.
[2019] and Bartl et al. [2017]. This literature uses different notions of “relevant
payoffs” that our approach allows to unify under a common framework, see
Subsection 4.3.4.

The paper is set up as follows. Section 2 describes the model and the two
main contributions of this paper in concise form. The assumptions of our model
and their relation to previous modeling are discussed in Section 3. Section 4
derives various classic and new forms of the Efficient Market Hypothesis. Sec-
tion 5 is devoted to the proofs of the main theorems. The appendix contains
a detailed study of general discrete time markets when the space of contingent
payoffs consists of bounded measurable functions. It also discusses further ex-
tensions as, e.g., the equivalence of absence of arbitrage and absence of free
lunches with vanishing risk, or the question if an optimal superhedge for a given
claim exists.

2 The model and the two main theorems

A non-empty set Ω contains the states of the world; the σ–field F on Ω collects
the possible events.

The commodity space (of contingent claims) H is a vector space of F -
measurable real-valued functions containing all constant functions. We will
use the symbol c both for real numbers as well as for constant functions. H is
endowed with a metrizable topology τ and a pre-order ≤ that are compatible
with the vector space operations.

The abstract vector space model allows to cover the typical models that have
been used in financial economics. Under risk, it is common to take a space of
suitably integrable functions with respect to a given prior with the usual almost
sure order; under Knightian uncertainty, a more general approach is required,
in particular, when the common order is induced by a non dominated set of
multiple priors (confer the examples in Section 3).

The preorder ≤ plays a crucial role in our analysis. A major conclusion of
our study is that the strength of the assumptions we are willing to make on the
common order (and therefore on the agents populating the economy) shapes the
results about market returns as we shall see in detail in Section 4. We assume
throughout that the preorder ≤ is consistent with the order on the reals for
constant functions and with the pointwise order for measurable functions. A
consumption plan Z ∈ H is negligible if we have 0 ≤ Z and Z ≤ 0. C ∈ H is
nonnegative if 0 ≤ C and positive if in addition not C ≤ 0. We denote by Z,
P and P+ the class of negligible, nonnegative and positive contingent claims,
respectively.

We introduce a class of relevant contingent claims R, a convex subset of P+.
The relevant claims are used below in two important ways. On the one hand,
they signal arbitrage: if a net trade allows to obtain a payoff that dominates
a relevant payoff with respect to the common order, we speak of an arbitrage.
On the other hand, relevant payoffs identify potentially desirable directions
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of consumption for our economy. In the spirit of Arrow [1953] and most of
the literature, a common choice of the relevant claims is the set of positive,
nonzero claims P+; we invite the reader to make this identification at first
reading. However, it might be of interest to consider smaller relevant sets in
some economic contexts. The introduction of R also allows to subsume various
notions of arbitrage that were discussed in the literature, compare the discussion
in Section 3 and the examples in Section 4.3.4.

The financial market is modeled by the set of net trades I ⊂ H, a convex
cone containing 0. I is the set of payoffs that the agents can achieve from zero
initial wealth by trading in the financial market. In the basic frictionless model
of securities, I contains the payoffs of self-financing strategies with zero initial
capital. In a frictionless market, I is a subspace. In more realistic situations,
when short selling constraints, credit line limitations, or transaction costs are
imposed, e.g., we are led to a convex cone instead of a subspace, see Example
3.1.

An agent in this economy is described by a preference relation (i.e. a com-
plete and transitive binary relation) on H that is

• weakly monotone with respect to ≤, i.e. X ≤ Y implies X � Y for every
X,Y ∈ H;

• convex, i.e. the upper contour sets {Z ∈ H : Z � X} are convex;

• τ-lower semi–continuous, i.e. for every sequence {Xn}∞n=1 ⊂ H converging
to X in τ with Xn � Y for n ∈ N, we have X � Y .

The set of all agents is denoted by A.
In the spirit of Harrison and Kreps [1979], we think of a potentially large set

of agents about whom some things are known, without assuming that we know
exactly their preferences or their number. We only impose a list of properties
on preferences that are standard in economics. In particular, bearing in mind
the interpretation of ≤ as a common order, the preferences are monotone with
respect to ≤. Moreover, we impose some weak form of continuity with respect
to the given topology τ ; it is known that, in general, some form of continuity
is required for the existence of equilibrium. Convexity reflects a preference for
diversification.

A financial market (H, τ,≤, I,R) is viable if there is a family of agents
{�a}a∈A ⊂ A such that

• 0 is optimal for each agent a ∈ A, i.e.

∀ℓ ∈ I ℓ �a 0, (2.1)

• for every relevant claim R ∈ R there exists an agent a ∈ A such that

0 ≺a R . (2.2)

5



We say that {�a}a∈A supports the financial market (H, τ,≤, I,R).
A market is in equilibrium when agents have no incentive to trade away from

their current endowment5. In contrast to Harrison and Kreps [1979], we use a
definition of equilibrium with heterogeneous agents since, in general, a simple
representative agent approach is not feasible under Knightian uncertainty. Con-
dition (2.2) is a form of monotonicity which, in particular, excludes the trivial
case of agents who are indifferent between all payoffs. Our adaptation of the
concept of viability is dictated by Knightian Uncertainty as we discuss exten-
sively in Section 3 below.

A net trade ℓ ∈ I is an arbitrage if there exists a relevant claim R∗ ∈ R
such that ℓ ≥ R∗. More generally, a sequence of net trades {ℓn}∞n=1 ⊂ I is
a free lunch with vanishing risk if there exists a relevant claim R∗ ∈ R and a
sequence {en}

∞
n=1 ⊂ H of nonnegative consumption plans with en

τ
→ 0 satisfying

en + ℓn ≥ R∗ for all n ∈ N. We say that the financial market is strongly free of

arbitrage if there is no free lunch with vanishing risk. In general, the absence
of arbitrage is not equivalent to the absence of free lunches with vanishing risk.
In Appendix C, we establish the equivalence for finite discrete time financial
market.

Our first main theorem establishes the equivalence of viability and absence
of arbitrage.

Theorem 2.1. A financial market is strongly free of arbitrage if and only if it

is viable.

In the standard literature, the model of the economy is constructed on a
probability space with a given prior P. In such common prior models, a fi-
nancial market is viable if and only if there exists a linear pricing measure in
the form of a risk-neutral probability measure P∗ that is equivalent to P, as
Harrison and Kreps [1979] have shown. In the absence of a common prior, we
have to work with a more general, sublinear notion of pricing. A functional

E : H → R ∪ {∞}

is a sublinear expectation if it is monotone with respect to ≤, translation-
invariant, i.e. E(X+c) = E(X)+c for all constant claims c ∈ H and X ∈ H, and
sublinear, i.e. for all X,Y ∈ H and λ > 0, we have E(X + Y ) ≤ E(X) + E(Y )
and E(λX) = λE(X). E has full support if E(R) > 0 for every R ∈ R. Last but
not least, E has the martingale property if E(ℓ) ≤ 0 for every ℓ ∈ I. We say in
short that E is a sublinear martingale expectation with full support if all the
previous properties are satisfied.

It is well known from decision theory that sublinear expectations can be
written as upper expectations over a set of probability measures. In our more
abstract framework, probability measures are replaced by suitably normalized

5We take the endowment to be zero in our definition; this comes without loss of generality,
see also the discussion in Section 3.
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functionals. We say that ϕ ∈ H′
+
6 is a martingale functional7 if it satisfies

ϕ(1) = 1 (normalization) and ϕ(ℓ) ≤ 0 for all ℓ ∈ I. In the spirit of the
probabilistic language, we call a linear functional absolutely continuous if it
assigns the value zero to all negligible claims. We denote by Qac the set of
absolutely continuous martingale functionals.

The notions that we introduced now allow us to state the general version of
the fundamental theorem of asset pricing in our order-theoretic context.

Theorem 2.2 (Fundamental Theorem of Asset Pricing). The financial market

is viable if and only if there exists a lower semi–continuous sublinear martingale

expectation with full support.

In this case, the set of absolutely continuous martingale functionals Qac is

not empty and

EQac
(X) := sup

φ∈Qac

φ(X)

is a lower semi–continuous sublinear martingale expectation with full support.

Moreover, EQac
is maximal, in the sense that any other lower semi–continuous

sublinear martingale expectation with full support E satisfies E(X) ≤ EQac
(X)

for all X ∈ H.

Remark 2.3. Under nonlinear expectations, one has to distinguish martingales
from symmetric martingales; a symmetric martingale has the property that the
process itself and its negative are martingales. When the set of net trades I is a
linear space as in the case of frictionless markets, a net trade ℓ and its negative
−ℓ belong to I. In this case, sublinearity and the condition EQac

(ℓ) ≤ 0 for all
ℓ ∈ I imply EQac

(ℓ) = 0 for all net trades ℓ ∈ I. Thus, the net trades ℓ are
symmetric EQac

-martingales.

3 Discussion of the model

Common order instead of common prior Preference properties shared
by all agents in the market will be reflected in equilibrium prices.

A situation of risk is described by the fact that agents share a common
prior; in the laboratory, a random experiment based on an objective device like
a roulette wheel or a coin toss simulates such a market environment. If no such
objective device can be invoked, as in the real world, one might still presume
the existence of a common subjective belief for all market participants. Such
an assumption might be too strong; the Ellsberg experiments show how to cre-
ate an environment of Knightian uncertainty in the lab. In complex financial
markets in which credit risk contracts, options on term structure shapes and
volatility dynamics are traded, Knightian uncertainty plays a prominent role

6H′ is the topological dual of H and H′
+

is the set of positive elements in H′.
7In this generality the terminology functional is more appropriate. When the dual space

H′ can be identified with a space of measures, we will use the terminology martingale measure.
The technical question whether these measures are countably additive is discussed in Appendix
D.
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because agents lack precise probability estimates of crucial model parameters
and they might be wary of potential structural breaks in the data. Moreover, as
Epstein and Ji [2013] have shown (see Example 3.3 below), if we model Knight-
ian uncertainty about volatility, it is logically impossible to construct a reference
probability measure.

We thus forego any explicit or implicit assumption of a common prior P.
Instead, we base our analysis on a common order ≤, a far weaker assumption
that only requires a (typically incomplete) unanimous dominance criterion. A
minimal example of a common order is the pointwise order that we discuss in
Example 3.2 below. Pointwise dominance is certainly a criterion that we might
assume to be unanimously shared in the context of monetary or single good
payoffs. The generality of our approach allows to cover a wide variety of situa-
tions, including the well-studied case of risk as well as situations of Knightian
uncertainty. For example, if payoffs are ordered by their expected value under a
common prior P, we obtain the “risk–neutral” world as we show in Subsection
4.1 below. The standard finance case corresponds to the almost sure ordering
under P (Subsection 4.2). In a multiple prior setting, we recall the distinction
of objective and subjective rationality that is discussed by Gilboa et al. [2010];
in their paper, the common order is given by Bewley’s incomplete expected
utility model whereas individual agents have a complete preference relation rep-
resented by a multiple prior utility function, see Subsection 4.3.1. The so–called
quasi–sure ordering is a choice that is induced by the family of (potentially non–
equivalent) priors M; in this case X ≤ Y if P(X ≤ Y ) = 1 for every prior P in
M (Subsection 4.3.2).

It might be interesting to note an alternative way of setting up the model
in which the common order is derived from a class of given preference relations.
Suppose that no common order is a priori given. Instead, we start with a class of
preference relations A0 on the commodity space H that are convex and τ -lower
semicontinuous. We can then define the uniform order derived from the set of
preference relations A0 as follows. Let

Z� := {Z ∈ H : X � Z + X � X, ∀ X ∈ H} ,

be the set of negligible (or null) claims for the preference relation �∈ A0. We call
Zuni :=

⋂

�∈A0
Z� the set of unanimously negligible claims. Let the uniform

pre-order ≤uni on H be given by X ≤uni Y if and only if there exists Z ∈ Zuni

such that X(ω) ≤ Y (ω) + Z(ω) for all ω ∈ Ω. Note that we use the pointwise
order on the reals and a uniformly negligible payoff to derive the common order
from the set of priors A0. (H,≤uni) is then a pre-ordered vector space8, and
agents’ preferences in A0 are monotone with respect to the uniform pre-order.
One can then derive the (usually larger) class of preference relations A that
satisfy the conditions of our approach, including monotonicity with respect to
the derived uniform order, and the analysis goes on from there.

8In the same spirit, one could define a pre-order X ≤′
u Y ⇔ X � Y for all �∈ A. In

general this will not define a pre-ordered vector space (H,≤′). The analysis of the paper
carries over with minor modifications.
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The Financial Market We model the financial market in a rather reduced
form with the help of the convex cone I. This abstract approach is sufficient
for our purpose of discussing the relation of arbitrage and viability. In the
next example, we show how the usual models of static and dynamic trading are
embedded.

Example 3.1. We consider four markets with increasing complexity.
1. In a one period setting with finitely many states Ω = {1, . . . , N}, a finan-

cial market with J +1 securities can be described by its initial prices xj ≥ 0, j =
0, . . . , J and a (J +1)×N–payoff matrix F , compare LeRoy and Werner [2014].

A portfolio H̄ = (H0, . . . , HJ) ∈ RJ+1 has the payoff H̄F =
(

∑J
j=0 HjFjω

)

ω=1,...,N
;

its initial cost satisfies H · x =
∑J

j=0 Hjxj . If the zeroth asset is riskless with
a price x0 = 1 and pays off 1 in all states of the world, then a net trade
with zero initial cost can be expressed in terms of the portfolio of risky assets
H = (H1, . . . , HJ) ∈ RJ and the return matrix F̂ = (Fjω − xj)j=1,...,J,ω=1,...,N .

I is given by the image of the J ×N return matrix F̂ , i.e.

I = {HF̂ : H ∈ RJ} .

2. Our model includes the case of finitely many trading periods. Let F :=
(Ft)

T
t=0 be a filtration on (Ω,F) and S = (St)

T
t=0 be an adapted stochastic

process with values in RJ
+ for some J ≥ 1; S models the uncertain assets. We

assume that a riskless bond with interest rate zero is also given. Then, the
set of net trades can be described by the gains from trade processes: ℓ ∈ H is

in I provided that there exists predictable integrands Ht ∈
(

L0(Ω,Ft−1)
)J

for
t = 1, . . . , T such that,

ℓ = (H · S)T :=

T
∑

t=1

Ht · ∆St, where ∆St := (St − St−1).

In the frictionless case, the set of net trades is a subspace of H. In general,
one might impose restrictions on the set of admissible trading strategies. For
example, one might exclude short-selling of risky assets, or impose a bound on
agents’ credit line; in these cases, the marketed subspace I is a convex cone,
compare Luttmer [1996], Jouini and Kallal [1995a], and Araujo et al. [2018], e.g.

3. In Harrison and Kreps [1979], the market is described by a marketed
space M ⊂ L2(Ω,F ,P) and a (continuous) linear functional π on M . In this
case, I is the kernel of the price system, i.e.

I = {X ∈ M : π(X) = 0} .

4. In continuous time, the set of net trades consists of stochastic integrals
of the form

I =

{

∫ T

0

θu · dSu : θ ∈ Aadm

}

,

9



for a suitable set of admissible strategies Aadm. There are several possible
choices of such a set. When the stock price process S is a semi-martingale
one example of Aadm is the set of all S-integrable, predictable processes whose
integral is bounded from below.9 Other typical choices for Aadm would consist
of simple integrands only; when S is a continuous process and Aadm is the set
of process with finite variation then the above integral can be defined through
integration by parts (see Dolinsky and Soner [2014a, 2015]).

In general, the absence of a common prior poses some non-trivial technical
questions about the integrability of contingent claims and net trades. Clearly, it
is possible to restrict the commodity space to the class of bounded measurable
function (that are integrable with respect to any prior). The condition I ⊂ H
could be restrictive in some applications and we provide a way to overcome this
difficulty in Appendix B.

Relevant Claims We use the notion of relevant claims to generalize the typi-
cal approach to define arbitrage as positive net trades. This approach introduces
some additional flexibility and allows to cover potentially important variants of
the notion of arbitrage. For example, if some positive claim cannot be liquidated
without costs, agents would not consider a net trade that achieves such a payoff
as free lunch if the liquidation costs are larger than the potential gains. It is
then reasonable to consider as relevant only a restricted class of positive claims,
possibly only cash.

Moreover, relevant payoffs identify potentially desirable directions of con-
sumption for our economy. The commodity spaces that are used to model
markets with Knightian uncertainty are often large. Thus in some finance ap-
plications, it makes sense to work with a set of relevant claims that is smaller
than the positive claims, confer also Example 3.3 below.

Viability Knightian uncertainty requires a careful adaptation of the notion of
economic viability. In competitive markets under risk, it is possible to construct
a representative agent with strictly monotone preferences for a given arbitrage-
free set of security prices. In Harrison and Kreps [1979], Kreps [1981], viability
is equivalent to the existence of certain strictly positive linear functionals that
induce (continuous) strictly monotone preferences; by the Riesz representation
theorem, they are described by densities that are almost surely strictly positive
with respect to the common prior.

Introducing Knightian uncertainty to the standard financial models leads
to very large commodity spaces on which no strictly positive linear functionals
exist. Consequently, the notion of viability needs to be adapted. Below, we illus-
trate these issues in Example 3.2 with a simple model in which the unit interval
is the state space. Subsequently, Example 3.3 shows that the same issues arise in
the ubiquitous Samuelson-Merton-Black-Scholes model when there is Knightian

9In continuous time, to avoid doubling strategies a lower bound (maybe more general than
above) has to be imposed on the stochastic integrals. In such cases, the set I is not a linear
space.
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uncertainty about volatility. If an arbitrage–free model can be supported by a
single agent with strictly monotone preferences satisfying our standing assump-
tions, in equilibrium, the marginal utility of that agent would need to be strictly
positive for all positive payoffs10. Thus, the commodity space necessarily needed
to support strictly positive linear functionals. Of course, the notion of economic
equilibrium does not require the existence of a representative agent; allowing for
a heterogeneous agent economy is a conceptually appealing approach as actual
financial markets certainly are populated by a diverse range of agents. We thus
relax the strict monotonicity condition of Harrison and Kreps [1979] and Kreps
[1981] by allowing for agents with weakly monotone preferences. To exclude
the trivial equilibrium case of agents who are indifferent between all claims, we
need to introduce some form of strict monotonicity for the market as a whole.
Condition (2.2) ensures that the relevant claims are desired by some agents in
the supporting economy.

Example 3.2. Take Ω = [0, 1]. Let F be the Borel sets and H be the set of all
bounded, measurable functions on Ω. We consider the quasi-sure common order
induced by a set of probability measures Q on Ω, i.e. X ≥ Y (“Q quasi-surely”)
provided that Q(X ≥ Y ) ≥ 0 for every Q ∈ Q. Let the relevant claims be
R = P+; a bounded measurable function R ∈ H is thus relevant if R ≥ 0 Q
quasi-surely and Q(R > 0) > 0 for some Q ∈ Q.

To illustrate our main points succinctly, we consider the extreme case of
Knightian uncertainty when Q is the set of all probability measures. Then,
the common order is given by the pointwise order; call a bounded measurable
function relevant if it is non-negative everywhere and is strictly positive for some
ω ∈ Ω. Consider the Gilboa–Schmeidler utility function

U(X) = inf
Q∈Q

EQ[u(X)] = inf
ω∈Ω

u(X(ω))

for some strictly monotone, strictly concave function u : R → R. This particular
agent weakly prefers the zero trade to any claim whose minimum value is less
than zero. In particular, for the relevant claim R(ω) = 1(0,1](ω) we have U(0) =
u(0) ≥ U(λR) for all λ ∈ R. For positive λ, the agent cares only about the worst
state ω = 0 in which the claim λR has a payoff of zero. The agent does not
desire negative multiples of the claim either because he would then lose money
in each state of the world except at ω = 0.

The commodity space in this example does not carry any strictly positive lin-
ear functional (Aliprantis and Border [1999], Section 8.10, also Example 8.21).
Consequently, although carefully chosen agents may strictly prefer the relevant
contract 1(0,1](ω) to zero, the abstract argument provided before the example
shows that no single agent economy can strictly prefer all relevant contracts to
zero.

10For convex and lower semi-continuous preferences, marginal utility at zero exists by the
separation theorem. One can show that it has to be a strictly positive linear functional if the
preferences are strictly monotone.
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Example 3.3. In the classical Samuelson-Merton-Black-Scholes model, the
stock price St is a geometric Brownian motion satisfying the stochastic differen-
tial equation dSt = σStdBt where B is a standard Brownian motion and σ is the
volatility. As in Epstein and Ji [2013], Vorbrink [2014] and Beissner and Denis
[2018], we consider a financial market with Knightian uncertainty about the
volatility of the price process, modeled by a certain interval [σ, σ]. Let the
maturity T > 0 be fixed. Then, any map in the set

Σ := Σσ,σ := {σ : [0, T ] → [σ, σ] | σ is adapted } (3.1)

is a possible volatility process.
For σ = (σt)t∈[0,T ] ∈ Σ, let Pσ be the distribution of the stock price process

with volatility process11 σ. We let the commodity space consist of payoffs that
are integrable with respect to all priors, i.e., H =

⋂

σ∈Σ L1(Ω,Pσ). We use the
topology induced by the norm ‖X‖H := supσ∈Σ EPσ |X |. The common order
is the quasi–sure order induced by the family of priors {Pσ}σ∈Σ, and we take
R = P+. As in part 4 of Example 3.1, we let I be the set of all stochastic
integrals with simple integrands that are bounded from below .

1. Let us confirm that the market is viable and supported by a class of
Gilboa–Schmeidler agents with preferences {�a,b}a,b∈Σ represented by

Ua,b(X) := inf
σ∈Σa,b

EPσ [X ],

where Σa,b is as in Eqn. (3.1) with possibly state-dependent upper and
lower bounds a, b ∈ Σ. For σ ∈ Σ, the stock price and thus every simple
stochastic integral ℓ ∈ I is a Pσ-local martingale. Therefore, we have
EPσ [ℓ] ≤ 0, and thus Ua,b(ℓ) ≤ 0, proving the optimality condition (2.1).
By definition of the quasi-sure order, if R is relevant, there exists σ ∈ Σ
with Pσ[R ≥ 0] = 1 and Pσ[R > 0] > 0, so we have EPσ [R] > 0 and
Uσ,σ(R) > 0. This shows that the monotonicity condition (2.2) is satisfied
by {�a,b}a,b∈Σ.

2. As in the previous example, agents with τ -lower semicontinuous strictly
monotone utility functions do not exist12. We can illustrate this issue with
a concrete example that is inspired by the highly traded volatility index
options. Let

Ra,b,t(ω) := 1{RVt(ω)∈(a,b)}, t ∈ (0, T ], σ ≤ a ≤ b ≤ σ,

be the digital option that pays off 1 when the normalized realized variance
of the observed stock price path RVt(ω) lies in a certain interval13. For

11We refer the reader to Soner et al. [2012, 2013] for a formal construction of Pσ and its
subtle properties. The class contains mutually singular priors and is not dominated by a
common prior.

12For a detailed analysis of strictly monotone preferences on rich domains, we refer to the
recent survey by Hervés-Beloso and del Valle-Inclán Cruces [2019], Section 4.

13Compare Soner et al. [2012, 2013] for the exact pointwise definition.
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volatility processes σ ∈ Σ that leave the interval between time 0 and
time t, the event {RVt(ω) ∈ (a, b)} is a null set for Pσ and we thus have
EPσ [Ra,b,t] = 0. Agents with Gilboa-Schmeidler utility functions

U(X) := inf
σ∈Σ

EPσ [X ],

are thus indifferent between the relevant claims Ra,b,t and zero.

3. The set of relevant contracts can be used to consider different notions of
arbitrage within the same framework. With the choice R = P+, ℓ ∈ I is
an arbitrage if Pσ(ℓ ≥ 0) = 1 for every σ ∈ Σ and if there exists σ̂ ∈ Σ
such that Pσ̂(ℓ > 0) > 0. Other choices are also plausible; with the choice

Ru := {R : Pσ(R > 0) > 0, ∀σ ∈ Σ} ,

ℓ is an arbitrage if it is a arbitrage in the probabilistic sense with common
prior Pσ.

The reader might note that our notion of equilibrium does not model en-
dowments explicitly as we assume that the zero trade is optimal for each agent.
This reduced approach comes without loss of generality in our context. In gen-
eral, an agent is given by a preference relation �∈ A and an endowment e ∈ H.
Given the set of net trades, the agent chooses ℓ∗ ∈ I such that e+ ℓ∗ � e+ ℓ for
all ℓ ∈ I. By suitably modifying the preference relation, this can be reduced to
the optimality of the zero trade at the zero endowment for a suitably modified
preference relation. Let X �′ Y if and only if X + e + ℓ∗ � Y + e + ℓ∗. It
is easy to check that �′ is also an admissible preference relation. For the new
preference relation �′, we then have 0 �′ ℓ if and only if e+ ℓ∗ � e+ ℓ∗ + ℓ. As
I is a cone, ℓ+ ℓ∗ ∈ I, and we conclude that we have indeed 0 �′ ℓ for all ℓ ∈ I.

Sublinear Expectations Our fundamental theorem of asset pricing char-
acterizes the absence of arbitrage with the help of a non–additive expecta-
tion E . In decision theory, non–additive probabilities have a long history;
Schmeidler [1989] introduces an extension of expected utility theory based on
non–additive probabilities. The widely used max-min expected utility model of
Gilboa and Schmeidler [1989] is another instance. If we define the subjective
expectation of a payoff to be the minimal expected payoff over a class of priors,
then the resulting notion of expectation has some of the common properties of
an expectation like monotonicity and preservation of constants, but is no longer
additive.

In our case, the non–additive expectation has a more objective than subjec-
tive flavor because it describes the pricing functional of the market. Whereas
an additive probability measure is sufficient to characterize viable markets in
models with a common prior, in general, such a construction is no longer fea-
sible. Indeed, Harrison and Kreps [1979] prove that viability implies that the
linear market pricing functional can be extended from the marketed subspace
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to a strictly positive linear functional on the whole space of contingent claims14.
Under Knightian uncertainty, however, strictly positive linear functionals fre-
quently do not exist (compare Examples 3.2 and 3.3). We thus rely on a non–
additive notion of expectation15.

The pricing functional assigns a nonpositive value to all net trades; in this
sense, net trades have the (super)martingale property under this expectation.
If we assume for the sake of the discussion that the set of net trades is a linear
subspace, then the pricing functional has to be additive over that subspace. As a
consequence, the value of all net trades under the sublinear pricing expectation
is zero. For contingent claims that lie outside the marketed subspace, the pricing
operation of the market is sub–additive.

The following two examples illustrate the issue. We start with the simple
case of complete financial markets within finite state spaces. Here, an additive
probability is sufficient to characterise the absence of arbitrage, as is well known.

Example 3.4 (The atom of finance and complete markets). The basic one–step
binomial model, that we like to call the atom of finance, consists of two states
of the world, Ω = {1, 2}. An element X ∈ H can be identified with a vector in
R2. Let ≤ be the usual partial order of R2. The relevant claims are the positive
ones, R = P+.

There is a riskless asset B and a risky asset S. At time zero, both assets
have value B0 = S0 = 1. The riskless asset yields B1 = 1 + r for an interest
rate r > −1 at time one, whereas the risky asset takes the values u in state 1
and respectively d in state 2 with u > d.

We use the riskless asset B as numéraire. The discounted net return on the
risky asset is ℓ̂ := S1/(1 + r) − 1. I is the linear space spanned by ℓ̂. There is
no arbitrage if and only if the unique candidate for a martingale probability of
state one

p∗ =
1 + r − d

u− d

belongs to (0, 1) which is equivalent to u > 1 + r > d. p∗ induces the unique
martingale measure P∗ with expectation

E∗[X ] = p∗X(1) + (1 − p∗)X1(2) .

P∗ is a linear measure; moreover, it has the full support property since for
every R ∈ R we have E∗[R] > 0. The market is viable with A = {�∗}, the
preference relation given by the linear expectation P∗, i.e. X �∗ Y if and only
if E∗[X ] ≤ E∗[Y ]. Indeed, under this preference ℓ ∼∗ 0 for any ℓ ∈ I and
X ≺∗ X +R for any X ∈ H and R ∈ P+. In particular, any ℓ ∈ I is an optimal
portfolio and the market is viable.

The preceding analysis carries over to all finite Ω and complete financial
markets.

14Note that the pricing functional has to assign a strictly positive price to all relevant
claims as otherwise, there would be some agent who would want to purchase it, violating the
equilibrium conditions.

15Beissner and Riedel [2019] develop a general equilibrium model based on such non–
additive pricing functionals.
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We now turn to a somewhat artificial one period model with uncountably
many states. It serves well the purpose to illustrate the need for sublinear
expectations and thus stands in an exemplary way for more complex models
involving continuous time and uncertain violatility, e.g.

Example 3.5 (Highly incomplete one-period models). This example shows that
sublinear expectations are necessary to characterize the absence of arbitrage
under Knightian uncertainty and with incomplete markets.

Let Ω = [0, 1] and ≤ be the usual pointwise partial order. Payoffs X are
bounded Borel measurable functions on Ω. As in the previous example X ∈ P if
and only if X(ω) ≥ 0 for every ω ∈ Ω. Let the relevant claims be again R = P+.
Assume that there is a riskless asset with interest rate r ≥ 0. Let the risky asset
have the price S0 = 1 at time 0 and assume it pays off S1(ω) = 2ω at time 1.

As in the previous example, I is spanned by the net return ℓ̂ := S1/(1 + r)− 1.
There exist uncountably many martingale measures because any probability

measure Q satisfying
∫

Ω
2ωQ(dω) = 1 + r is a martingale measure. Denote by

Qac the set of all martingale measures.
No single martingale measure is sufficient to characterize the absence of

arbitrage because there is no single linear martingale probability measure Q with
the full support property, i.e. such that EQ[R] > 0 for every R ∈ R. Indeed, as
1{ω} ∈ R for every ω ∈ Ω, such a measure would have to assign a non-zero value
to every point, an impossibility for uncountable Ω. Hence, the equivalence “no
arbitrage” to “there is a martingale measure with some monotonicity property”
does not hold true if one insists on having a linear martingale measure. Instead,
one needs to work with the nonlinear expectation

E(X) := sup
Q∈Qac

EQ[X ]

for X ∈ H.
We claim that E has full support and characterizes the absence of arbitrage

in the sense of Theorem 2.1 and Theorem 2.2. To see that E has full support,
note that R ∈ P+ if and only if R ≥ 0 and there is ω∗ ∈ Ω so that R(ω∗) > 0.
Define Q∗ by

Q∗ :=
1

2

(

δ{ω∗} + δ{1−ω∗}

)

.

Then Q∗ is a martingale measure; in particular, we have

E(R) ≥ EQ∗ [R] =
1

2
R(ω∗) +

1

2
R(1 − ω∗) > 0 = E(0).

This example shows that the heterogeneity of agents needed in equilibrium
to support an arbitrage-free financial market and the necessity to allow for
sublinear expectations are two complementary faces of the same issue.

4 The Efficient Market Hypothesis

The Efficient Market Hypothesis (EMH) plays a fundamental role in the history
of Financial Economics. Fama [1970] calls markets informationally efficient if all
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available information is reflected properly in current asset prices. There are sev-
eral interpretations of this conjecture; in the early days after its appearance, the
efficient market hypothesis was usually interpreted as asset prices being random
walks in the sense that (log-) returns be independent from the past and identi-
cally distributed with the mean return being equal to the return of a safe bond.
Later, the informational efficiency of asset prices was interpreted as a martingale
property; (conditional) expected returns of all assets are equal to the return of
a safe bond under some probability measure. This conjecture of the financial
market’s being a “fair game” dates back to Bachelier [1900] and was rediscov-
ered by Paul Samuelson (Samuelson [1965, 1973]). In dynamic settings, market
efficiency is thus strongly related to (publicly available) information. Under
Knightian uncertainty, the role of information and the martingale property of
prices needs to be adapted properly as we shall see in this section16.

Throughout this section, let us assume that we have a frictionless one–period
or discrete–time multiple period financial market as in Example 3.1, 1. and 2.
In particular, the set of net trades I is a subspace of H.

4.1 Strong Efficient Market Hypothesis under Risk

Let P be a probability measure on (Ω,F). Set H = L1(Ω,F ,P). Let the common
order by given by X ≤ Y if and only if the expected payoffs under the common
prior P satisfy

EP[X ] ≤ EP[Y ]. (4.1)

In this case, negligible claims coincide with the claims with mean zero under P.
Moreover, X ∈ P if EP[X ] ≥ 0. We take R = P+.

Proposition 4.1. Under the assumptions of this subsection, the financial mar-

ket is viable if and only if the common prior P is a martingale measure. In this

case, P is the unique martingale measure.

Proof. Note that the common order as given by (4.1) is complete. If P is a mar-
tingale measure, the common order ≤ itself defines a linear preference relation
under which the market is viable with A = {≤}.

On the other hand if the market is viable, Theorem 2.2 ensure that there
exists a sublinear martingale expectation with full support. By the Riesz duality
theorem, a martingale functional φ ∈ Qac can be identified with a probability
measure Q on (Ω,F). It is absolutely continuous (in our sense defined above)
if and only if it assigns the value 0 to all negligible claims. As a consequence,
we have EQ[X ] = 0 whenever EP[X ] = 0. Then Q = P follows17.

16We refer to Jarrow and Larsson [2012] for a detailed analysis of the interplay between
different information sets and market efficiency under a common prior. In our framework, the
information flow is taken as given; it is implicitly encoded in the set of available claims I. We
do not consider the issue of private information of insiders.

17If Q 6= P, there is an event A ∈ F with Q(A) < P(A). Set X = 1A − P(A). Then
0 = EP[X] > Q(A)− P(A) = EQ[X].
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The only absolutely continuous martingale measure is the common prior
itself. As a consequence, all traded assets have zero net expected return under
the common prior. A financial market is thus viable if and only if the strong
form of the expectations hypothesis holds true.

4.2 Weak Efficient Market Hypothesis under Risk

In its weak form, the efficient market hypothesis states that expected returns
are equal under some (pricing) probability measure P∗ that is equivalent to the
common prior (or “real world” probability) P.

Let P be a probability on (Ω,F) and H = L1(Ω,F ,P). In this example, the
common order is given by the almost sure order under the common prior P, i.e.,

X ≤ Y ⇔ P(X ≤ Y ) = 1.

A payoff is negligible if it vanishes P–almost surely and is positive if it is P–
almost surely nonnegative. Let the relevant claims R consist of the P–almost
surely nonnegative payoffs that are strictly positive with positive P–probability,

R =
{

R ∈ L1(Ω,F ,P)+ : P(R > 0) > 0
}

.

A functional φ ∈ H′
+ is an absolutely continuous martingale functional if

and only if it can be identified with a probability measure Q that is absolutely
continuous with respect to P and if all net trades have expectation zero under
φ. In other words, discounted asset prices are Q-martingales. We thus obtain
a version of the Fundamental Theorem of Asset Pricing under risk, similar to
Harrison and Kreps [1979] and Dalang et al. [1990].

Proposition 4.2. Under the assumptions of this subsection, the financial mar-

ket is viable if and only if there is a martingale measure Q that has a bounded

density with respect to P.

Proof. If Q is a martingale measure equivalent to P, define X �∗ Y if and only
if EQ[X ] ≤ EQ[Y ]. Then the market is viable with A = {�∗}. Condition (2.2)
is satisfied because Q is equivalent to P.

If the market is viable, Theorem 2.2 ensures that there exists a sublinear
martingale expectation with full support. By the Riesz duality theorem, a
martingale functional φ ∈ Qac can be identified with a probability measure
Qφ that is absolutely continuous with respect to P, has a bounded density
with respect to P, and all net trades have zero expectation zero under Qφ. In
other words, discounted asset prices are Qφ-martingales. From the full support
property, the family {Qφ}φ∈Qac

is equivalent to P, meaning that Qφ(A) = 0
for every φ ∈ Qac if and only if P(A) = 0. By the Halmos-Savage Theorem
(Halmos and Savage [1949], ?Theorem 1.61]FoellmerSchied11), there exists a
countable subfamily {Qφn

}n∈N ⊂ {Qφ}φ∈Qac
which is equivalent to P. The

measure Q :=
∑∞

n=1 2−nQφn
is the desired equivalent martingale measure.
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4.3 The EMH under Knightian Uncertainty

We turn our attention to the EMH under Knightian uncertainty. We consider
first the case when the common order is derived from a common set of pri-
ors, inspired by the multiple prior approach in decision theory (Bewley [2002],
Gilboa and Schmeidler [1989]). We then discuss a second-order Bayesian ap-
proach that is inspired by the smooth ambiguity model (Klibanoff et al. [2005]).

4.3.1 Strong Efficient Market Hypothesis under Knightian Uncer-

tainty

We consider a generalization of the original EMH to Knightian uncertainty
that shares a certain analogy with Bewley’s incomplete expected utility model
(Bewley [2002]) and Gilboa and Schmeidler’s maxmin expected utility (Gilboa and Schmeidler
[1989])18.

Let Ω be a metric space and M be a convex, weak∗-closed set of priors on
(Ω,F). Define the semi-norm

‖X‖M := sup
P∈M

EP|X |.

Let L1(Ω,F ,M) be the closure of continuous and bounded functions on Ω under
the semi-norm ‖·‖M. If we identify the functions which are P-almost surely equal
for every P ∈ M, then H = L1(Ω,F ,M) is a Banach space. The topological
dual of L1(Ω,F ,M) can be identified with probability measures that admit a
bounded density with respect to some measure in M (Bion-Nadal et al. [2012],
Beissner and Denis [2018]). Therefore, any absolutely continuous martingale
functional Q ∈ Qac is a probability measure and M is closed in the weak∗

topology induced by L1(Ω,F ,M).
Consider the uniform order induced by expectations over M,

X ≤ Y ⇔ ∀P ∈ M EP[X ] ≤ EP[Y ] .

Then, Z ∈ Z if EP[Z] = 0 for every P ∈ M. A claim X is positive if EP[X ] ≥ 0
for every P ∈ M. Let the relevant claims consist of nonnegative claims with a
positive return under some prior belief, i.e.

R = {R ∈ H : 0 ≤ inf
P∈M

EP[R] and 0 < sup
P∈M

EP[R]} .

Proposition 4.3. Under the assumptions of this subsection, if the financial

market is viable, then the set of absolutely continuous martingale functionals

Qac is a subset of the set of priors M.

Proof. Set EM(X) := supP∈M EP[X ]. Then, Y ≤ 0 if and only if EM(Y ) ≤ 0.
Fix Q ∈ Qac with the preference relation given by X �Q Y if EQ[X − Y ] ≤ 0.

18For the relation between the two approaches, compare also the discussion of objective and
subjective ambiguity in Gilboa et al. [2010].
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Let us assume that Q /∈ M. Since M is a weak∗-closed and convex subset
of the topological dual of L1(Ω,F ,M), there exists X∗ ∈ L1(Ω,F ,M) with
EM(X∗) < 0 < EQ[X∗] by the Hahn-Banach theorem. In particular, X∗ ∈
L1(Ω,F ,M) and X∗ ≤ 0. Since �Q is weakly monotone with respect to ≤,
X∗ �Q 0. Hence, EQ[X∗] ≤ 0 contradicting the choice of X∗. Therefore,
Qac ⊂ M.

Expected returns of traded securities are thus not necessarily the same under
all P ∈ M. However, the set of martingale measures is a subset of M here, and
thus the strong form of the EMH holds true on a subset of the set of priors M.

In general, it is not possible to characterize the set of martingale measures
in more detail. However, we can identify a subspace of claims on which expec-
tations under all priors coincide. Let HM be the subspace of claims that have
no ambiguity in the mean in the sense that EP[X ] is the same constant for all
P ∈ M. Consider the submarket (HM, τ,≤, IM,RM) with IM := I ∩HM and
RM := R ∩ HM. Restricted to this market, the sets of measures Qac and M
are identical and the strong EMH holds true.

The following simple example illustrates these points.

Example 4.4. Let Ω = {0, 1}2, H be all functions on Ω. Then, H = R4 and
we write X = (x, y, v, w) for any X ∈ H. Let I = {(x, y, 0, 0) : x + y = 0}.
Consider the priors given by

M :=

{(

p,
1

2
− p,

1

4
,

1

4

)

: p ∈

[

1

6
,

1

3

]}

.

There is Knightian uncertainty about the first two states, yet no Knightian
uncertainty about the last two states. One directly verifies that Qac = {Q∗} =
{(14 ,

1
4 ,

1
4 ,

1
4 )}. Notice that Q∗ ∈ M.

In this case, HM = {X = (x, y, v, w) ∈ H : x = y}. In particular, all priors
in M coincide with Q∗ when restricted to HM. Hence, for the claims that are
mean-ambiguity-free, the strong efficient market hypothesis holds true.

4.3.2 Weak Efficient Market Hypothesis under Knightian Uncer-

tainty

Let M be a common set of priors on (Ω,F). Let H be the space of bounded,
measurable functions. Let the common order be given by the quasi-sure ordering
under the common set of priors M, i.e.

X ≤ Y ⇔ P(X ≤ Y ) = 1, ∀ P ∈ M.

In this case, a claim X is negligible if it vanishes M–quasi surely, i.e. with
probability one for all P ∈ M. An indicator function 1A is thus negligible if the
set A is polar, i.e. a null set with respect to every probability in M. Take the
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set of relevant claims to be19

R = {R ∈ P : ∃ P ∈ M such that P(R > 0) > 0 } .

Proposition 4.5. Under the assumptions of this subsection, the financial mar-

ket is viable if and only if there is a set of finitely additive martingale measures

Q that has the same polar sets as the common set of priors M.

Proof. Suppose that the market is viable. We show that the class Qac from
Theorem 2.2 satisfies the desired properties. The martingale property follows
by definition and from the fact that I is a linear space. Suppose that A is polar.
Then, 1A is negligible and from the absolute continuity property, it follows
φ(A) = 0 for any φ ∈ Qac. On the other hand, if A is not polar, 1A ∈ R and
from the full support property, it follows that there exists φA ∈ Qac such that
φA(A) > 0. Thus, A is not Qac-polar. We conclude that M and Qac share
the same polar sets. For the converse implication, define E(·) := supφ∈Q Eφ[·].
Using the same argument as above, E is a sublinear martingale expectation with
full support. From Theorem 2.2 the market is viable.

Under Knightian uncertainty, there can be indeterminacy in arbitrage–free
prices as there is frequently a range of economically justifiable arbitrage–free
prices. Such indeterminacy has been observed in full general equilibrium analy-
sis as well (Rigotti and Shannon [2005], Dana and Riedel [2013], Beissner and Riedel
[2019]). In this sense, Knightian uncertainty shares a similarity with incomplete
markets and other frictions like transaction costs, but the economic reason for
the indeterminacy is different.

4.3.3 A second-order Bayesian version of the EMH

We now consider a common order ≤ obtained by a second–order Bayesian ap-
proach, in the spirit of the smooth ambiguity model (Klibanoff et al. [2005]).

Let F be a sigma algebra on Ω and P = P(Ω) the set of all probability
measures on (Ω,F). Let µ be a second order prior, i.e. a probability measure20

on P. The common prior in this setting is given by the probability measure
P̂ : F → [0, 1] defined as P̂(A) =

∫

P
P(A)µ(dP). Let H = L1(Ω,F , P̂).

The common order is given by

X ≤ Y ⇔ µ ({P ∈ P : P(X ≤ Y ) = 1 }) = 1 .

A claim is positive if it is P–almost surely nonnegative for all priors in the
support of the second order prior µ. A claim is relevant if the set of beliefs

19These sets of positive and relevant claims can be derived from Gilboa–Schmeidler utilities.
Define X � Y if and only if EM[U(X)] := infP∈M EP[U(X)] ≤ EM[U(Y )] for all strictly
increasing and concave real functions U . The 0 � Y is equivalent to Y dominating the zero
claim in the sense of second order stochastic dominance under all P ∈ M. Hence, Y is
nonnegative almost surely for all P ∈ M.

20From Theorem 15.18 of Aliprantis and Border [1999], the space of probability measure is
a Borel space if and only if Ω is a Borel space. This allows to define second order priors.
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P under which the claim is strictly positive with positive probability is not
negligible according to the second order prior21.

Proposition 4.6. Under the assumptions of this subsection, the financial mar-

ket is viable if and only if there is a martingale measure Q that has the form

Q(A) =

∫

P

∫

A

DdPµ(dP)

for some state price density D.

Proof. The set function P̂ : F → [0, 1] defined as P̂(A) =
∫

P
P(A)µ(dP) is a

probability measure on (Ω,F). The induced P̂-a.s. order coincides with ≤ of
this subsection. The result thus follows from Proposition 4.2 and the rules of
integration with respect to P̂.

The smooth ambiguity model thus leads to a second–order Bayesian ap-
proach for asset returns. All asset returns are equal to the safe return for some
second order martingale measure; the expectation is the average expected return
corresponding to a risk–neutral second order prior Q.

4.3.4 Probability–Free Models in Mathematical Finance

We conclude this section by relating our work to recent results in Mathematical
Finance. Our approach gives a microeconomic foundation to the characteriza-
tion of absence of arbitrage in “robust” or “model–free” finance.

In this subsection, Ω is a metric space. We let ≤ be the pointwise order. In
the finance literature, this approach is called model-independent as it does not
rely on any probability measure. There is still a model, of course, given by Ω
and the pointwise order.

A claim is nonnegative, X ∈ P , if X(ω) ≥ 0 for every ω ∈ Ω and R ∈ P+ if
R ∈ P and there exists ω0 ∈ Ω such that R(ω0) > 0.

In the literature several different notions of arbitrage have been used. Our
framework allows to unify these different approaches under one framework with
the help of the notion of relevant claims22.

We start with the following large set of relevant claims

Rop := P+ = {R ∈ P : ∃ω0 ∈ Ω such that R(ω0) > 0 } .

With this notion of relevance, an investment opportunity ℓ is an arbitrage if
ℓ(ω) ≥ 0 for every ω with a strict inequality for some ω, corresponding to the

21The order used in this section can be derived from smooth ambiguity utility functions.
Define X ≤ Y if and only if∫

P

ψ (EP[U(X)])µ(dP) ≤

∫
P

ψ (EP[U(X)])µ(dP)

for all strictly increasing and concave real functions U and ψ. Recall that ψ reflects uncertainty
aversion. The 0 ≤ Y is equivalent to Y dominating the zero claim in the sense of second order
stochastic dominance for µ–almost all P ∈ P.

22One might also compare the similar approach in Burzoni et al. [2016].
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notion of one point arbitrage considered in Riedel [2015]. In this setting, no
arbitrage is equivalent to the existence a set of martingale measures Qop so that
for each point there exists Q ∈ Qop putting positive mass to that point.

In a second example, one requires the relevant claims to be continuous, i.e.,

Ropen := {R ∈ Cb(Ω) ∩ P : ∃ω0 ∈ Ω such that R(ω0) > 0 } .

It is clear that when R ∈ R then it is non-zero on an open set. Hence, in this
example the empty set is the only small set and the large sets are the ones that
contain a non-empty open set.

Then, ℓ ∈ I is an arbitrage opportunity if it is nonnegative and is strictly
positive on an open set, corresponding to the notion of open arbitrage that
appears in Burzoni et al. [2016], Riedel [2015], Dolinsky and Soner [2014b].

Acciaio et al. [2016] defines a claim to be an arbitrage when it is positive
everywhere. In our context, this defines the relevant claims as those that are
positive everywhere, i.e.,

R+ := {R ∈ P : R(ω) > 0, ∀ ω ∈ Ω } .

Bartl et al. [2017] consider a slightly stronger notion of relevant claims.
Their choice is

Ru = {R ∈ P : ∃c ∈ (0,∞) such that R ≡ c } . (4.2)

Hence, ℓ ∈ I is an arbitrage if is uniformly positive, which is sometimes called
uniform arbitrage. Notice that with the choice Ru, the notions of arbitrage and
free lunch with vanishing risk are equivalent.

The no arbitrage condition with Ru is the weakest while the one with Rop is
the strongest. The first one is equivalent to the existence of one sublinear mar-
tingale expectation. The latter one is equivalent to the existence of a sublinear
expectation that puts positive measure to all points.

In general, the no-arbitrage condition based on R+ is not equivalent to the
absence of uniform arbitrage. However, absence of uniform arbitrage implies
the existence of a linear bounded functional that is consistent with the market.
In particular, risk neutral functionals are positive on Ru. Moreover, if the set
I is “large” enough then one can show that the risk neutral functionals give
rise to countably additive measures. In Acciaio et al. [2016], this conclusion is
achieved by using the so-called “power-option” placed in the set I as a static
hedging possibility, compare also Bartl et al. [2017].

5 Proof of the Theorems

Let (H, τ,≤ I,R) be a given financial market. Recall that (H, τ) is a metrizable
topological vector space; we write H′ for its topological dual. We let H′

+ be the
set of all positive functionals, i.e., ϕ ∈ H′

+ provided that ϕ(X) ≥ 0 for every
X ≥ 0 and X ∈ H.
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The following functional generalizes the notion of super-replication func-
tional from the probabilistic to our order-theoretic framework. It plays a central
role in our analysis. For X ∈ H, let

D(X) := inf{ c ∈ R : ∃{ℓn}
∞
n=1 ⊂ I, {en}

∞
n=1 ⊂ H+, en

τ
→ 0, (5.1)

such that c + en + ℓn ≥ X} .

Note that D is extended real valued. In particular, it takes the value +∞ when
there are no super-replicating portfolios. It might also take the value −∞ if
there is no lower bound.

We observe first that the absence of free lunches with vanishing risk can be
equivalently described by the statement that the super-replication functional D
assigns a strictly positive value to all relevant claims.

Proposition 5.1. The financial market is strongly free of arbitrage if and only

if D(R) > 0 for every R ∈ R.

Proof. Suppose {ℓn}
∞
n=1 ⊂ I is a free lunch with vanishing risk. Then, there is

R∗ ∈ R and {en}∞n=1 ⊂ H+ with en
τ
→ 0 so that en + ℓn ≥ R∗. In view of the

definition, we obtain D(R∗) ≤ 0.
To prove the converse, suppose that D(R∗) ≤ 0 for some R∗ ∈ R. Then,

the definition of D(R∗) implies that there is a sequence of real numbers {ck}∞k=1

with ck ↓ D(R∗), net trades {ℓk,n}∞n=1 ⊂ I, and {ek,n}∞n=1 ⊂ H+ with ek,n
τ
→ 0

for n → ∞ such that

ck + ek,n + ℓk,n ≥ R∗, ∀ n, k ∈ N.

Let Br(0) be the ball with radius r centered at zero with the metric compatible
with τ . For every k, choose n = n(k) such that ek,n ∈ B 1

k
(0). Set ℓ̃k := ℓk,n(k)

and ẽk := ek,n(k) + (ck ∨ 0). Then, ẽk + ℓ̃k ≥ R∗ for every k. Since ẽk
τ
→ 0,

{ℓ̃k}∞k=1 is a free lunch with vanishing risk.

It is clear that D is convex and we now use the tools of convex duality to
characterize this functional in more detail. Recall the set of absolutely contin-
uous martingale functionals Qac defined in Section 2.

Proposition 5.2. Assume that the financial market is strongly free of arbi-

trage. Then, the super-replication functional D defined in (5.1) is a lower semi-

continuous, sublinear martingale expectation with full support. Moreover,

D(X) = sup
ϕ∈Qac

ϕ(X), X ∈ H.

The technical proof of this statement can be found in Appendix A. The
important insight is that the super-replication functional can be described by a
family of linear functionals. In the probabilistic setup, they correspond to the
family of (absolutely continuous) martingale measures. With the help of this
duality, we are now able to carry out the proof of our first main theorem.
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Proof of Theorem 2.1. Suppose first that the market is viable and for some R∗ ∈
R, there are sequences {en}∞n=1 ⊂ H+ and {ℓn}∞n=1 ⊂ I with en

τ
→ 0, and

en + ℓn ≥ R∗. By viability, there is a family of agents {�a}a∈A ⊂ A such that
for some a ∈ A we have R∗ ≻a 0. Since ≤ is a pre-order compatible with the
vector space operations, we have −en + R∗ ≤ ℓn. As �a ∈ A is monotone with
respect to ≤, we have −en+R∗ �a ℓn. By optimality of the zero trade, ℓn �a 0,
and we get −en + R∗ �a 0. By lower semi–continuity of �a, we conclude that
R∗ �a 0, a contradiction.

Suppose now that the market is strongly free of arbitrage. By Proposition
5.1, D(R) > 0, for every R ∈ R. In particular, this implies that the family Qac

is non-empty, as otherwise the supremum over Qac would be −∞. For each
ϕ ∈ Qac, define �ϕ by,

X �ϕ Y, ⇔ ϕ(X) ≤ ϕ(Y ).

One directly verifies that �ϕ∈ A. Moreover, ϕ(ℓ) ≤ ϕ(0) = 0 for any ℓ ∈ I
implies that ℓ∗ϕ = 0 is optimal for �ϕ and (2.1) is satisfied. Finally, Proposition
5.1 and Proposition 5.2 imply that for any R ∈ R, there exists ϕ ∈ Qac such
that ϕ(R) > 0; thus, (2.2) is satisfied. We deduce that {�ϕ}ϕ∈Qac

supports the
financial market (H, τ,≤, I,R).

The previous arguments also imply our version of the fundamental theorem
of asset pricing. In fact, with absence of arbitrage, the super-replication function
is a lower semi-continuous sublinear martingale expectation with full support.
Convex duality allows to prove the converse.

Proof of Theorem 2.2. Suppose the market is viable. From Theorem 2.1, it is
strongly free of arbitrage. From Proposition 5.2, the super-replication functional
is the desired lower semi-continuous sublinear martingale expectation with full
support.

Suppose now that E is a lower semi-continuous sublinear martingale expec-
tation with full support. In particular, E is a convex, lower semi-continuous,
proper functional. Then, by the Fenchel-Moreau theorem,

E(X) = sup
ϕ∈dom(E∗)

ϕ(X),

where dom(E∗) = {ϕ ∈ H′ : ϕ(X) ≤ E(X), ∀ X ∈ H }. We can proceed as
in the proof of Theorem 2.1, to verify the viability of (H, τ,≤, I,R) using the
preference relations {�ϕ}ϕ∈dom(E∗).

We finally show the maximality of EQac
. Let E be a lower semi-continuous

sublinear martingale expectation with full support. With the help of the mar-
tingale property of E one can show, as in Lemma A.5, that every ϕ ∈ dom(E∗)
is a martingale functional. As E is monotone with respect to ≤, we also con-
clude that ϕ vanishes for negligible payoffs. Hence, we obtain dom(E∗) ⊂ Qac.
From the above dual representation for EQac

, E(X) ≤ EQac
(X) for every X ∈ H

follows.
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6 Conclusion

This paper studies economic viability of a given financial market without assum-
ing a common prior. We show that it is possible to understand the equivalence
of economic viability and the absence of arbitrage on the basis solely of a com-
mon order; the order (which is typically quite incomplete) is unanimous in the
sense that agents’ preferences are monotone with respect to it. A given finan-
cial market is viable if and only if a sublinear pricing functional exists that is
consistent with the given asset prices.

The properties of the common order are reflected in expected equilibrium
returns. When the common order is given by the expected value under some
common prior, expected returns under that prior have to be equal in equilibrium,
and thus, Fama’s Efficient Market Hypothesis results. If the common order is
determined by the almost sure order under some common prior, we obtain the
weak form of the efficient market hypothesis that states that expected returns
are equal under some (martingale) measure that shares the same null sets as
the common prior.

In situations of Knightian uncertainty, it might be too demanding to impose
a common prior for all agents. When Knightian uncertainty is described by a
class of priors, it is necessary to replace the linear (martingale) expectation by
a sublinear expectation. It is then no longer possible to reach the conclusion
that expected returns are equal under some probability measure. Knightian
uncertainty might thus be an explanation for empirical violations of the Effi-
cient Market Hypothesis. In particular, there is always a range of economically
justifiable arbitrage–free prices. In this sense, Knightian uncertainty shares
similarities with markets with friction or that are incomplete, but the economic
reason for the price indeterminacy is different.

The philosophy of our approach might also be interesting for the foundations
of other parts of economics; for example, one might similarly pursue an attempt
to discuss the foundations of mechanism design and game theory without as-
suming a common prior.

A Proof of Proposition 5.2

We separate the proof in several steps. Recall that the super-replication func-
tional D is defined in (5.1).

Lemma A.1. Assume that the financial market is strongly free of arbitrage.

Then, D is convex, lower semi–continuous and D(X) > −∞ for every X ∈ H.

Proof. The convexity of D follows immediately from the definitions. To prove
lower semi-continuity, consider a sequence Xk

τ
→ X with D(Xk) ≤ c. Then, by

definition, for every k there exists a sequence {ek,n}∞n=1 ⊂ H+ with ek,n
τ
→ 0

for n → ∞ and a sequence {ℓk,n}∞n=1 ⊂ I such that c+ 1
k

+ek,n + ℓk,n ≥ Xk, for
every k, n. Let Br(0) be the ball of radius r centered around zero in the metric
compatible with τ . Choose n = n(k) such that ek,n ∈ B 1

k
and set ẽk := ek,n(k),
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ℓ̃k := ℓk,n(k). Then, c+ 1
k

+ ẽk + (X−Xk) + ℓ̃k ≥ X and 1
k

+ ẽk + (X−Xk)
τ
→ 0

as k → ∞. Hence, D(X) ≤ c. This proves that D is lower semi-continuous.
The constant claim 1 is relevant and by Proposition 5.1, D(1) ∈ (0, 1]; in

particular, it is finite. Towards a counter-position, suppose that there exists
X ∈ H such that D(X) = −∞. For λ ∈ [0, 1], set Xλ := X + λ(1 −X). The
convexity of D implies that D(Xλ) = −∞ for every λ ∈ [0, 1). Since D is lower
semi-continuous, 0 < D(1) ≤ limλ→1 D(Xλ) = −∞, a contradiction.

Lemma A.2. Assume that the financial market is strongly free of arbitrage.

The super-replication functional D is a sublinear expectation with full-support.

Moreover, D(c) = c for every c ∈ R, and

D(X + ℓ) ≤ D(X), ∀ ℓ ∈ I, X ∈ H. (A.1)

In particular, D has the martingale property.

Proof. We prove this result in two steps.
Step 1. In this step we prove that D is a sublinear expectation. Let X,Y ∈ H

such that X ≤ Y . Suppose that there are c ∈ R, {ℓn}∞n=1 ⊂ I and {en}∞n=1 ⊂

H+ with en
τ
→ 0 satisfying, Y ≤ c + en + ℓn. Then, from the transitivity of ≤,

we also have X ≤ c + en + ℓn. Hence, D(X) ≤ D(Y ) and consequently D is
monotone with respect to ≤.

Translation-invariance, D(c + g) = c + D(g), follows directly from the defi-
nitions.

We next show that D is sub-additive. Fix X,Y ∈ H. Suppose that either
D(X) = ∞ or D(Y ) = ∞. Then, since by Lemma A.1 D > −∞, we have
D(X) + D(Y ) = ∞ and the sub-additivity follows directly. Now we consider
the case D(X),D(Y ) < ∞. Hence, there are cX , cY ∈ R, {ℓXn }∞n=1, {ℓ

Y
n }

∞
n=1 ⊂ I

and {eXn }∞n=1, {e
Y
n }

∞
n=1 ⊂ H+ with eXn , eYn

τ
→ 0 satisfying,

cX + ℓXn + eXn ≥ X, cY + ℓYn + eYn ≥ Y.

Set c̄ := cX + cY , ℓ̄n := ℓXn + ℓYn , ēn := eXn + eYn . Since I is a positive cone,

{ℓ̄n}∞n=1 ⊂ I, ēn
τ
→ 0 and

c̄ + ēn + ℓ̄n ≥ X + Y ⇒ D(X + Y ) ≤ c̄.

Since this holds for any such cX , cY , we conclude that

D(X + Y ) ≤ D(X) + D(Y ).

Finally we show that D is positively homogeneous of degree one. Suppose
that c+ en + ℓn ≥ X for some constant c, {ℓn}∞n=1 ⊂ I and {en}∞n=1 ⊂ H+ with

en
τ
→ 0. Then, for any λ > 0 and for any n ∈ N, λc + λen + λℓn ≥ λX . Since

λℓn ∈ I and λen
τ
→ 0, this implies that

D(λX) ≤ λ D(X), λ > 0, X ∈ H. (A.2)
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Notice that above holds trivially when D(X) = +∞. Conversely, if D(λX) =
+∞ we are done. Otherwise, we use (A.2) with λX and 1/λ,

D(X) = D

(

1

λ
λX

)

≤
1

λ
D(λX), ⇒ λD(X) ≤ D(λX).

Hence, D positively homogeneous and it is a sublinear expectation.

Step 2. In this step, we assume that the financial market is strongly free of
arbitrages. Since 0 ∈ I, we have D(0) ≤ 0. If the inequality is strict we obviously
have a free lunch with vanishing risk, hence D(0) = 0 and from translation-
invariance the same applies to every c ∈ R. Moreover, by Proposition 5.1, D
has full support. Thus, we only need to prove (A.1).

Suppose that X ∈ H, ℓ ∈ I and c + en + ℓXn ≥ X . Since I is a convex cone,
ℓXn + ℓ ∈ I and c + en + (ℓ + ℓXn ) ≥ X + ℓ. Therefore, D(X + ℓ) ≤ c. Since this
holds for all such constants, we conclude that D(X + ℓ) ≤ D(X) for all X ∈ H.
In particular D(ℓ) ≤ 0 and the martingale property is satisfied.

Remark A.3. Note that for H = (Bb, ‖ · ‖∞), the definition of D reduces to
the classical one:

D(X) := inf { c ∈ R : ∃ ℓ ∈ I, such that c + ℓ ≥ X } . (A.3)

Indeed, if c + ℓ ≥ X for some c and ℓ, one can use the constant sequences
ℓn ≡ ℓ and en ≡ 0 to get that D in (5.1) is less or equal than the one in (A.3).
For the converse inequality observe that if c + en + ℓn ≥ X for some c, ℓn and
en with ‖en‖∞ → 0, then the infimum in (A.3) is less or equal than c. The
thesis follows. Lemma A.1 is in line with the well known fact that the classical
super-replication functional in Bb is Lipschitz continuous with respect to the
sup-norm topology.

The results of Lemma A.1 and Lemma A.2 imply that the super-replication
functional defined in (5.1) is a proper convex function in the language of convex
analysis, compare, e.g., Rockafellar [2015]. By the classical Fenchel-Moreau
theorem, we have the following dual representation of D,

D(X) = sup
ϕ∈H′

{ϕ(X) −D∗(ϕ)} , X ∈ H, where

D∗(ϕ) = sup
Y ∈H

{ϕ(Y ) −D(Y )} , ϕ ∈ H′.

Since ϕ(0) = D(0) = 0, D∗(ϕ) ≥ ϕ(0)−D(0) = 0 for every ϕ ∈ H′. However, it
may take the value plus infinity. Set,

dom(D∗) := { ϕ ∈ H′ : D∗(ϕ) < ∞} .

Lemma A.4. We have

dom(D∗) =
{

ϕ ∈ H′
+ : D∗(ϕ) = 0

}

=
{

ϕ ∈ H′
+ : ϕ(X) ≤ D(X), ∀ X ∈ H

}

.
(A.4)
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In particular,

D(X) = sup
ϕ∈dom(D∗)

ϕ(X), X ∈ H.

Furthermore, there are free lunches with vanishing risk in the financial market,

whenever dom(D∗) is empty.

Proof. Clearly the two sets on the right of (A.4) are equal and included in
dom(D∗). The definition of D∗ implies that

ϕ(X) ≤ D(X) + D∗(ϕ), ∀ X ∈ H, ϕ ∈ H′.

By homogeneity,

ϕ(λX) ≤ D(λX) + D∗(ϕ), ⇒ ϕ(X) ≤ D(X) +
1

λ
D∗(ϕ),

for every λ > 0 and X ∈ H. Suppose that ϕ ∈ dom(D∗). We then let λ go to
infinity to arrive at ϕ(X) ≤ D(X) for all X ∈ Bb. Hence, D∗(ϕ) = 0.

Fix X ∈ H+. Since ≤ is monotone with respect to the pointwise order,
−X ≤ 0. Then, by the monotonicity of D, ϕ(−X) ≤ D(−X) ≤ D(0) ≤ 0.
Hence, ϕ ∈ H′

+.

Now suppose that dom(D∗) is empty or, equivalently, D∗ ≡ ∞. Then, the
dual representation implies that D ≡ −∞. In view of Proposition 5.1, there are
free lunches with vanishing risk in the financial market.

We next show that, under the assumption of absence of free lunch with
vanishing risk with respect to any R, the set dom(D∗) is equal to Qac defined
in Section 2. Since any relevant set R by hypothesis contains Ru defined in
(4.2), to obtain this conclusion it would be sufficient to assume the absence of
free lunch with vanishing risk with respect to any Ru.

Lemma A.5. Suppose the financial market is strongly free of arbitrage with

respect to R. Then, dom(D∗) is equal to the set of absolutely continuous mar-

tingale functionals Qac.

Proof. The fact that dom(D∗) is non-empty follows from Lemma A.2 and Lemma
A.4. Fix an arbitrary ϕ ∈ dom(D∗). By Lemma A.2, D(c) = c for every constant
c ∈ R. In view of the dual representation of Lemma A.4,

cϕ(1) = ϕ(c) ≤ D(c) = c, ∀c ∈ R.

Hence, ϕ(1) = 1.
We continue by proving the monotonicity property. Suppose that X ∈ P .

Since 0 ∈ I, we obviously have D(−X) ≤ 0. The dual representation implies
that ϕ(−X) ≤ D(−X) ≤ 0. Thus, ϕ(X) ≥ 0.

We now prove the supermartingale property. Let ℓ ∈ I. Obviously D(ℓ) ≤ 0.
By the dual representation, ϕ(ℓ) ≤ D(ℓ) ≤ 0. Hence ϕ is a martingale functional.
The absolute continuity follows as in Lemma E.3. Hence, ϕ ∈ Qac.
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To prove the converse, fix an arbitrary ϕ ∈ Qac. Suppose that X ∈ H,
c ∈ R, {ℓn}∞n=1 ⊂ I and {en}∞n=1 ⊂ H+ with en

τ
→ 0 satisfy, c + en + ℓn ≥ X .

From the properties of ϕ,

0 ≤ ϕ(c + en + ℓn −X) = ϕ(c + en −X) + ϕ(ℓn) ≤ c− ϕ(X − en).

Since en
τ
→ 0 and ϕ is continuous, ϕ(X) ≤ D(X) for every X ∈ H. Therefore,

ϕ ∈ dom(D∗).

Proof of Proposition 5.2. It follows directly from Lemma A.4 and Lemma A.5.

We have the following immediate corollary, which states that is the first part
of the Fundamental Theorem of Asset Pricing in this context.

Corollary A.6. The financial market is strongly free of arbitrage if and only

Qac 6= ∅ and for any R ∈ R, there exists ϕR ∈ Qac such that ϕR(R) > 0.

Proof. By contradiction, suppose that there exists R∗ such that en + ℓn ≥
R∗ with en

τ
→ 0. Take ϕR∗ such that ϕR∗(R∗) > 0 and observe that 0 <

ϕR∗(R∗) ≤ ϕ(en + ℓn) ≤ ϕ(en). Since ϕ ∈ H′
+, ϕ(en) → 0 as n → ∞, which is

a contradiction.
In the other direction, assume that the financial market is strongly free of

arbitrage. By Lemma A.5, dom(D∗) = Qac. Let R ∈ R and note that, by
Proposition 5.1, D(R) > 0. It follows that there exists ϕR ∈ dom(D∗) = Qac

satisfying ϕR(R) > 0.

Remark A.7. The set of positive functionals Qac ⊂ H′
+ is the analogue of the

set of local martingale measures of the classical setting. Indeed, all elements
of ϕ ∈ Qac can be regarded as supermartingale “measures”, since ϕ(ℓ) ≤ 0 for
every ℓ ∈ I. Moreover, the property ϕ(Z) = 0 for every Z ∈ Z can be regarded
as absolute continuity with respect to null sets. The full support property is our
analog to the converse absolute continuity. However, the full-support property
cannot be achieved by a single element of Qac.

Bouchard and Nutz [2015] study arbitrage for a set of priors M. The abso-
lute continuity and the full support properties then translate to the statement
that “M and Q have the same polar sets”. In the paper by Burzoni et al. [2016],
a class of relevant sets S is given and the two properties can summarised by the
statement “the set S is not contained in the polar sets of Q”.

Also, when H = Bb, H
′ is the class of bounded additive measures ba. It is

a classical question whether one can restrict Q to the set of countable additive
measures car(Ω). In several of the examples described in Section 3 and 4 this
is proved. However, there are examples for which this is not true.
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B Linearly Growing Claims

Let B(Ω,F) be the set of all F measurable real-valued functions on Ω. Any
Banach space contained in B(Ω,F) satisfies the requirements for H. In our
examples, we used the spaces L1(Ω,F ,P), L2(Ω,F ,P), L1(Ω,F ,M) (defined in
the subsection 4.3.1) and Bb(Ω,F), the set of all bounded functions in B(Ω,F),
with the supremum norm. In the latter case, the super-hedging functional enjoys
several properties as discussed in Remark A.3.

Since we require that I ⊂ H (see Section 2), in the case of H = Bb(Ω,F) this
means that all the trading instruments are bounded. This could be restrictive
in some applications and we now provide another example that overcomes this
difficulty. To define this set, fix L∗ ∈ B(Ω,F) with L∗(ω) ≥ 1 for every ω ∈ Ω.
Consider the linear space

Bℓ :=
{

X ∈ B(Ω,F) : ∃ α ∈ R+ such that |X(ω)| ≤ αL∗(ω) ∀ω ∈ Ω
}

equipped with the norm,

‖X‖ℓ := inf{α ∈ R+ : |X(ω)| ≤ αL∗(ω) ∀ω ∈ Ω} =

∥

∥

∥

∥

X

L∗

∥

∥

∥

∥

∞

.

We denote the topology induced by this norm by τℓ. Then, Bℓ(Ω,F) with τℓ
is a Banach space and satisfies our assumptions. Note that if L∗ = 1, then
Bℓ(Ω,F) = Bb(Ω,F).

Now, suppose that

L∗(ω) := c∗ + ℓ̂(ω), ω ∈ Ω, (B.1)

for some c∗ > 0, ℓ̂ ∈ I. Then, one can define the super-replication functional as
in (A.3).

C No Arbitrage versus No Free-Lunch-with-Vanishing-

Risk

Let (H, τ,≤, I,R) be a financial market. An arbitrage opportunity is always
a free lunch with vanishing risk (refer to Section 2 for the definition of the
concepts). The purpose of this section is to investigate when these two notions
are equivalent.

C.1 Attainment

Definition C.1. We say that a financial market has the attainment property,
if for every X ∈ H there exists a minimizer in (5.1), i.e., there exists ℓX ∈ I
satisfying,

D(X) + ℓX ≥ X.
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Proposition C.2. Suppose that a financial market has the attainment property.

Then, it is strongly free of arbitrage if and only if it has no arbitrages.

Proof. Let R∗ ∈ R. By hypothesis, there exist ℓ ∈ I∗ so that D(R∗) + ℓ∗ ≥ R∗.
If the market has no arbitrage, then we conclude that D(R∗) > 0. In view of
Proposition 5.1, this proves that the financial market is also strongly free of
arbitrage. Since no arbitrage is weaker condition, they are equivalent.

C.2 Finite discrete time markets

In this subsection and in the next section, we restrict ourselves to arbitrage
considerations in finite discrete-time markets.

We start by introducing a discrete filtration F := (Ft)
T
t=0 on subsets of Ω.

Let S = (St)
T
t=0 be an adapted stochastic process23,24 with values in RM

+ for
some M . For every ℓ ∈ I there exist predictable integrands Ht ∈ Bb(Ω,Ft−1)
for all t = 1, . . . , T such that,

ℓ = (H · S)T :=

T
∑

t=1

Ht · ∆St, where ∆St := (St − St−1).

Denote by ℓt := (H · S)t for t ∈ I and ℓ := ℓT .

Set ℓ̂ =
∑

k,i S
i
k −Si

0. Then, one can directly show that with an appropriate

c∗, we have L∗ := c∗ + ℓ̂ ≥ 1. Define Bℓ using ℓ̂, set H = Bℓ and denote by Iℓ
the subset of I with Ht bounded for every t = 1, . . . , T .

We next prescribe the equivalence relation and the relevant sets. Our start-
ing point is the set of negligible sets Z which we assume is given. We also make
the following structural assumption.

Assumption C.3. Assume that the trading is allowed only at finite time points
labeled through 1, 2, . . . , T . Let I be given as above and let Z be a lattice which
is closed with respect to pointwise convergence.

We also assume that R = P+ and the pre-order is given by,

X ≤ Y ⇔ ∃Z ∈ Z such that X ≤Ω Y + Z,

where ≤Ω denotes the pointwise order of functions. In particular, X ∈ P if and
only if there exists Z ∈ Z such that Z ≤Ω X .

An example of the above structure is the Example 4.3.2. In that example,
Z is polar sets of a given class M of probabilities. Then, in this context all
inequalities should be understood as M quasi-surely. Also note also that the

23 When working with N stocks, a canonical choice for Ω would be

Ω = {ω = (ω0, . . . , ωT ) : ωi ∈ [0,∞)N , i = 0, . . . , T }.

Then, one may take St(ω) = ωt and F to be the filtration generated by S.
24 Note that we do not specify any probability measure.
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assumptions on Z are trivially satisfied when Z = {0}. In this latter case,
inequalities are pointwise.

Observe that in view of the definition of ≤ and the fact R = P+, ℓ ∈ I is
an arbitrage if and only if there is R∗ ∈ P+ and Z∗ ∈ Z, so that ℓ ≥Ω R∗ +Z∗.
Hence, ℓ ∈ I is an arbitrage if and only if ℓ ∈ P+. We continue by showing
the equivalence of the existence of an arbitrage to the existence of a one-step
arbitrage.

Lemma C.4. Suppose that Assumption C.3 holds. Then, there exists arbitrage

if and only if there exists t ∈ {1, . . . , T }, h ∈ Bb(Ω,Ft−1) such that ℓ := h · ∆St

is an arbitrage.

Proof. The sufficiency is clear. To prove the necessity, suppose that ℓ ∈ I is an
arbitrage. Then, there is a predictable process H so that ℓ = (H · S)T . Also
ℓ ∈ P+, hence, ℓ /∈ Z and there exists Z ∈ Z such that ℓ ≥ Z. Define

t̂ := min{t ∈ {1, . . . , T } : (H · S)t ∈ P+ } ≤ T.

First we study the case where ℓt̂−1 ∈ Z. Define

ℓ∗ := Ht̂ · ∆St̂,

and observe that ℓt̂ = ℓt̂−1 + ℓ∗. Since ℓt̂−1 ∈ Z, we have that ℓ∗ ∈ P+ iff
ℓt̂ ∈ P+ and consequently the lemma is proved.

Suppose now ℓt̂−1 /∈ Z. If ℓt̂−1 ≥Ω 0, then ℓt̂−1 ∈ P and, thus, also in P+,

which is not possible from the minimality of t̂. Hence the set A := {ℓt̂−1 <Ω 0}
is non empty and Ft̂−1-measurable. Define, h := Ht̂χA and ℓ∗ := h ·∆St̂. Note
that,

ℓ∗ = χA(ℓt̂ − ℓt̂−1) ≥Ω χAℓt̂ ≥Ω χAZ ∈ Z.

This implies ℓ∗ ∈ P . Towards a contradiction, suppose that ℓ∗ ∈ Z. Then,

ℓt̂−1 ≥Ω χAℓt̂−1 ≥ χA (Z − ℓ∗) ∈ Z,

Since, by assumption, ℓt̂−1 /∈ Z we have ℓt̂−1 ∈ P+ from which t̂ is not minimal.

The following is the main result of this section. For the proof we follow the
approach of Kabanov and Stricker [2001] which is also used in Bouchard and Nutz
[2015]. We consider the financial market Θ∗ = (Bℓ, ‖ · ‖ℓ,≤Ω, I,P+) described
above.

Theorem C.5. In a finite discrete time financial market satifying the Assump-

tion C.3, the following are equivalent:

1. The financial market Θ∗ has no arbitrages.

2. The attainment property holds and Θ∗ is free of arbitrage.

3. The financial market Θ∗ is strongly free of arbitrages.

32



Proof. In view of Proposition C.2 we only need to prove the implication 1 ⇒ 2.
For X ∈ H such that D(X) is finite we have that

cn + D(H) + ℓn ≥Ω X + Zn,

for some cn ↓ 0, ℓn ∈ I and Zn ∈ Z. Note that since Z is a lattice we assume,
without loss of generality, that Zn = (Zn)− and denote by Z− := {Z− | Z ∈ Z}.

We show that C := I−(L0
+(Ω,F)+Z−) is closed under pointwise convergence

where L0
+(Ω,F) denotes the class of pointwise nonnegative random variables.

Once this result is shown, by observing that X−cn−D(X) = Wn ∈ C converges
pointwise to X −D(X) we obtain the attainment property.

We proceed by induction on the number of time steps. Suppose first T = 1.
Let

Wn = ℓn −Kn − Zn → W, (C.1)

where ℓn ∈ I, Kn ≥Ω 0 and Zn ∈ Z−. We need to show W ∈ C. Note that any
ℓn can be represented as ℓn = Hn

1 · ∆S1 with Hn
1 ∈ L0(Ω,F0).

Let Ω1 := {ω ∈ Ω | lim inf |Hn
1 | < ∞}. From Lemma 2 in Kabanov and Stricker

[2001] there exist a sequence {H̃k
1 } such that {H̃k

1 (ω)} is a convergent subse-
quence of {Hk

1 (ω)} for every ω ∈ Ω1. Let H1 := lim inf Hn
1 χΩ1 and ℓ :=

H1 · ∆S1.
Note now that Zn ≤Ω 0, hence, if lim inf |Zn| = ∞ we have lim inf Zn = −∞.

We show that we can choose Z̃n ∈ Z−, K̃n ≥Ω 0 such that W̃n := ℓn−K̃n−Z̃n →
W and lim inf Z̃n is finite on Ω1. On {ℓn ≥Ω W} set Z̃n = 0 and K̃n = ℓn −W .
On {ℓn <Ω W} set

Z̃n = Zn ∨ (ℓn −W ), K̃n = Knχ{Zn=Z̃n}
.

It is clear that Zn ≤Ω Z̃n ≤Ω 0. From Lemma E.1 we have Z̃n ∈ Z. Moreover,
it is easily checked that W̃n := ℓn− K̃n− Z̃n → W . Nevertheless, from the con-
vergence of ℓn on Ω1 and Z̃n ≥Ω −(W − ℓn)+, we obtain {ω ∈ Ω1 | lim inf Z̃n >
−∞} = Ω1. As a consequence also lim inf K̃n is finite on Ω1, otherwise we could
not have that W̃n → W . Thus, by setting Z̃ := lim inf Z̃n and K̃ := lim inf K̃n,
we have W = ℓ− K̃ − Z̃ ∈ C.

On ΩC
1 we may take Gn

1 := Hn
1 /|H

n
1 | and let G1 := lim inf Gn

1χΩC
1

. Define,
ℓG := G1 · ∆S1. We now observe that,

{ω ∈ ΩC
1 | ℓG(ω) ≤ 0} ⊆ {ω ∈ ΩC

1 | lim inf Zn(ω) = −∞}.

Indeed, if ω ∈ ΩC
1 is such that lim inf Zn(ω) > −∞, applying again Lemma 2 in

Kabanov and Stricker [2001], we have that

lim inf
n→∞

X(ω) + Zn(ω)

|Hn
1 (ω)|

= 0,

implying ℓG(ω) is nonnegative. Set now

Z̃n := Zn ∨−(ℓG)−.
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From Zn ≤Ω Z̃n ≤Ω 0, again by Lemma E.1, Z̃n ∈ Z. By taking the limit for
n → ∞ we obtain (ℓG)− ∈ Z and thus, ℓG ∈ P . Since the financial market has
no arbitrages G1 · ∆S1 = Z ∈ Z and hence one asset is redundant. Consider
a partition Ωi

2 of ΩC
1 on which Gi

1 6= 0. Since Z is stable under multiplication
(Lemma E.2), for any ℓ∗ ∈ I, there exists Z∗ ∈ Z and H∗ ∈ L0(Ωi

2,F0) with
(H∗)i = 0, such that ℓ∗ = H∗ · ∆S1 + Z∗ on Ωi

2. Therefore, the term ℓn in
(C.1) is composed of trading strategies involving only d−1 assets. Iterating the
procedure up to d-steps we have the conclusion.

Assuming now that C.1 holds for markets with T − 1 periods, with the same
argument we show that we can extend to markets with T periods. Set again
Ω1 := {ω ∈ Ω | lim inf |Hn

1 | < ∞}. Since on Ω1 we have that,

Wn −Hn
1 · ∆S1 =

T
∑

t=2

Hn
t · ∆St −Kn − Zn → W −H1 · ∆S1.

The induction hypothesis allows to conclude that W −H1 ·S1 ∈ C and therefore
W ∈ C. On ΩC

1 we may take Gn
1 := Hn

1 /|H
n
1 | and let G1 := lim inf Gn

1χΩC
1

.

Note that Wn/|Hn
1 | → 0 and hence

T
∑

t=2

Hn
t

|Hn
1 |

· ∆St −
Kn

|Hn
1 |

−
Zn

|Hn
1 |

→ −G1 · ∆S1.

Since Z is stable under multiplication Zn

|Hn
1
| ∈ Z and hence, by inductive hy-

pothesis, there exists H̃t for t = 2, . . . , T and Z̃ ∈ Z such that

ℓ̃ := G1 · ∆S1 +
T
∑

t=2

H̃t · ∆St ≥Ω Z̃ ∈ Z.

The No Arbitrage condition implies that ℓ̃ ∈ Z. Once again, this means that one
asset is redundant and, by considering a partition Ωi

2 of ΩC
1 on which Gi

1 6= 0,
we can rewrite the term ℓn in (C.1) with d− 1 assets. Iterating the procedure
up to d-steps we have the conclusion.

The above result is consistent with the fact that in classical “probabilistic”
model for finite discrete-time markets only the no-arbitrage condition and not
the no-free lunch condition has been utilized.

D Countably Additive Measures

In this section, we show that in general finite discrete time markets, it is possible
to characterize viability through countably additive functionals. Also in this
section, ≤Ω denotes the pointwise order for functions. We prove this result by
combining some results from Burzoni et al. [2019] which we collect in Appendix
E.2. We refer to that paper for the precise technical requirements for (Ω,F, S),
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we only point out that, in addition to the previous setting, Ω needs to be a
Polish space.

We let Qca be the set of countably additive positive probability measures Q,
with finite support, such that S is a Q-martingale and Z− := {−Z− | Z ∈ Z}.
For X ∈ H, set

Z(X) :=
{

Z ∈ Z− : ∃ℓ ∈ I such that D(X) + ℓ ≥Ω X + Z
}

,

which is always non-empty when D(X), e.g. ∀X ∈ Bb. By the lattice property
of Z, if D(X) + ℓ ≥Ω X + Z the same is true if we take Z = Z−. From
Theorem C.5 we know that, under no arbitrage, the attainment property holds
and, hence, Z(X) is non-empty for every X ∈ H. For A ∈ F , we define

DA(X) := inf {c ∈ R : ∃ℓ ∈ I such that c + ℓ(ω) ≥ X(ω), ∀ω ∈ A }

Qca
A := {Q ∈ Qca : Q(A) = 1 } .

We need the following technical result in the proof of the main Theorem.

Proposition D.1. Suppose Assumption C.3 holds and the financial market has

no arbitrages. Then, for every X ∈ H and Z ∈ Z(X), there exists AX,Z such

that

AX,Z ⊂ { ω ∈ Ω : Z(ω) = 0 }, (D.1)

and

D(X) = DAX,Z
(X) = sup

Q∈Qca
AX,Z

EQ[X ].

Before proving this result, we state the main result of this section.

Theorem D.2. Suppose Assumption C.3 holds. Then, the financial market has

no arbitrages if and only if for every (Z,R) ∈ Z−×P+ there exists QZ,R ∈ Qca

satisfying

EQZ,R
[R] > 0 and EQZ,R

[Z] = 0. (D.2)

Proof. Suppose that the financial market has no arbitrages. Fix (Z,R) ∈ Z− ×
P+ and ZR ∈ Z(R). Set Z∗ := ZR + Z ∈ Z(R). By Proposition D.1, there
exists A∗ := AR,Z∗ satisfying the properties listed there. In particular,

0 < D(R) = sup
Q∈Qca

A∗

EQ[R].

Hence, there is Q∗ ∈ Qca
A∗

so that EQ∗ [R] > 0. Moreover, since ZR, Z ∈ Z−,

A∗ ⊂ {Z∗ = 0} = {ZR = 0} ∩ {Z = 0}.

In particular, EQ∗ [Z] = 0.
To prove the opposite implication, suppose that there exists R ∈ P+, ℓ ∈ I

and Z ∈ Z such that ℓ ≥Ω R + Z. Then, it is clear that ℓ ≥Ω R − Z−. Let
Q∗ := Q−Z−,R ∈ Qca satisfying (D.2). By integrating both sides against Q∗,
we obtain

0 = EQ∗ [ℓ] ≥ EQ∗ [R− Z−] = EQ∗ [R] > 0.

which is a contradiction. Thus, there are no arbitrages.
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We continue with the proof of Proposition D.1.

Proof of Proposition D.1. Since there are no arbitrages, by Theorem C.5 we
have the attainment property. Hence, for a given X ∈ H, the set Z(X) is non-
empty.

Step 1. We show that, for any Z ∈ Z(X), D(X) = D{Z=0}(X).
Note that, since D(X)+ℓ ≥Ω X+Z, for some ℓ ∈ I, the inequality D{Z=0}(X) ≤
D(X) is always true. Towards a contradiction, suppose that the inequality is
strict, namely, there exist c < D(X) and ℓ̃ ∈ I such that c + ℓ̃(ω) ≥ X(ω) for
any ω ∈ {Z = 0}. We show that

Z̃ := (c + ℓ̃−X)−χ{Z<0} ∈ Z.

This together with c + ℓ̃ ≥Ω X + Z̃ yields a contradiction. Recall that Z is a
linear space so that nZ ∈ Z for any n ∈ N. From nZ ≤Ω Z̃∨(nZ) ≤Ω 0, we also
have Z̃n := Z̃ ∨ (nZ) ∈ Z, by Lemma E.1. By noting that {Z̃ < 0} ⊂ {Z < 0}
we have that Z̃n(ω) → Z̃(ω) for every ω ∈ Ω. From the closure of Z under
pointwise convergence, we conclude that Z̃ ∈ Z.

Step 2. For a given set A ∈ FT , we let A∗ ⊂ A be the set of scenarios visited
by martingale measures (see (E.2) in the Appendix for more details). We show
that, for any Z ∈ Z(X), D(X) = D{Z=0}∗(X).

Suppose that {Z = 0}∗ is a proper subset of {Z = 0} otherwise, from Step
1, there is nothing to show. From Lemma E.6 there is a strategy ℓ̃ ∈ I such
that ℓ̃ ≥ 0 on {Z = 0}25. Lemma E.5 (and in particular (E.4)) yields a finite
number of strategies ℓt1, . . . ℓ

t
βt

with t = 1, . . . T , such that

{Ẑ = 0} = {Z = 0}∗ where Ẑ := Z −
T
∑

t=1

βt
∑

i=1

χ{Z=0}(ℓti)
+ . (D.3)

Moreover, for any ω ∈ {Z = 0}\{Z = 0}∗, there exists (i, t) such that ℓti(ω) > 0.
We are going to show that, under the no arbitrage hypothesis, ℓti ∈ Z for any
i = 1, . . . βt, t = 1, . . . T . In particular, from the lattice property of the linear
space Z, we have Ẑ ∈ Z.

We illustrate the reason for t = T , by repeating the same argument up
to t = 1 we have the thesis. We proceed by induction on i. Start with
i = 1. From Lemma E.5 we have that ℓTi ≥ 0 on {Z = 0} and, therefore,
{ℓT1 < 0} ⊆ {Z < 0}. Define Z̃ := −(ℓT1 )− ≤Ω 0. By using the same argument
as in Step 1, we observe that nZ ≤Ω Z̃∨ (nZ) ≤Ω 0 with nZ ∈ Z for any n ∈ N.
From {ℓT1 < 0} ⊆ {Z < 0} and the closure of Z under pointwise convergence,
we conclude that Z̃ ∈ Z. From no arbitrage, we must have ℓT1 ∈ Z.
Suppose now that ℓTj ∈ Z for every 1 ≤ j ≤ i−1. From Lemma E.5, we have that

ℓTi ≥ 0 on {Z −
∑i−1

j=1 ℓ
T
i = 0} and, therefore, {ℓTi < 0} ⊆ {Z −

∑i−1
j=1 ℓ

T
i < 0}.

25Note that restricted to {Z = 0} this strategy yields no risk and possibly positive gains,
in other words, this is a good candidate for being an arbitrage.
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The argument of Step 1 allows to conclude that ℓTi ∈ Z.

We are now able to show the claim. The inequality D{Z=0}∗(X) ≤ D{Z=0}(X) =
D(X) is always true. Towards a contradiction, suppose that the inequality is
strict, namely, there exist c < D(X) and ℓ̃ ∈ I such that c + ℓ̃(ω) ≥ X(ω) for
any ω ∈ {Z = 0}∗. We show that

Z̃ := (c + ℓ̃−X)−χΩ\{Z=0}∗ ∈ Z.

This together with c + ℓ̃ ≥Ω X + Z̃, yields a contradiction. To see this recall
that, from the above argument, Ẑ ∈ Z with Ẑ as in (D.3). Moreover, again by
(D.3), we have {Z̃ < 0} ⊂ {Ẑ < 0}. The argument of Step 1 allows to conclude
that Z̃ ∈ Z.

Step 3. We are now able to conclude the proof. Fix Z ∈ Z(X) and set
AX,Z := {Z = 0}∗. Then,

D(X) = D{Z=0}(X) = D(AX,Z)∗(X) = sup
Q∈Qca

AX,Z

EQ[X ],

where the first two equalities follow from Step 1 and Step 2 and the last equality
follows from Proposition E.7.

E Some technical tools

E.1 Preferences

We start with a simple but a useful condition for negligibility.

Lemma E.1. Consider two negligible claims Ẑ, Z̃ ∈ Z. Then, any claim Z ∈ H
satisfying Ẑ ≤ Z ≤ Z̃ is negligible as well.

Proof. By definitions, we have,

X ≤ X + Ẑ ≤ X + Z ≤ X + Z̃ ≤ X ⇒ X ∼ X + Z.

Thus, Z ∈ Z.

Lemma E.2. Suppose that Z is closed under pointwise convergence. Then, Z
is stable under multiplication, i.e., ZH ∈ Z for any H ∈ H.

Proof. Note first that Zn := Z((H∧n)∨−n) ∈ Z. This follows from by Lemma
E.1 and the fact that Z is a cone. By taking the limit for n → ∞, the result
follows.

We next prove that E(Z) = 0 for every Z ∈ Z.

Lemma E.3. Let E be a sublinear expectation. Then,

E(c + λ[X + Y ]) = c + E(λ[X + Y ]) = c + λE(X + Y ) (E.1)

≤ c + λ [ − (−E(X) − E(Y ))] ,
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for every c ∈, λ ≥ 0, X,Y ∈ H. In particular,

E(Z) = 0, ∀ Z ∈ Z.

Proof. Let X,Y ∈ H. The sub-additivity of UE implies that

UE(X ′) + UE(Y ′) ≤ UE(X ′ + Y ′), ∀ X ′, Y ′ ∈ H,

even when they take values ±∞. The definition of UE now yields,

E(X + Y ) = −UE(−X − Y ) ≤ − [UE(−X) + UE(−Y )] = − (−E(X) − E(Y )) .

Then, (E.1) follows directly from the definitions.
Let Z ∈ Z. Then, −Z,Z ∈ P and E(Z), E(−Z) ≥ 0. Since −Z ∈ P , the

monotonicity of E implies that E(X−Z) ≥ E(X) for any X ∈ H. Choose X = Z
to arrive at

0 = E(0) = E(Z − Z) ≥ E(Z) ≥ 0.

Hence, E(Z) is equal to zero.

E.2 Finite Time Markets

We here recall some results from Burzoni et al. [2019] (see Section 2 therein
for the precise specification of the framework). We are given a filtered space
(Ω,F,F) with Ω a Polish space and F containing the filtration generated by a
Borel-measurable process S. We denote by Q the set of martingale measures
for the process S, whose support is a finite number of points. For a given set
A ∈ F , QA = {Q ∈ Q | Q(A) = 1}. We define the set of scenarios charged by
martingale measures as

A∗ := {ω ∈ Ω | ∃Q ∈ QA s.t. Q(ω) > 0} =
⋃

Q∈QA

supp(Q). (E.2)

Definition E.4. We say that ℓ ∈ I is a one-step strategy if ℓ = Ht · (St−St−1)
with Ht ∈ L(X,Ft−1) for some t ∈ {1, . . . , T }. We say that a ∈ I is a one-point
Arbitrage on A iff a(ω) ≥ 0 ∀ω ∈ A and a(ω) > 0 for some ω ∈ A.

The following Lemma is crucial for the characterization of the set A∗ in
terms of arbitrage considerations.

Lemma E.5. Fix any t ∈ {1, . . . , T } and Γ ∈ F . There exist an index β ∈
{0, . . . , d}, one-step strategies ℓ1, . . . , ℓβ ∈ I and B0, ..., Bβ, a partition of Γ,
satisfying:

1. if β = 0 then B0 = Γ and there are No one-point Arbitrages, i.e.,

ℓ(ω) ≥ 0 ∀ω ∈ B0 ⇒ ℓ(ω) = 0 ∀ω ∈ B0.

2. if β > 0 and i = 1, . . . , β then:
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⊲ Bi 6= ∅,

⊲ ℓi(ω) > 0 for all ω ∈ Bi,

⊲ ℓi(ω) ≥ 0 for all ω ∈ ∪β
j=iB

j ∪B0.

We are now using the previous result, which is for some fixed t, to identify
A∗. Define

AT := A

At−1 := At \

βt
⋃

i=1

Bi
t , t ∈ {1, . . . , T }, (E.3)

where Bi
t := Bi,Γ

t , βt := βΓ
t are the sets and index constructed in Lemma E.5

with Γ = At, for 1 ≤ t ≤ T . Note that, for the corresponding strategies ℓti we
have

A0 =

T
⋂

t=1

βt
⋂

i=1

{ℓti = 0}. (E.4)

Lemma E.6. A0 as constructed in (E.3) satisfies A0 = A∗. Moreover, No

one-point Arbitrage on A ⇔ A∗ = A.

Proposition E.7. Let A ∈ F . We have that for any F-measurable random

variable g,
πA∗(g) = sup

Q∈QA

EQ[g]. (E.5)

with πA∗(g) = inf {x ∈ R | ∃a ∈ I such that x + aT (ω) ≥ g(ω) ∀ω ∈ A∗}. In

particular, the left hand side of (E.5) is attained by some strategy a ∈ I.
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