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AN ASYMPTOTIC ANALYSIS OF HIERARCHICAL
CONTROL OF MANUFACTURING SYSTEMS
UNDER UNCERTAINTY*

JOHN LEHOCZKY,' SURESH P. SETHIL* H. M. SONER' anD
MICHAEL 1. TAKSARS

This paper presents an asymptotic analysis of a hierarchical manufacturing system with
machines subject to breakdown and repair. The rate of change in machine states is much
larger than the rate of fluctuation 1n demand and the rate of discounting of costs, and this
gives rise to a limiting problem in which the stochastic machine availability is replaced by the
equilibrium mean availability. The value function for the original problem converges to the
value function of the limiting problem. Moreover, the control for the original problem can be
constructed from the optimal controls of the limiting problem in a way which guarantees
asymptotic optimality of the value function. The limiting problem is computationally more
tractable and sometimes has a closed form solution.

Introduction. Most manufacturing systems are large systems characterized by
several subsystems such as plants and warehouses, a wide variety of machines and
equipment, and a large number of different products. Moreover, these systems are
subject to discrete events such as building new facilities, purchasing new equipment
and scrapping old ones, machine setups, failures and repairs, new product introduc-
tions, etc. These events could be deterministic or stochastic. The management and
operation of these systems must recognize and react to these events. Because of the
large size of these systems and the presence of these events, exact optimal feedback
policies to run these systems may be quite difficult to obtain, both theoretically and
computationally.

One way to cope with these complexities is to develop methods of hierarchical
control of these systems. The idea is to reduce the overall complex problem into
manageable approximate problems or subproblems, each of which is linked by means
of a hierarchical integrative system. There are several different, and not mutually
exclusive, ways in which the reduction of the complexity might be accomplished.
These include decomposition into the problems of the smaller subsystems with a
proper coordinating mechanism, aggregation of products along with a disaggregation
procedure, replacement of random processes by their averages and possibly other
moments, etc. For further details on hierarchical approaches in production planning
systems, we refer the reader to a survey of the literature by Bitran and Tirupati [2].

In this paper, we formulate a stochastic production planning problem subject to
uncertain machine breakdowns and repairs. The exact optimal solution of such a
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ANALYSIS OF HIERARCHICAL CONTROL OF MANUFACTURING SYSTEMS 597

problem is quite complex and difficult to obtain. In order for us to reduce the
complexity in the manner of the averaging method mentioned above, we consider the
case in which the rate at which the machine breakdown and repair events occur is
much larger than the rate of fluctuation in demand and the rate of discounting.

More specifically, we derive a limiting deterministic problem which is simple to
solve. This limiting problem is obtained by replacing the stochastic machine availabil-
ity process by the average total capacity of machines. From its optimal control, we
construct an approximate control for the original stochastic problem. As our main
result, we show that the cost of the solution obtained with the control thus con-
structed approaches the optimal cost of the original problem as the rate of machine
failure and repair events increase to infinity. In other words, the constructed approxi-
mate control is asymptotically optimal.

The significance of this result for the decision-making hierarchy is that the planning
level management can ignore the day-to-day fluctuation in machine capacities, or
more generally, the details of shop-floor events. The operational level management
can then derive approximate optimal policies for running the actual (stochastic)
manufacturing system.

It is important to note that the model we have formulated in the paper is
sufficiently rich and representative, albeit deliberately simple, to illustrate the idea of
asymptotic optimality in the hierarchical control of the stochastic systems, manufac-
turing or otherwise. Indeed, the main purpose of the paper is to present a formal
methodology for handling systems in which some of the exogenous processes, deter-
ministic or stochastic, are changing much faster than the remaining ones. By a fast
changing process, we mean a process that is changing so rapidly that from any initial
condition, it reaches its stationary distribution in a time period during which there are
few, if any, fluctuations in the other processes.

For example, in the case of a fast changing Markov process, the state distribution
converges rapidly to a distribution close to its stationary distribution. In the case of a
fast changing deterministic process, the time-average of the process reaches a value
near its limiting long-run average value. Furthermore, it is possible to associate a time
constant with each of these processes, namely the reciprocal of the rate of this
convergence. It is related to the time it takes the process to cover a specified fraction
of the distance between its current value and its equilibrium value, or the time
required for the initial distribution to become sufficiently close to the stationary
distribution. The concept of a time constant is quite common in the engineering
literature. In the special case of exponential radioactive decay, which is related to our
exponential discounting process, a familiar measure of the time constant is known as
the half life. Thus if p is the discount rate used in our model, its half life is given by
log2/p, which is of the same order as 1/p, and can be taken as the measure of the
time constant of the discounting process.

Our methodology, therefore, applies to stochastic control problems, where the
objective function is to minimize average long-run cost or long-run discounted cost
with a sufficiently small discount rate, so that its reciprocal is much larger than the
time constants of some of the exogenous processes that are involved. In this case, it
seems reasonable to replace the fast changing processes by their ergodic versions of
their long-run averages in order to simplify the problem. Moreover, an asymptotically
optimal solution to the original problem can be derived from the optimal solution of
the simplified limiting problem.

Our methodology has recently been applied by Jiang and Sethi [9] to a manufactur-
ing system consisting of machine states modelled by a Markov process with weak and
strong interactions. In particular, Jiang and Sethi [9] have been able to reduce a
problem with one fast-changing machine and one slowly-changing machine into a
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598 J. LEHOCZKY, S. P. SETHI, H. M. SONER & M. I. TAKSAR

single-machine problem, which can then be provided with an explicit solution ob-
tained by Akella and Kumar [1] for single unreliable machine problems.

Earlier, in the case of systems with discrete events that occur at different rates,
Gershwin [7], inspired by methods of singular perturbations (see [11]), suggested an
alternative hierarchical framework. In his paper, Gershwin conjectured that the
“hierarchical decomposition is asymptotically optimal as the time scales separate,”
and cited this as an outstanding research problem.

In another context, Dempster et al. [5] studied a two-level problem, in which level 1
must decide the optimal number of machines to buy and level 2 must schedule a given
number n of jobs on the purchased machines to minimize the makespan. The
objective function is to minimize the weighted total cost of machines and the length
of the makespan. Dempster et al. [5] solved the simplified level 1 problem that
suppresses the combinatorial fine structure of the level 2 problem by replacing the
makespan with a given number of machines by a known lower bound. This allowed
them to obtain the number of machines to be purchased as the optimal solution of
the simplified problems. With these machines, level 2 solves the scheduling problem.
They showed that if the processing times of the jobs have independent and identical
distributions with finite second moment, then their approximation is asymptotically
optimal as the number of jobs approaches infinity; see also Bitran and Tirupati [2] for
related references.

The plan of the paper is as follows. In §1, we state the precise stochastic problem
under consideration. §2 derives the Bellman equation and studies the properties of
the value function. In §3, we prove the main result of the paper. An example is solved
explicitly in §4 to illustrate the result and to conclude the paper.

1. Formulation. In the production control model, we assume there are n distinct
part types produced by m identical machines. The machines are subject to break-
down and repair. We assume, as in Akella and Kumar [1] and Gershwin {7], that
breakdowns occur independently of whether or not machines are being used. Let
{a¢, t > 0} represent the process of machine availability. Here af € M = {0,1,...,m}
represents the number of machines available for production at time ¢. The a; process
is modelled by a continuous time Markov chain defined on {{), &, P} with infini-
tesimal generator Q¢ = (1/€)Q, € > 0. Here Q ={g,} is an (m + D X (m + 1)
irreducible stochastic matrix with X g, = 0, j = 0,..., m, and has equilibrium distri-
bution » which satisfies »Q =0, v-1 =1, where 1 =(1,1,...,1) € R Let
Fe=o0(a,0<s <t).

The machine availability at time ¢, «f, determines the set of feasible production
rates u, € K(af) with

(1.1) K()={ueR,u>0,v u<i}.

Here v = (y,,7v,,...,7,) are positive constants which represent the fraction of a
single machine needed to produce part type i at rate 1 and - denotes inner product.
Let x, € R” denote the inventory /backorder at time ¢ of each part type. For a given
production rate u,, the inventory is given by the equation

d
(1.2) Ex,=u,—d,

where d € R” is the constant demand for the parts.

Copyrght© 20071 AllRights Reserved



ANALYSIS OF HIERARCHICAL CONTROL OF MANUFACTURING SYSTEMS 599

The cost for a given control policy u.= {u,, t > 0} is given by
(1.3) Je(x,i,u) = Ef e "'G(x,,u,)dl,
0

where p > 0 is the fixed discount rate and the function G, which represents the cost
of production and inventory holding (or shortage) costs, is positive, convex and
satisfies

(A1) |G(x,w)l < k(1 + |x|*) and

(A2) |G(x,u) — G(y,w) < k(1 + G(x,u)lx — ylif [x —y| < b
for suitable constants k, a, b > 0. Assumptions (A1) and (A2) are usual assumptions
on the growth rate of functions to ensure the existence of a solution to the Bellman
equation to be considered in §2. Note that G(x, u) is required in (A1) to be bounded
only by a function of x. This is sufficient in our problem as u takes values in K(af)
and «f takes values in the bounded set M = {0,1,2,..., m}.

The value function for the control problem is given by

(1.4) ve(x,i) = infJe(x,i,u.)

with the infimum taken over all % ¢-adapted policies u subject to u, € K(af).
We shall assume that

(1.5) E=0(l),

p

i.e., the time constant e of the machine availability process is much smaller than the
time constant 1/p of the discounting process (see Remark 3 in §3). It should be
emphasized that the demand is assumed to be constant for convenience in exposition.
In fact, demand could be assumed to be a stochastic process as long as its fluctuations
are much slower than the capacity fluctuations due to machine breakdown and repair.

2. Properties of the value function. The Bellman equation associated with this
problem is given by

(2.1)

pve(x,i) + sup {—(u —d) Vo(x,i) — G(x,u)} — le‘(x,i) =0,
uek(@) €
xeR",i=01,....m

where

(2.2) Qué(x,i) = E,Oquue(x,j) = Y q,[ve(x,)) - U‘(x,i?].

]#1

The value function v¢(-,i) is in general not differentiable, and hence is not a
solution of (2.1) in the classical sense. However, in the following lemma, we make
precise the notion of a nondifferentiable solution to (2.1). This involves the concept of
a subdifferential used in convex analysis. A vector p € R" is called a subdifferential
of a convex function f(-) at a point x if f(y) — f(x) =p-(y —x) for all y € R".
The set of all subdifferentials of f(-) at x is denoted by df(x).

Copyright © 2001 All Rights Reserved



600 J. LEHOCZKY, S. P. SETHI, H. M. SONER & M. I. TAKSAR

Lemma 2.1.  ve(-, 1) is Lipschitz continuous and is convex for each i. There exists a
constant C such that

(2.3)

1
|x — vl

lve(x, i)l + %Iue(x,i) —ve(x, )+ foe(x,i) —ve(y, i)l < C(1 + [x]%)

for every i, j and x + y satisfying |x — y| < b, where a and b are the same as in (Al)
and (A2). Moreover, (2.1) holds whenever v<(-, i) is differentiable, while at the points of
nondifferentiability

(2.4)  pv(x,i)+ sup {—(u—d) -p—G(x,u)} — %Que(x,i) >0
ueK()

for all p € dve(x, ).
Proor. The convexity of vé(x, i) in x follows from the assumption of convexity of
G and the linear dynamics of (1.2).
Since both G > 0 and v > 0, by choosing «, = 0 and using (A1) we obtain
(2.5) 0 <ve(x,i) <C(1+Ix]).
FixieM, x #y € R" with |x — y| < b, and ¢ > 0. Pick u. so that
(2.6) J(x,i,u.) <ve(x,i) +¢&.

Since u. is still feasible for the initial condition (y, i), by using (2.6) we obtain

ve(y,i) —vs(x,i) <J(y,i,u.) —J(x,i,u.) +¢

=£+4+ Efwe_”’[G(y,,u,) — G(x,,u,)] dt
0

<é+ Efwe""’k(l + G(x,,u))ly, —x,ldt (by(A2)).
0

Observe that y, — x, =y — x. Hence,

ve(y,i) —v(x,i) <&+ kly —xl{Efme“”’G(x,,u,) dt + %}
0

= ¢+ kly *'{”"”"”3 " 'pl?}

< €&+ kly —xl[v‘(x,i) + % +§].

The above estimate together with (2.5) yields

(2.7) |y+xllue(y’i) —ve(x, ) < Cy(1 + |xI%)

for suitable C,. This proves that v<(-,i) is (locally) Lipschitz continuous. We need

Copyright© 2001 All Rights Reserved
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(2.4) to complete the proof of (2.3). By using the Lipschitz continuity of ¢<(-, i), (2.4)
follows easily from the dynamic programming principle (see [12],[10], [6] for similar
results).

Now let x, be a point of differentiability of v“(+, i) for each i. Then equation (2.1)
holds, and we have

(2.8) Que(x,,i) = €l(e, i), i=0,1,...,m,

where

(29)  I(e,i) = pr<(xy,i) + sup {—(u—d) Vo(xy,i) — G(xy,u)}.
ueK@)

First observe that due to (2.5) and (2.7),
(2.10) (e, i)l < C3(1 + |xyl*) for each i, e > 0 and suitable C;.

Also, the irreducibility of Q implies that the kernel of Q is the one-dimensional
subspace spanned by the vector 1 = (1,1,...,1) € R™*'. Hence, for any i, j we have

1 . . . a
(2.11) —loe(xg, i) = vé(xy, i) < supll(e, j')I < C5(1 + Ixgl“).
y

Recall that we have assumed that x,, is a point of differentiability of v(-, i) for each
i. But these points are dense because of the Lipschitz continuity of the value function.
Hence, (2.11) holds for every x,. Combining (2.11) with (2.5) and (2.7) yields (2.3)
with a suitable choice of C.

In what follows, we need the concept of viscosity solutions of the dynamic
programming equation (2.1). The definition below is a straightforward generalization
of the original definition given by M. G. Crandall and P.-L. Lions [4] (see also [3], [10],
and [12] for more information).

Let ¢ be a continuous function on R™ X M. For each (x,i) we define convex
subsets D v(x, i) or R”, as follows:

Dfv(x,i) = {r € R": limsup (v(x + h,i) — v(x,i) —r-h)lnl""' < 0},
h—0

D v(x,i) = {r e R": liminf(v(x + h,i) —v(x,i) — reh)h ™ 2 0}.
h—0

We say that any continuous function v is a viscosity solution of (2.1), if for each x, i:

(@) pv(x, i) + sup,cgof —(w — d) - r — Gx,u) — (1/)Qulx, i)} <0 V re
D[ uv(x, i),

(D) pr(x, i) + sup,c gl —(u — d) - r — G(x,u) = (1/e)Qux, i)} >0 V r €
D v(x, ).

Note that ¢ is differentiable in the x-direction at (x, i) if and only if D uv(x,i) and
D v(x,i) are both singletons. In this case, the singleton is the gradient Vu(x, i).
Moreover, if v is convex in x, then D v(x, i) is empty unless v is differentiable there
and D_v(x, i) coincides with the set of subdifferentials dv(x, i) defined earlier.

From Lemma 2.1, it follows that v<(-, - ) is a viscosity solution of (2.1).

3. Limiting control problem. In this section, we prove the convergence of
v<(x, i) to the value function of a limiting deterministic control problem v(x), for
each i. First, we define the limiting control problem.

Let v = (vy, v, V5, ..., 7,,) be the unique stationary measure (or, the equilibrium
distribution) of the process {af, ¢ > 0}. Observe that this measure is independent of

Copyright © 2001 All Rights Reserved



602 J. LEHOCZKY, S. P. SETHI, H. M. SONER & M. 1. TAKSAR

€, and it is the unique solution of

Mz

(3.1) 70q”v, =0, j=0,1,....,m,
and
(3.2) Z v, = 1.

71=0
Define
(3.3) v= ) vj

1=0

and

m m
_ inf{ Y v G(x,w):w, €K(j)and ¥ vw =u},
G(x,u) = {1=0 ! S ;=07

+o if empty.

Finally define v(x) by

J

(34)  v(x)= inf{fwe‘f”(_}(x,, u,)dt:u, € K(%), %‘ =u] —d’,
0

j=1,...,nandx0=x},

where K(¥) is defined by formula (1.1) with ¥ replacing i. Note that 7 is not
necessarily an integer.

It is interesting to note that the limiting control problem does not depend on the
explicit form of Q, only on 7, which is the mean machine availability.

THEOREM 3.1.  As € tends to zero, v°(x,i) converges to v(x) (defined by (3.4)),
uniformly for every i and bounded x. Moreover, v(-) is the unique convex function
satisfying for |x — y| < b,

(3.5) lo(x) + ITi—ylly(x) —v(y)l<C + |xIY),
(3.6) pv(x) + sup {—(u—d)-Vo(x) - G(x,u)} =0
ueK(@)

whenever v is differentiable, and

(3.7) pv(x) + sup {—(u—d) -p—a(x,u)}zo
ueK()

for every x and p € dv(x).

o Copyright © 2001 All Rights Reserved



ANALYSIS OF HIERARCHICAL CONTROL OF MANUFACTURING SYSTEMS 603

Proor. Using the estimate (2.3), there is a subsequence, denoted by € again, and
a Lipschitz continuous function 7(-) such that

limee(x,i) = 0(x)
ell

uniformly for all i and bounded x. In view of (2.3), this means that 7(-) satisfies (3.5).
Let x, € R” and p, € d0(x,). Set

= 2
e(x) =0(xy) +po- (x —xy) — %lx — x,l”.

Then
(38) B(xp) — @(x,) = min (0(x) ~ ¢(x)} = 0.

In fact, the above minimum is strict due to the quadratic term in ¢.
For each i € M and € > 0 choose x{ for which

(3.9) ve(xf, iy —o(x5) = xnelillll"{UE(x’i) —o(x)}.

Since v¢(-, i) converges to T(-) uniformly for all i and bounded x, and x, is the strict
minimum in (3.8), we have

(3.10) limx{ =x, VieM.
el0

Note that x{ is easily seen to be bounded in e.
Also, (3.9) implies

(3.11) Ve(x) = py— (xf = xo) € du°(x7.0).
We now use (2.4) to conclude that

(3.12)

. 1 :
pre(xg,i) + sup {—(u —d) [ po(xf —x)] = G(xf,u)} - - Que(xf,1) > 0.
uekK()

Multiply (3.12) by v, and then sum over i, to obtain

(3.13)

p;()v,uf(xf,i) + X v, sup {_(“ —d)- [1’0_ (x5 —x())] - G(xf,u)}

=0 uekK()

=

m| =

v, Be(x:,0),

10

where

B(x,i) = Qu(x,i) = L q,[v(x,j) = ve(x,i)].

]¥F1
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Now use (3.9) to derive

(x5, 0) 2 vs(x5 ) = e(x7) + e(xD).
Substituting the above inequality into B€(x{, i), we obtain

B(x5,i) > La,[[ve(x54) — v (x50)] - [e(xf) = e(x0)]]

J#1
m
=Y q”[uf(xf,j) — (p(xf)]
=0
Now multiply the above inequality by v, and sum over i. Then use (3.1) to arrive at

0 Y a,[ve (x50 1) - o(x)]

1=0

v, BS(x5,0) >

it
it

{

I
10

[ (aiod) = o) £ aum -0

J

Finally, substitute the above inequality into (3.13), then pass to the limit as e tends to
zero. Since x¢ converges to x, for every i, this gives

(3.14) pU(xo) + L v, sup {—(u —d)-py— G(xg,u)} > 0.
i=0 wueK@)

Then (3.7) follows from (3.14) using the equality

sup {—(u -d)p- (_?(x,u)} = iv, sup {—(u—d) p—G(x,u)}
ueK(@) 1=0 uekK@)

for every x, p € R".

To prove (3.6) at the points of differentiability, first observe that 90(x,) = {Vi(x,)}
if © is differentiable at x, and consequently (3.7) holds. For the reverse inequality,
pick a continuously differentiable function ¢ such that

B(xg) = ¢(x0) = max [3(x) — ¢(x)]

and the maximum is strict. Existence of such functions is proven in [3]. Moreover
Vo(x,) = Vi(x,), and an argument very similar to the one above yields

pO(xo) + sup {—(u—d) Ve(xy) — G(x4,u)} <0.
ues K@)

Hence, together with (3.7) this yields (3.6).

We have proved that any limit point D(-) of the sequence {v*(-,i): € > 0} for
i € M satisfies (3.5), (3.6), and (3.7). Since any convex function satisfying (3.6) and
(3.7) is a viscosity solution of the Bellman equation (3.6), and the value function v(-),
defined by (3.4), is the only viscosity solution of (3.6) satisfying (3.5), we conclude that
any limit point T is indeed equal to the value function v. Note that the uniqueness of
viscosity solutions was first proved in [4], and the problem considered here is covered
in [8].
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Certain remarks are in order at this point. .

Remarxk 1. Let u*(x) be a maximizing argument in (3.6). Suppose (1.2) has a
solution with u, = u*(x,). Then u*(x) is the optimal feedback policy for the limiting
problem.

RemMark 2. Consider

(3.15) u(x,i) =iu*(x)/v

to be a feedback production rate for the original problem (1.1)—(1.3). Now let x{ be
the solution of (1.2) with u§ = u(x{, af). Then uf is an admissible control for the
original problem (1.1)-(1.3). This allows us to construct a feedback control for the
stochastic problem from the feedback control of the limiting deterministic problem.
Moreover, we believe that the performance of the constructed feedback control
approximates the optimal performance.

Remark 3. To bring out the role discounting plays in the model, we allow p to
depend on € in a way so that p(e)e — 0 as € — 0. In this case, the convergence result
in Theorem 3.1 is modified to

(3.16) lirr})p(e)lvf(x,i) —v(x)l=0.

The proof of (3.16) requires a change of variable from time ¢ to time s = p(e)t, which
reduces the problem with variable p(e) to one with a constant discount rate of 1. The
limit in (3.16) suggests that if p(e) = o(1 /¢), then we can use the approximate control
constructed in (3.15) in place of the optimal control for the problem (1.1)-(1.3). We
should also observe that 1/p, the order of the half life of the exponential decay e */,
measures the time constant associated with the discounting process and €, the order
of the mean time between successive breakdown /repair events, measures the time
constant associated with the stochastic machine availability process af. In other
words, our suggestion implies that the time constant of the discounting process
should be large in comparison to the time constant of the machine availability process
for our approach to be reasonable. This justifies our assumption (1.5).

4. An example. In this section, we present an example and compute explicitly
the value function for the limiting control problem. Take

n=2, d=(d,1),
G(X,y,ul,u2)=a|x|+l)’f, le,
v =Bv/K, v,=v/K.

Recall that the specific form of the Q-matrix is not important, only 7 is, and the
limiting deterministic control problem is given by

. © d d
v(x,y) = mf[fo e (alx,| +|y,l) dt: Jp% =t d, Y = U T 1,

Upes Uy, = 07 Bult + Uy, < K|
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The parameters 8, d, and K must satisfy Bd + 1 < K or else the demand cannot be
met in the long run.

The value function is relatively simple to compute in this problem by tracing the
trajectories of the inventories. When an inventory reaches 0, it is held at 0 by setting
u, =d or u, = 1. When an inventory is strictly positive, the control is set to 0. Full
production is devoted to x (resp. y) if it is negative when corresponding 8 < « (resp.

B > a).
The value function and the optimal control is given by the following set of
expressions.
Case 1: B < a.
ax+y+ade™™?+eV—(ad+1), x20,y>0,
ax —y+ (K-1)e/* D +ade™™/? = (K -1+ ad),
x>0,—K;1x<y<0,
ax —y+ (a+B)de™/*+6 - (K-1+ad),
K—-1
X = 07 y< — d X,
_ Ka — aBd —
cax—y+ & - B (K - Bayeps/k—pd 1 g W
v(x.y) = x<0,y<0,
—ax+y+2e ¥+ (a—;f—)-(K — Bd)eBr/(K-BD
Ka — apd - B K — Bd
- >0, x< —- ,
+6 B , y X B y
Ka — aBd +
—ax+y et + %(K — Bd)eBr/K=Bd) _ _%_ﬁ,
y>0, - KBy i<,
B
where
0 = (K —-1- Bd)e(BHy)/(K—l—ﬂd)_
The optimal control for the limiting problem in this case is
(0,0), x>0,y>0,
(0,1), x>0,y=0,
(0,K), x>0,y <0,
u*(x,y)=((d,K—pBd), x=0,y <0,
(K/B,0), x<0, —o<y <o,
(d’O)’ x=07y>0,
(d71)7 X=0,y=0.
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Case 2: B > a.

ax+y+ade™+e — (ad + 1), x>0,y >0,

ax —y + (K- 1)e’’® Y+ ade™™/4 - (K- 1+ ad),
X>0,——K;1XSy<0,

K-1 K—1) -xsd | &

ax—y+—p (B —a)er/t + 2ade ™/ +—B—0—(K—1+ad),
K—-1
xz0,y< - 7%

oy — K- o yAK=1) ¢ Lo _1_
o(x,y) = ax —y+ 3 (B—a)e +30 (K—-1-ad),

x<0,y<0,

— +
_ax+y+a+ﬁe-y+ge_(w),

B B B
y>oax< _K_Bﬁdy7
—ax ty+ e+ G(K = pd)esr/ KD (—_K“ “‘;fd “’),
y>0,—K_Bde<x<0.

In this case, the optimal control for the limiting problem is given by

(0,0), x>0,y >0,
(0,1), x<0,y=0,
(0, K), y <0,
u*(x,y) = {((K-1)/B,1), x<0,y=0,
(K/B,0), x<0,y>0,
(d,0), x=0,y>0,
(d,1), x=0,y=0.

The value function is continuously differentiable in either case, and one can verify
the explicit formulae by showing that the Bellman equation holds at every point. Here
the Bellman equation is

v(x,y) + sup {(~u; —d,u, - 1) - VU(X,Y)} = alx| + |yl

Up,us
where the supremum is taken over (u,, u,) satisfying
Bu, +u, <K, U, uy > 0.

Also, the optimal control is unique except in the case @ = 8, and when a = B any
control of the form (u,, K — Bu,) in the 3rd quadrant is optimal. Consequently, when
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x <0and y <0, u* is specified by

(0,K), a < B,
u* = ( (K/B,0) a >,
(uy, K= Buy), a=8.

The above policy and value function completely characterize the optimal solution
of the limiting control problem. This limiting problem will always be much simpler to
solve than the stochastic problem, because the randomness has been averaged out.
The optimal policy u is, of course, not always feasible for the stochastic problem, for
example when x < 0, y < 0 and all machines are in repair. One can simply modify
this policy by reducing u; and u, proportionately to satisfy the capacity constraint.
Thus, u*(x, y,i) = iw*(x, y)/v provides the feedback stochastic control for which, as
is easily seen, y,uf(x, y,i) + y,u5(x, y,i) <i. It is important to determine the rate
of convergence in e and explicit error bounds for |v*(x,i) — v(x)|. These are open
research problems.
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