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Abstract

A method based on deep artificial neural networks and empirical risk minimization is
developed to calculate the boundary separating the stopping and continuation regions in
optimal stopping. The algorithm parameterizes the stopping boundary as the graph of a
function and introduces relaxed stopping rules based on fuzzy boundaries to facilitate efficient
optimization. Several financial instruments, some in high dimensions, are analyzed through
this method, demonstrating its effectiveness. The existence of the stopping boundary is also
proved under natural structural assumptions.
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1 Introduction

The classical decision problem of optimal stopping has found amazing range of applications
from finance, statistics, marketing, phase transitions to engineering. While over the past
decades many efficient methods have been developed for its numerical resolution, until
recently essentially all computational approaches in high-dimensions first approximate the
maximal value. The quantity that is equally important is the associated stopping rule, and
the state is divided into two regions depending on whether at a point it is optimal to stop or
to continue. Although approximate optimal actions can either be calculated directly, or are
always available from the calculated value function in a greedy policy, a characterization and
computation of these regions through interpretable criterion would provide an immediate
link between the policy and the state.

In many important applications, continuation and stopping regions are separated by
graphs of functions that can be used to construct interpretable optimal stopping decisions,
and our goal is to directly compute these stopping boundaries whose performances are close
to the maximal ones. In lower dimensions, they can be accurately approximated by methods
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based on nonlinear partial differential equations or dynamic programming. However, in
models with many degrees of freedom, this numerical problem is still challenging.

Our approach is based on a method proposed by E, Jentzen & Han [30] B1], which
we call deep empirical risk minimization (deep ERM). In this framework, the controller is
replaced by a deep artificial neural network and the random system dynamics is simulated via
Monte-Carlo. Recent advances in optimization tools and computational capabilities enable us
to optimize this system efficiently, thus providing an accurate tool potentially also applicable
to other problems with stopping boundaries, including models with regime change or other
singularities in financial economics, phase transitions in continuum mechanics, and Stefan
type problems in solidification.

Deep ERM applies essentially to all problems that can be formulated as dynamic stochastic
optimization, maybe after problem specific modifications. This and similar algorithms
2, 6 8, @, 15, 16, 29, B3, 45, 52] have been applied to many classical problems from
quantitative finance, financial economics, and to nonlinear partial differential equations that
have stochastic control representations. Also, the application to optimal stopping is carried
out by Becker, Jentzen & Cheridito [6] [8] to compute an approximation of the optimal
stopping rule and hence, the stopping region as well as the maximal value. They accurately
price many American options of practical importance in very high dimensions with confidence
intervals, showcasing the power and the flexibility of deep ERM in optimal stopping as well.
We refer the readers to our accompanying papers [42] [43] for an introduction of deep ERM,
and to the excellent surveys [23] 34, [46] and the references therein for more information.

The stopping regions are exactly the sets of all points at which the value and the
pay-off functions agree, and they can be derived from the calculated value or computed
directly. However, qualitatively these approximations may not always have accurate geometric
properties, and lack interpretability. Thus a direct computation of these regions with their
known structures is desirable, and it is the main goal of our approach. Indeed, in many
financial applications they are characterized as the epi or hypo-graph of certain functions
in a natural but problem specific coordinate system, described in Assumption 2:3] We first
outline the algorithm and its properties under this assumption, and then verify it in Theorem
for all examples that we consider. In contrast to methods mapping each state point to
stopping decisions, our representation of stopping boundaries as graphs provides topological
guarantees, even when approximated.

In our method, the graph separating the continuation and stopping sets is approximated
by a deep artificial neural network which then provides a stopping rule used to calculate an
empirical reward function. However, it is not possible to directly use any gradient method
for optimization over these “stop-or-go” decisions. Therefore, although at the high-level our
approach is deep ERM, it requires one important modification to overcome this difficulty.
We replace these sharp rules based on the hitting times, by stopping probabilities. In this
relaxed formulation, when the state is not close to the boundary, we still stop or continue the
process as in the non-relaxed case. But when it is close to the boundary, in a region called
the fuzzy (stopping) boundary, we stop with a probability proportional to the distance to
the boundary. This is analogous to mushy regions in solidification or phase fields models in
continuum mechanics [3] 1T}, 25] [4T), 48] [50]. Similarly [6 [8] uses stopping probabilities as
relaxed control variables but without any connection to the geometric structures.

We numerically study several American and Bermudan options with this methodology.
The numerical results for the American put options in Black & Scholes, and in Heston
models verify the effectiveness of the method. The Bermudan max-call option, studied in
high dimensions, shows once again the power of deep ERM. The numerical results for the
look-back options is an example of the flexibility of this approach in handling path-dependent
options. When possible all our computations is benchmarked to previous studies, and
shown to be comparable. Also, confidence intervals and upper bounds computed in [6] [7} [§],
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provide computable guarantees. Additionally, the stopping regions, Figures @ m for the
two-dimensional max-call options are qualitatively similar to those obtained in [I3].

Direct computation of the stopping boundary has been the object of several other studies
as well. In low dimensions, techniques from nonlinear partial differential equations modeling
obstacle problems and phase transitions allow for accurate calculations. Also, Garcia [20]
proposes a method similar to ours based on a parsimonious parametrization of the stopping
region. A recent study by Ciocan & Misi¢ [I8] proposes a tree-based method to compute this
partition. Alternatively, deep Galerkin method for the differential equations is used by [47]
to compute the value function of basket options at every point and the stopping boundary is
derived from this function. [5I] studies the classical Stephan problem of melting ice in low
dimensions, by the same approach. We also refer the readers to [4] for a review of numerical
methods based on boundary parametrization as well as other approaches to optimal stopping.

For American option pricing with many degrees of freedom, the main alternative com-
putational tool to deep ERM are the Monte-Carlo based regression methods described in
Glasserman [28], Longstaff & Schwartz [39] and Tsitsiklis & van Roy [49]. The classical book
of Detemple [22] and the recent article of Ludkovski [40] provide extensive information on
simulation based computational techniques for optimal stopping. The key difference between
these approaches, and the value computation through deep ERM is the choice of the set
of basis functions that grows rapidly with the underlying dimension. Deep artificial neural
networks do not require an a priori specification of the basis. Therefore, they are likely to
be more effective for problems with many states, as supported by the experiments. Indeed,
[, [37] exploit this property and replace the preset hypothesis class by an artificial neural
network in their regression.

The power of these new approaches are more apparent in high dimensional settings,
and an interesting example is the American options with rough volatility models. These
are infinite-dimensional models, and their numerical analysis is given in Bayer et al. [4, 5]
and in Chevalier at. al. [I7] by alternative methods. In a different class of problems with
many states, [27] exploits the symmetry of the underlying problem to build an appropriate
architecture of the neural networks. This approach is particularly relevant for mean-field
games which models many agents that are identical. Additionally, [0, [7, 8] consider several
models with many variables including the fractional Brownian motion.

The paper is organized as follows. The problem and the value function is defined in
the next section. The algorithm is introduced in Section [3] and the financial structure is
outlined in Section @ Section [f] details the network architecture and parameters used in
our experiments. One dimensional put options in the Black & Scholes model is studied in
Section [} in the Heston model in Section [7} Bermudan max-call options are the topic of
Section [8 and the look-back options are the foci of Section [0] Appendix [A] proves Theorem
[£1] Appendix [B] proves the convergence of the reward function R. as the width of the mushy
region tends to zero. Appendix [C] provides the details of the algorithm.

2 Optimal Stopping

Let T > 0 be the finite time horizon, and (€2, Q) be the probability space with the filtration
F = (Ft)tep,r). The state process X = (Xi)¢cp,r) is an F-adapted, continuous, Markov
process taking values in a Euclidean space X. For a fixed subset 7 C [0,7], ¥ = 9(T)
is the set of F-stopping times taking values in 7. Then, the optimal stopping problem,
corresponding to a given reward function p, is

to maximize v(7) := E[p(7, X,)], over all T € 9, (2.1)
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where for some a > 0, ¢(t,-) € L, defined as
Lo:={¢: X =R : continuous and |¢p(z)| < C[1 + |x|*] for some C > 0}. (2.2)

In financial examples, a is almost always equal to one. Also, T = [0,7] corresponds
to an American option, while 7 is a finite set for Bermudan ones. However, since for
numerical calculations one has to discretize the time variable, from the onset we assume that
T = {to,t1,...,tn-1,T}, with n being large for the American ones.

We next define the value function which is a central tool in Markov optimal control [24].
For t € T and z € X, let ¥ be the set of all [t,T] N T-valued stopping times, and set

v(t,z) := sup v(t,z,7) where v(t,z,7):=E[po(r,X;)| X =1q].
TEVL

Finally, we introduce our notation R4+ = (0, c0), and

TO = T\{T} = {t(),tl, e ,tnfl}.

2.1 Stopping region
The following subset of the state space is the stopping region at time t € T:
Sei={zeX : pt,z)=v(t,z)}.

As v(T,z) = p(T, z) for every x € X, we have S = X.
To obtain some regularity of the value function and the stopping regions, we make the
following mild assumption satisfied in all applications. Recall that £, is defined in (2.2]).

Assumption 2.1. (Growth and continuity) There exists a > 0, such that for every
teT, ¢(t,-) € La. Moreover, for every ¢ € Lo, t <t € T, vs(t, ,t) € Lo, where

v¢(t,x,t) = E[¢(X{) | X = x}, rEX.

The above assumed continuity essentially follows form the continuous dependence of the
distribution of the state on its initial value, and it is always satisfied in all our applications.
The following are direct consequences.

Proposition 2.2. Under the growth and continuity Assumption[2.]], for each t € T, the
value function v(t,-) € La, and the stopping region Sy is a relatively closed subset of X.

Proof. To prove the first statement, we use backward induction in time top < t1 < ... <t, =T.
First observe that by Assumption v(T,-) = @(T,-) € L,. For the induction hypothesis,
suppose that v(tgt1,-) € L, for some tg41 € T. By dynamic programming,

v(tg, x) = max {@(ty,x), c(tr,z)}, where c(tr, ) == Elv(trr1, Xy, ) | Xe = ).

As v(tg+1,-) is assumed to be in L, Assurnption implies that c(tg, z) is also in L,. Since
the space L, is closed under maximization, the above equation implies that v(tx, ) € La.
Hence, v(t,-) € L, for every t € T, and in particular, it is continuous.

The stopping region S is the zero level set of v(t, ) — ¢(t,-) which is shown to be
continuous. Hence, it is relatively closed in X. O

Because the stopping regions are closed (hence Borel) and St = X, the hitting time
T i=min{u €T : Xy € Su} (2.3)

is a well-defined stopping time and belongs to ¥. Moreover, 7 is optimal, or equivalently,
with v(7) as in (2.1)),

v(7*) = supv(r).
TEY
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2.2 Stopping boundary

In all problems that we consider, the boundary of stopping regions are given as the graphs of
certain functions, but possibly in a different coordinate system. To outline the algorithm in
a general manner, we first assume the existence of this geometry. We then verify it for the
financial examples, in Theorem [£.1] below, under mild natural structural conditions.

Although the description of the following assumption is technical, its interpretation is
quite natural. In words, we assume that there exists a stopping boundary that can be
characterized as the graph of some function f* in the appropriate coordinates (o, Z). In all
applications, the choice of these functions is immediate as discussed in Example [2.1] below,
and in Sections @ m @ In particular, the positive real-valued « is related to the payoff of
the option, and f* in describes the stopping boundary. The function = is more abstract
and is a transformation into coordinates that are meaningful to the specific problem.

Assumption 2.3. (Existence of a stopping boundary) There exist measurable functions
a: X >Ry, EXSEX)CX, 1T x E(X) —[0,00],

and n € {—1,+1}, so that the map © € X — (a(z),Z(z)) € Ry X E(X) is a homeomorphism
(i.e., one-to-one, onto, continuous with a continuous inverse) and for every t € T°,

Si={reX : n(J (t2()) - () < 0}, (2.4)

The pair (a(x),Z(x)) is a representation of x that is adapted to the problem. The space
=(X) is a latent space with (Hausdorff) dimension strictly less than that of X'. The parameter
1 determines whether the stopping region is an epigraph or a hypograph of f*. In the
financial applications, typically n = 1 corresponds to a call type option and the stopping
region is an epigraph. While n = —1 is related to put options.

The surjectivity of o ensures that this characterization is non-trivial, and it additionally
implies that for every ¢ > 0, the point corresponding to the pair (f*(¢,E(z)) + ne, E(x)) is
in the stopping region S;, and respectively, to the pair (f*(¢,E(z)) — ne, 2(x)) is not in S;.
Therefore, the graph of f* in the coordinates (a(z), Z(z)) given by

{reX:alx)=f"(tE@)},

is included in the boundary of S;. In fact, in all examples it separates the stopping and
continuation regions. Thus, we call f* the optimal stopping boundary.

Example 2.1. In the financial problem of an American max-call option with two stocks
and a given strike K, we have ¢(t,7) = e~ " (max{z1,z2} — K)* for x = (z1,22) € X. With
Markovian dynamics, the state space is X = R3. In Theorem below, we show that there
exists a stopping boundary f* such that the triplet (o, Z, f*) with

a(z) = max{z1, z2}, ) = —, n=1,

satisfies the above assumption. Figures @ |Z|, below provide examples of these regions. In
our numerical approach, the latent variable Z(z) is the input to the network approximating
the stopping boundary. As Z(z) = Z(yz) for all z € R%, v > 0, every ray emanating from
the origin is mapped to a single point by the map Z, and the threshold f*(¢,Z(x)) separates
the stopping and continuation regions on this ray.

In the simpler example of an American put option with one Markovian stock, one simply
takes X = R4, a(z) =z, E=0, and n = —1. So that the stopping region is the hypograph
of some stopping boundary f*. Several other examples are discussed in the sections below.

O



Reppen, Soner & Tissot-Daguette Neural Stopping Boundary

As an immediate consequence of the above assumption, we can restrict the maximization
in to stopping times given by stopping boundaries. For future reference, we record this
fact. Let § be the set of all measurable functions f : 7° x Z(X) — [0,00]. For f € §, the
corresponding stopping time is given by,

mpi=min{u €T : n(f(u,2(Xu)) —a(Xu)) <0 or u=T} €.

Lemma 2.4. Under the growth and continuity Assumption and the existence of a
stopping boundary Assumption [2.3,

supv(7) = sup v(7y).

TEY fes
Proof. As Ty € ¥, we have sup,.cy v(7) > v(7y) for all f € §. Let f* be as in Assumption
Then, for u € T, we have X, € S, if and only if, either n (f*(u, (X)) — (X)) <0, or
u = T'. Therefore, 74~ is equal to the optimal hitting time 7 defined in . These imply
that sup, ¢y v(7) > supez v(7) > v(75x) = v(7") = sup, ¢ v(7). O

3 The Algorithm

Our goal is to construct an efficient algorithm for the calculation of the interpretable stopping
decisions based on boundaries approximated by artificial neural networks. We train the
networks by the deep empirical risk minimization algorithm proposed by Weinan E, Jiequn
Han, and Arnulf Jentzen [30, 31].

This method approximates the expected value of a reward function by Monte-Carlo
simulations and optimizes it by stochastic gradient ascent. For the problem of optimal
stopping, the natural choice for the reward function is ¢(79, X,). However, the map 6 — 79
is piece-wise constant, making optimization by gradient ascent impossible. Therefore, we
replace the hitting times by stopping probabilities based on fuzzy boundaries that are also
used in some problems of solidification [IT], 25], 48], [50].

3.1 Fuzzy Stopping Boundary
Let n € {—1,1} be as in Assumption For f € F, set

d(t,z; f) = n(f(t,E(z)) — a(z)), teT’, zeX.

In the original problem, once a boundary f is chosen, we stop the process only when
d(t, X¢; f) < 0. As training is not possible with this sharp “stop-or-continue” rule, we
introduce the fuzzy boundaries. Namely, we fix a tuning parameter ¢ > 0, and at time t € T°,
define

Bi(f) = {z e : [dt,x:f)| <€}

be the fuzzy region.
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Figure 1: Fuzzy region of an American call (in purple) connecting the
stopping region (in red) to the continuation region (in blue).

An illustration of the fuzzy region is given in Figure[I] for an American call option. If the
state is not in Bf(f), we continue or stop, as before, with probability one. But if we are in
the fuzzy region, we stop with probability p: (X4, f), where

+
po(a, f) = (“ﬁ“’”) AL LET, fEF zEX.

At maturity, we stop at all states, or equivalently, we set pr(-, f) = 1. Precisely, p:(Xy, f) is
the probability of stopping at time ¢ € 7, conditioned on the event that the process is not
stopped prior to t. The relaxed control problem is then defined using the reward function
given by

Re(X, f) =D pe(Xe, f) bi(X, ) (t, Xo), (3.1)

teT

where b:(X, f) is the probability of not stopping strictly before time ¢ and it is obtained as
the solution of the following difference equations,

bt+1(X7f):bt(va)(l_pt(Xtmf))’ tETO7

with bo(X, f) = 1. In other words, b:(X, f) is the unused stopping-budget remaining. The
process b (X, f) is non-increasing in time and takes values in [0,1]. Connection between
E[Re(X, f)] and v(7y) is discussed in Appendix

We refer to [43] for a different exposition of this relaxation.

3.2 Deep ERM

In this method, we approximate the stopping boundary by a set of deep neural networks
that we abstractly parameterize by 6 taking values in a finite-dimensional space © as follows:

N={g(0):T°xEX)>R, : O} CF.

Let 7o = 74(.;6) be the hitting time corresponding to the stopping boundary g(-;60). The
following is the pseudocode of the deep empirical risk minimization based on the fuzzy
stopping boundary.

1. Initialize 6 € ©.
2. Simulate independent state trajectories, {X(l), . ,X(B)}, where B is the batch size.
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3. Compute the empirical reward function:

1

R(0) = D Re(X",g(:0)),

I

where Rc(X, f) is as in (3.1). A modification Re x, given in (4.4), allows for important
sampling discussed in Section 1] below.

4. Optimize and update by stochastic gradient ascent with the learning rate process (:
0 < 6+ (VoR(0).

5. Stop after M number of iterations.

6. Compute the initial price given by the training network, using J many Monte-Carlo
simulations with a sharp boundary.

A formal discussion of the algorithm is given in the next subsection. In Appendix [C] we
also provide more details of the above algorithm for the benefit of readers interested in the
implementation. [26] proposes a similar approach by assuming that the stopping region has
a finite dimensional representation without a formal justification. Also, Chapter 8.2 of [28§]
discusses a general approximation for the value calculation by parametrizing the stopping
times. In our approach we approximate the stopping boundary directly.

3.3 Discussion

The general theory of stochastic gradient ascent [44] implies that the above algorithm
constructs an approximation of

07 € argmax E[R(X,g(-;0))].
0ce

In the context of optimal stopping, [10] also provides rates of convergence. Moreover, in
Lemma below, we show that for each 6 € O,

lim E[R(X,g(;0))] = Elp(r0, X7)] = v(70).

Therefore,
E[Re(X,9(-56¢))] = sup E[Re(X,g(56))] = sup v(7o).
0co 0€o
Also, by the celebrated universal approximation theorem [20} [32], continuous stopping
boundaries are well approximated by the hypothesis class 1, and in all our applications the
optimal stopping boundaries are continuous. Thus, in view of this approximation capability
of O and Lemma [2.4] we formally have

E[Re(X,g(56¢))] = sup E[Re(X,g(+0))] = sup v(ro) ~ sup v(ry) = sup v().
0cO 0co fes TEY

Hence, the above algorithm constructs an artificial neural network with an asymptotic
performance formally close to the optimal value, justifying the algorithm. However, there
are several technical issues in front a rigorous statement and we postpone this convergence
analysis to a future study.
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4 Financial Examples

‘We numerically study several American or Bermudan options to illustrate and also assess the
proposed algorithm. In these applications, Q is a risk-neutral measure and the Markov state
process X = (5,Y, Z) has three components: S is the prices of the underlying stocks possibly
including the past values to make it Markov, a factor process Y used in models like Heston,
and a functional Z of the stock process, making the pay-off of a path-dependent option a
function of the current value of X. Typical examples of Z are the running maximum or
minimum in look-back options, and the average stock price for the Asian options. Depending
on the model and the option, Y, Z, or neither may be present.
In our examples, the pay-off function always has the following form:

(P(tvm) = eirt (n(a(svz) - B(S,Z) - K))+ ) te Ta T = (8,y7 Z) € Xv (4'1)

where a > 0,8 > 0 are positively homogenous of degree one, and the parameter n € {—1,+1}
determines the option type: n =1 is a call and n = —1 is a put. The choice of a and § may
not be unique, and we would choose 8 = 0 when possible. It is clear that ¢ grows linearly.
Additionally, in all our examples, the stock price distribution depends smoothly on the initial
data. Hence, the growth and continuity Assumption [2:1] holds with a = 1.

The following stopping boundary result is proven in the Appendix. For max-call options
a similar result is proved in Proposition A.5 in [13], and for look-back options in [21].

Theorem 4.1. Suppose that in (4.1), a: X — R4, B: X — [0,00) are positively homogenous
of degree one, and that X scales linearly in the initial values Sy = s,Zy = z, i.e., for
= (s,9,2), v >0, and a bounded, continuous, integrable function ¢, the following holds:

E[¢(U,XU) | X = (757y77z)} =E [¢(u7 'YXH) | Xe = (s,y, Z)] .

Further assume that the growth and continuity Assumption[2_]] holds, and the price of the
FEuropean option is strictly positive for allt < T. Then, the existence of a stopping boundary

Assumption is satisfied with o as in (4.1)),
- s z
E(s,y,2) = ( Y ) ; (4.2)

a(s, z) a(s, z)
and ‘ ( )
« ] sup{a(s,z) : x €8¢ st E(z)=¢E}, if n=-1,
8= { inlf){oz(s,z) cx eS8 st Z(x)=¢E}, if Z: 1, (4.3)

where we use the convention that the sup over the empty set is zero and inf is infinity.

The positivity of the European price ensures that on stopping regions ¢ > 0.

4.1 Importance sampling

To effectively train the network g(-;0) by deep ERM, it is crucial that the simulated paths
X hit the fuzzy boundary B;(g(+;0)) frequently enough for each exercise date. We achieve
this by importance sampling that we now outline.

In all our examples, S evolves according to a stochastic differential equation,

dsS; = S; (/,Ltdt + O'tth) , So € Rd7

where the processes 1 € R%, o € R*? may depend on t, S; and other exogenous factors. For

A=(A1,...,0a) € R, let Q, be the measure obtained by the Girsanov transformation so
that W3 := W; + Mt is a Q, Brownian motion. Hence, under Q,,

dSi = St ([,LLz — G't)\]dt + Utth)\) .
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‘We then adjust the hitting frequency of the simulated trajectories, by choosing A\ appropriately,
thus allowing for more efficient training. Although in all our experiments we have employed
constant A, one could also use time dependent ones as well.

However, as the probability measure is modified, we need to account for it in the reward
function. This is achieved by the Radon-Nikodym derivative given by,

Z2(S) = 4Q

_ A 1,2
= dQA|Ft = exp(A- W7 = SAP).

Since W? can be expressed in terms of S, the process Z* can be viewed as a function of the
state process S. We then modify the reward function given in (3.1) by,

Rea(X, f) =Y Z0(S) pe(Xe, f) be( X, f) o(t, Xo). (4.4)
teT

5 Network Architecture and Parameters

All our numerical experiments have been carried out with Tensorflow 2.7 on a 2021 Macbook
pro with 64GB unified memory and Apple M1 Max chip. The code is implemented in Python
and run on CPU (10-core) only. Throughout the examples, we use the same neural network
architecture and training parameters, given below:

1. We use only one deep neural network that takes both the time and the state vector as
input. Then, the trained boundary is a function of the continuous time variable, delivering
smoother dependence on time. This is in contrast to majority of previous studies that use
one deep neural network for each time in the discrete set 7.

2. The single feedforward neural network that we employ consists of 2 hidden layers with
leaky rectified linear unit (Leaky ReLU) activation function. Each layer has 20 4+ d many
nodes where d is the dimension of the latent space Z(X). The output layer uses the standard
rectified linear unit (ReLU) activation. An important parameter is the bias 0o € Ry in the
output layer that sets an initial boundary level. Namely, the output function g is given by,

g(tvé-: 01,007 ezn) = (01 : g“’l(t7£7 01”) + 90)+ )

where gin (t,&;0in) € R2°+4 ig the value of the neural network before entering the output

layer, with parameters 0;,. In our experiments, we have observed that the algorithm is not

sensitive to the initial bias 6y, as long as it is set to a reasonable value. For example, for
3K

options with a given strike K, we choose o = =5, 0o = % for calls and puts, respectively.

3. We set the number of stochastic gradient iterations to M = 3,000 with a fixed simulation
batch size of B = 512.

4. The learning rate process ( is taken from the Adam optimizer [35].

5. The fuzzy region width e is chosen to be the strike K times the standard deviation of the
increments of a(X). While the strike K adjusts to the scale of the payoff, the second term
reflects the typical variation of the process a(X) between exercise dates.

5. After the training is completed, the initial price is computed using the sharp boundary
and J = 2?2 = 4,194, 304 many Monte Carlo simulations.

6 One-dimensional Put Option

As an initial study, we consider an at the money Bermudan put option in the Black Scholes
model. Hence, ¢(t,s) = e "(K —s)", n=—1, and X; = S; with X = Ry.

10



Reppen, Soner & Tissot-Daguette Neural Stopping Boundary

We take the same model and parameters as in Section 4.3.1.2 of [§]. Namely, S; follows
the Black-Scholes model with parameters

so=K =40, r = 6%, 0 =40%, T =1, n =50, (6.1)

so that T = {0, %, ..., 1}. For efficient training, we want the the stock price to reach low
values to cross the boundary. Towards this goal, we use use importance sampling with
A = 0.275, so that S becomes a super-martingale under Q, with 5% negative drift. The
fuzzy region width is approximately equal to e = Ko+/T'/n.

It is classical that the existence of a stopping boundary Assumption holds with
a(s) = s and E(s) = 0. Table [l| summarizes the performance values and compares it to the
values computed by Becker et.al. [6]. The first column in that table is the average price of
ten experiments, and the second column the highest price. In practice, one would of course
retain the trained boundary yielding the highest price.

Bermudan with parameters as in (6.1)

Average Price  Highest Price Runtime Price in [§]
5.308 (0.003) 5.313 (0.003)  57.9 5.311

Table 1: Bermudan Put Option with n = 50 in Black-Scholes model. First
column is the average of ten experiments with its standard deviation in brackets.
The second column is the highest price among the realizations and its standard
deviation in brackets. Third column is the average runtime (in seconds) per
experiment for the training phase.

Figure |2 displays the initial boundary and the trained one. The optimal boundary, shown
in blue, is computed using a finite-difference scheme. Figure [3|is the approximation of the
optimal stopping boundary for the American option with same parameters. As the American
option does not restrict the trading dates, we use n = 250. Also, to capture the known
singular behavior of the optimal boundary, we use a non-uniform discretization that is finer
near maturity.

Initial Trained

t

—  Optimal Neural Net € corridor

Figure 2: Black-Scholes model with parameters as in (6.1)). Blue trajectories
are simulated paths.
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Initial Trained

t

— Optimal Neural Net £ corridor

Figure 3: Almost American option in Black-Scholes model with parameters

as in (6.1 except n = 250.

7 Put Option in the Heston Model

Consider the Bermudan put option of the Section @ (ie., so = K =40, T =1, n = 50)
but now in the Heston model. Then, under a risk-neutral measure Q, the stock and factor
dynamics are given by,

dSt

? :Tdt+ﬁth,
t

dY; = (k(7 — Vi) — vYe)dt + oy VY; dWs,

where W, W are Brownian motions with constant correlations p, and g is the volatility risk
premium related to the risk-neutral measure Q. We use the parameters

r=6%, k=1, VYo = /7 = 40%, 7o =0, oy = 0.1, p= —0.5.

In particular, the Feller condition 2xk3 > 0% is satisfied. To allow for a comparison with
results of Section @ we set the initial value and the long term mean /y of the stochastic
volatility v/Y equal to the Black-Scholes volatility o from that section. Moreover, we use
importance sampling with the same Girsanov parameter, A = 0.275. The variance process is
simulated using the Milstein scheme [36] with n’ = 4n = 200 time steps.

In this example, X = (S,Y), X =R2, a(z) = s, # =0, and Z(z) = (1,y). We simplify
and set = to y. Figure[d]shows that the stopping boundary is a function of time ¢ and the spot
variance Y; = y. As @ is convex and bounded, the value function v(¢, s,y) is non-decreasing
in y for all t € [0,T], cf. [38]. Consequently, the map y — f(¢,y) is non-increasing and the
trained neural network g(-, -; GM) has the same property as seen in Figure Notice also that
y — f(t,y) becomes less steep as t approaches maturity. This is line with the fact that the
vega of the option decreases over time until the option is exercised. Since s +— v(t, s,y) is
non-increasing for fixed (¢, y), we therefore expect that the rectangle [0, s] x [0, y] is contained
in S; whenever (s,y) € S;. This is also confirmed in Figure

Table [2| compares the prices of the claims when the stopping decision exploits the spot
variance (i.e., f = f(t,y)) and when it does not (i.e., f = f(t)). We observe that the price
obtained with the “blind” strategy is only slightly inferior. Interestingly, the neural network
coincides with the optimal boundary in the Black-Scholes model. Also note that the longer
runtime compared to Table [I|is due to the thin partition needed to simulate Y.
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35

Contmue‘

Figure 4: Stopping and continuation regions for a Bermudan put in the
Heston model.

Bermudan Put Option (n = 50), Heston model

Threshold Average Price Highest Price Runtime

f(t,y)  5.290 (0.004) 5.204 (0.003)  194.3
£ 5.288 (0.004)  5.293 (0.003)  193.9

Table 2: Second column is the average of ten experiments with its standard
deviation in brackets. Third column is the highest price among the realizations
and its standard deviation in brackets. Fourth column is the average run-time
(in seconds) per experiment for the training phase.

Finally, Figure [5 displays a trajectory of (X,Y) together with the trained stopping
boundary g(~;9M). As can be seen, the threshold is typically below the Black-Scholes
boundary when Y; is above its mean y = 0.16 and vice versa.

0
3

Optimal, Black-Scholes Neural Net |

Figure 5: Stock price, variance and threshold process for a Bermudan put in
the Heston model.
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8 Bermudan Max-Call

We now apply the deep empirical risk minimization to the classical example of the max-call
option on dividend paying stocks as studied in the seminal paper by Broadie & Detemple
[13], and also in the book by Detemple [22].
We assume that the stock price process S; = (St(l), ey S,@) € R is the state process
and solves
as{ = 500 ((r = 6)dt + .,

where ¢, is the dividend rate. In this example, the reward function is given by,
o(t,s) =e " (afs) — K)T, where a(s)=max{si,...,sq}, seRL.

Hence, X = 5, X = Ri, n =1, and f§ = 0. In view of Theorem the existence of a
stopping boundary Assumption holds with o and E(s) = s/a(s). In two dimensions, the
stopping regions can be visualized effectively as seen in the Figures @ reported from [43].
These are stopping regions in two space dimensions obtained with initial data so = 90 and
so = 100 with parameters given in . Clearly the stopping boundary is independent of
the initial condition and the below numerical results verify it. Also they are very similar to
those obtained in [13].

200 50

Stop Continue

Figure 6: Stopping Boundaries with so = 90, K = 100, o; = 0.2, r = 0.05,
0; = 0.1, reported from [43].

200 50

Stop Continue

Figure 7: Stopping Boundaries with so = 100, K = 100, o; = 0.2, » = 0.05,
d; = 0.1, reported from [43].
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8.1 Numerical results: Symmetric case
As in [6l [8], we use the following parameter set:
K =100, so = 90,100,110, o; = 0.2, r = 0.05, §; = 0.1. (8.1)

We take the maturity to be 3 years and n = 9. Thus, each time interval corresponds to
four months. Numerical experiments for these parameters are reported in the accompanying
paper [43]. They compare well to the results obtained in [6], [§].

We also compute the initial price of this max option on d € {2, 5,10, 20,50} assets. Since
we observe that the drift of the maximum stock price process is of order In(d), we use
important sampling with A; = (r — §; — pu(d))/o and u(d) = —0.011n(d) to ensure that the
maximum stock value does not cross the stopping boundary too soon. Utilizing the fact that
the stocks are exchangeable in this example, we order the stock prices and input the top five
assets to the network. Table [3] summarizes the results. Despite a low cutoff, the obtained
prices are close or above the benchmark. Moreover, the runtime remains moderate as d
increases. The case d = 5 is a classical example first introduced by Broadie and Glasserman
[I4] and well-studied later in the literature. Table [3| also contains the tight confidence
intervals, obtained in [1, [12], and [6] using a primal-dual method.

Max-call option with parameters in (8.1) and sy = 100

d  Average Price  Highest Price Runtime Price in [§] Confidence Intervals

2 13.883 (0.009) 13.898 (0.008) 29.1 13.901 [13.892, 13.934] ([1])

5 26.130 (0.010) 26.151 (0.009) 31.8 26.147 [26.115, 26.164] ([12])
10 38.336 (0.015) 38.355 (0.011) 33.1 38.272 [38.300, 38.367] ([6])

20 51.728 (0.018) 51.753 (0.011) 36.0 51.572 [51.549, 51.803] ([6])

50 69.860 (0.012) 69.881 (0.011) 43.5 69.572 [69.560, 69.945]  ([6])

Table 3: Max Option on d € {5,10,20,50} symmetric assets. The second
column is the average of ten experiments with its standard deviation in brackets.
The third column is the highest price among the realizations and its standard
deviation in brackets. The fourth column is the average runtime (in seconds)
per experiment for the training phase.

8.2 Numerical results: Asymmetric case

We next investigate the Bermudan max option with asymmetric assets. We consider two
stocks with same volatility ¢ but different dividend rates. We use the same parameters for
K,r,o as in the previous subsection, and so = 100, § = (5%, 15%).

We choose the parameter A in the Girsanov theorem, so as to make the assets symmetric
under an equivalent measure. More precisely, we choose A = [(r 4+ u(2))(1,1) — §]/o € R?
so that both assets have the same drift ;(2) € R under Q,, and p(2) = —0.011n(2) is as in
the previous subsection. The asymmetry is then captured by the Radon-Nikodym derivative
appearing in the reward function.

The average and highest price after 10 realizations are given in Table[d The last column
is a benchmark price obtained from the Least Square Monte Carlo (LSMC) algorithm [39]
with 222 simulations. As can be seen, our method in average computes a price comparable to
the benchmark, but may construct better stopping strategies reported in the second column.
Notice also that having different dividends gives a premium over the symmetric case as shown
in the first row of Table 3l
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Max-call option with asymmetric assets

Average Price  Highest Price Runtime  LSMC Price
15.551 (0.014) 15.575 (0.011) 30.9 15.558 (0.009)

Table 4: Max Option on d = 2 asymmetric assets

Figure 8] displays the stopping and continuation region over time. In particular, we clearly
see the assymmetry of the problem and the stopping re§ion reflected in the figure. For ¢ = 1,2
let the the connected components of S; be given by, Stz) ={seS;:a(s)=s;}. In Figure
we observe that the light red region Z(S'") with Z(s1, s2) := (s2, s1), is contained in S'*.
That is, if it is optimal to stop at St = (s1, s2), then the same is true at Z(S:) = (s2, 51).
The structure of the assymmetry is therefore consistent with our expectations.

50

Contmue‘

Figure 8: Stopping and continuation regions for a max option with d = 2
assets and T' = 3. The light red region is the reflection of the lower stopping
region {s € S¢ : s1 > sz} through the diagonal.

Remark 8.1. For max-call options on two assets, [26] also use a two-dimensional parametriza-
tion of the stopping region given by

Si =~ {(51,52) e R : a(s) =max{si,s2} >6;, and |s1 — s2| > 67 }

While the above hypothesis class of regions provides satisfactory numerical results, they are
restricted to two dimensions, and only give a simple polygonal approximation of the actual
stopping regions that are more complex as can be seen in the Figures [f]

9 Look-back Options

Look-back options provides exposure to the minimum or maximum values attained during
the tenure of the option. There are several types of look-back options that are commonly
traded as summarized in the Table[5] In these examples, when the stock price S; € Ry is
modeled as a Markov process, then we would have X = (S, Z), where Z; is either the running
mazimum Sy or running minimum S . given by,

S := max Su, S, = min S,.
u€[0,1] wel0,t]
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Option e"to(t, Xy) n a(s,z) B(s,z2)
Fixed Strike Call (S, — K)* 1 z 0
Fixed Strike Put (K-8,)" -1 z 0
Floating Strike Call  (S; —~S,)" 1 s vz
Floating Strike Put (S, — S)* -1 s vz

Table 5: Different Lookback Options.

Clearly, X = (S, Z) is a Markov process with X = {x = (5,2) € R} | 0 < s < 2},
when Z; = S;, or X = {x = (s,2) € R} | 0 < 2z < s} when Z; = S,. The scaling factor v
appearing in the payoff of floating strike options is introduced to reduce the price of these
otherwise expensive contracts. We therefore choose v € [1,00) and 7 € (0, 1] for call and put
options, respectively. When v = 1, the floating strike look-back put (call) option delivers
precisely the drawdown (drawup) of the stock. We refer the reader to Dai and Kwok [21] for
an introduction and discussion of American look-back claims.

9.1 Fixed strike call

Although our setting covers all look-backs, as an example we only consider the fixed strike call.
Then, Z; = Sy, X = {x = (5,2) €ERL |0<s<2}),n=1,a(s,2) = 2. By Theorem
a stopping boundary exist with Z(z) = (s/z,1). Notice that 1 — (s/z) = (z — s)/z is the
relative drawdown of the stock.

As in [21], we use

T=1/2, r=2%, 6=4%, o=30%. (9.1)

To approximate the American option, we consider a regular partition with n = 200 many
exercise dates. Moreover, we employ an even thinner partition with n’ = 800 points for
our simulations. This allows us to better approximate the running maximum. Importance
sampling is not needed in this example. We visualize the the stopping region in the (s,y)
plane, similar to Fig. 3 in [21I], where the authors use a finite difference scheme to compute
the initial price.

Average Price  Highest Price Runtime FEuropean Price Upper Bound
16.827 (0.008) 16.844 (0.007) 216.7 16.808 16.979

Table 6: American look-back call with parameters in (9.1) and K = 100.

Table@summarizes the result for so = K = 100. First column in that table is the average
of ten experiments with the standard deviation in brackets. The second column is the highest
price among the realizations and its standard deviation in brackets. The third column is the
average runtime (in seconds) per experiment for the training phase. The last column is the
upper bound given by the forward value of the European price. The European price, denoted
by v gives a lower bound on the American price. The last column is the forward value of
European price, e" v, is an upper bound for the American price. Since here e’7 ~ 1.01,
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the American option only offers little premium over its European counterparts. This is
nevertheless fortunate from a performance perspective as it gives a tight interval in which the
American price must lie (see, e.g., [I9]). We indeed obtain prices that are within the bounds.

We display the stopping and continuation region in Figure [J] Obtaining an overall
accurate boundary turns out to be challenging, as visiting all the pairs (s,y) € X is difficult,
especially when s < y. We effectively resolve this issue by randomizing so € X and setting
the initial running maximum to yo = K V so. As in Fig. 3 of [21], we observe a flat boundary
when s < K. That is, the neural network correctly set g(t, s/y; #) approximately equal to
the strike when the ratio s/y is small, or equivalently, when the relative drawdown is large.

Figure 9: Stopping boundaries for a look-back call with parameters in ((9.1)
and K = 100.

10 Conclusion

We have developed an algorithm for the computation of the “graph-like” stopping boundaries
separating the continuation and stopping regions in optimal stopping. While the method
at the high-level is empirical risk minimization, a relaxation based on fuzzy boundaries
motivated from phase-field models for liquid-to-solid phase transitions is used. Through
numerical experiments, the method is shown to be effective in high-dimensions. The method
has the potential to incorporate market details like price impact, transaction costs, and
market restrictions. It is also possible to apply the technique to other models from financial
economics and other obstacle type problems as long as a control representation is available.

A Proof of Theorem [4.1]

We prove the theorem when the parameter 7 in is equal to —1. The other case of n =1
is proved mutatis mutandis. We fix t € T°.

Firstly, it is clear that for Z as in (4.2)), the map = = (s,y,2) — (a(s,2),E(x)) is a
homeomorphism and « is onto.

Recall that ¢ is the set of all T-valued stopping times, ¥: = ¥ N [¢,T], the pay-off
o(t,x) = ¢(t, s, z) is given by , and the European price, v, is strictly positive. As the
European price is equal to price of the stopping time 7 = T', v(¢, z) > ve > 0. Therefore, the
stopping region is characterized by

€8S & v(t,x) =t sz)>0.
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We start by showing that S; is star-shaped around the origin.
Lemma A.1l. If x = (s,y, 2) € St, then (vs,y,7z) € St for every v € (0,1].

Proof. Fix x = (s,y,2) € St and v € (0,1]. Then, by the definition of the stopping region
S, v(t,x) = p(t, s,z) > 0. In particular, as n = —1, a(s, z) — B(s, z) < K and therefore,

a(ys,vz) — B(vs,7z) = v(als, z) — B(s,2)) <vK < K.
Hence, ¢(t,vs,vz) = —(a(vs,vz) — B(ys,vz) — K) > 0. Moreover,
E [90(7_7 S, ZT) | X = ('Yszy»Vz)} =E [90(7_7 7S777Z7) | X = (S,Q,Z)} .

forallt € T°, = (s,y,2), T € Vs, and v > 0. By and the homogeneity of o and §,
e (—(a(ySr,7Zr) = B(vSr vZ7) — K))T

= T (—(10(Sr, Zr) = 9B(Sr, Zr) — K

Ty (—((Sr, Zn) = B(Sr, Zr) = K)) T e (1=K
yo(r,87,Z:) +e (1 —v)K.

o(1,7S-,vZ-) =

<e

We combine the above inequalities to arrive at the following:

Elo(r,Sr, Z:) | Xi = (vs,y,72)] < vE[o(7, S, Z7) | Xi = (s,9,2)] + e " (y — 1)K
<y(t,z)+e (1 - 9K
=vp(t,z) +e (1 -y)K.

As v(t,z) = p(t,s,2) > 0, again by the homogeneity of o and S,

o(t,vs,vz) = v(t, )
= sup E[p(r, 8-, Z7) | Xt = (vs,y,72)]

<vp(ty s, z) +e (1 —y)K

=e " (=(ya(s,2) = yB(s,2) —7K)) +e (1 - K
=e " (=(alys,y2) — B(ys,72) — K))

= p(t,7s,72).

Hence, (vs,y,vz) € St. O

Let f* be as in . It is clear that if a(Z) > f*(t,2(Z)), then T ¢ S;. Now, suppose
a(z) < fr(t,2(7)) for some Z = (§,y,2z). Then, by the above definition, there exists
z = (s,y,z) € S¢ such that a(z) > a(z) and E(z) = E(Z). By the definition of =, we
conclude that y = g and (8, 2) = (vs,vz) with v := (8, 2)/a(s, z). Therefore, (vs,y,vz) =z,
and as v < 1, by the above lemma z € §;. Summarizing, we have shown that

{a< f'}CS:, and {a>f"}CX\S:.

Now suppose that a(z) = f*(¢,Z(x)). Since « is always strictly positive, f*(¢,Z(z)) > 0.
Then, there is a sequence z, € S; with E(z,,) = E(z) and a(z,) T f*(t,2(z)) = a(z). As
(o, E) is a homeomorphism, we conclude that z, converges to x. Moreover, S; is relatively
closed in X, implying that € S;. Hence, {a = f*} C S;. Consequently, the triplet (o, E, f*)
satisfies 7 and the existence of a stopping boundary Assumption holds.
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B Convergence of R.

The following limit result justifies our choice of the reward function R..

Lemma B.1. Suppose that X; has no atoms for allt € (0,T] and zo = Xo is not on the
boundary f, i.e., a(zo) # f(0,2(x0)). Then,

lim E[R.(X. /)] = Elp(rs, X-,)] = v(ry). (B.1)

Proof. Under above assumptions, for every t € T°, d(t, X¢; f) # 0 with probability one.
Then as € tends to zero, p:(X, f) converges to one if d(t, X¢; f) > 0 and respectively, to zero
if d(t, X¢; f) < 0. Consequently, b:(X, f) converges to one for all ¢ < 7 and respectively, to
zero for all ¢ > 7. These limit statements directly imply that

lim R(X, f) = , X)), 8.
im Re(X, f) = o7y, Xrp) a.s
Moreover, as b, p: € [0,1], Assumptionimplies that

[R(X, NI <Y 0t X)) <CY 1+ [X["] =

teT teT
Since T is finite, by Assumption ® is integrable. Then, the claimed limit (B.1]) follows
from the dominated convergence theorem. (I

C Algorithm Details

The following is a brief outline of the training part of our algorithm.

Stopping Boundary Training:

1. Initialize g € ©
2. Form=0,... M —1
o Simulate trajectories (thk)}jzo, j=1,...,B.
e« Fork=0,...,n—1,j=1,..., compute the following quantities:

— signed distances diym,j =1 (g(tk, E(ng); ™) — a(ka))
) i € — dimg\*
— stopping probabilities Prkm,j = 27 AL (Pnm,j =1)
€

— stopping budgets bet1,m,j = bem (1 = Prym,g)  (bom,; =1)

B n
. 1 j

— reward function Re(0m) = B Zzpk,m,jbk,m,jW(tk7ng)

k=1 k=0

. Update: €m+1 = Gm + CmVGRE (em)
3. Return 0 .

In the above algorithm, we fix the width of the fuzzy region € > 0, and the learning rate
process (n, is taken from the Adam optimizer [35]. Also in all financial examples, we use
important sampling as discussed in the subsection That is, chosen a parameter A\, we
modify the dynamics of the state process X and use it in the simulations. Then, we adjust
the reward function as in . The choice of the tuning parameters € and A are discussed in
the specific examples.
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