
Monte-Carlo for high-dimensional problems in quantitative finance

H. Mete Soner, ORFE, Princeton

—————————————————————–

joint work with Max Reppen, Boston University

—————————————————————–

6th Asian Quantitative Finance Seminar

January 23, 2021

0

Outline

Recent Results

Optimal Stopping

Other results

Deep Monte Carlo Optimization

Uncertain Decision Problem

Algorithm

Results

Summary : Analytical results

Numerical Results

Complexity Estimates

1

Recent Results

General Approach

Two relatively recent papers use quite classical Monte-Carlo type method together deep neural

networks to study high dimensional optimal control problems.

Deep learning approximation for stochastic control problems, by

Han, J. and E, W., published in

Deep Reinforcement Learning Workshop, NIPS, 2016.

Solving high-dimensional partial differential equations using deep learning, by

Han, J., Jentzen, A. and E, W., published in

Proceedings of the National Academy of Sciences, 115/34, 8505–8510, 2018.

This method was used successfully in several papers that I will outline next.

The method will be described afterwards.

3

Bermudan Max-Call Option

Deep optimal stopping, by Becker, S., Cheridito, P. and Jentzen, A., published in

Journal of Machine Learning Research, 20/4,1–25, 2019.

An example studied in this paper is the following :

I Xt ∈ Rd , with dX
(i)
t = X

(i)
t [rdt + σdW

(i)
t], where W (i)’s are independent Brownian motions.

I One can stop at N many time points and collect

ϕ(t,Xt) = e−rt
(

max
i

X
(i)
t − K

)+

.

I S0 = 110,K = 100, σ = 0.2, r = 0.05, N = 9 and dimensions d up to 500.

I Using the dual upper bound, the 95% confidence interval in 500 dimensions is [136.521 , 137.064].

I This paper has theoretical guarantees and studies several other examples as well.

4

Deep Hedging and Control

Deep hedging, by Buehler, H., Gonon, L., Teichmann, J. and Wood, B., published in

Quantitative Finance, 19/8, 1271–1291, 2019.

While the paper does not contain guarantees, it reports numerous successful, numerical results in high

dimensions. An example is the indifference price of a European Call option with 30 time points, with

transaction costs and Heston dynamics in dimension 10.

Deep neural networks algorithms for stochastic control problems on finite horizon, part I : convergence

analysis, a preprint by Huré, C. and Pham, H. and Bachouch, A. and Langrené, N., 2018.

Deep neural networks algorithms for stochastic control problems on finite horizon, part 2 : Numerical

applications, by the same group, 2018.

They study the control problem related to a semi-linear PDE. . Numerical studies in dimensions

1, 10, 100 with N = 20 and a training data size of 10, 000. In these problems exact solution is known

and they report very small error.

A convergence analysis is given.

5

Other papers

There are many other recent papers using the recent computational techniques. Here is a partial list.

I Statistical learning for probability-constrained stochastic optimal control, by

Balata, Ludkovski, Maheshwari & Palczewski.

I Hedging with Neural Networks, by Ruf & Wang.

I Asset Pricing with General Transaction Costs : Theory and Numerics, by

Gonon, Muhle-Karbe & Shi.

I Deep learning for discrete-time hedging in incomplete markets, by Fecamp, Mikael & Warin.

I Machine learning for semi linear PDEs, by Chan-Wai-Nam, Mikael & Warin.

I Deep backward multistep schemes for nonlinear PDEs and approximation error analysis, by

Germain, Pham & Warin.

I Learning a functional control for high-frequency finance, by Leal, Laurière & Lehalle.

6

Summarizing

I There is a flurry of activity for high dimensional problems.

I We seem to have efficient algorithms for high dimensional control problems.

I We need better guarantees and not only convergence results.

I The problems studied up to now, are build on specific models and the training data is simulated.

I If the available data is large, then one can have a completely data driven approach.

I Neural networks approximate the optimal control directly.

I In all studies, a separate network is employed for each time point.

These are exciting developments bringing interesting and highly applicable questions.

7

Deep Monte Carlo Optimization

Outline

Recent Results

Optimal Stopping

Other results

Deep Monte Carlo Optimization

Uncertain Decision Problem

Algorithm

Results

Summary : Analytical results

Numerical Results

Complexity Estimates

9

Problem

We consider the following classical problem

minimize a→ v(a) := Eν

[∑
t∈T

ψ(t,X a
t , a(t,X a

t ,Zt)) + ϕ(X a
T)

]
,

where a is a feedback control or action, controlled state X a is given by

X a
t+1 = f (t,X a

t ,Zt+1, a(t,X a
t ,Zt)), t ∈ T := {0, 1, . . . ,T − 1}.

I Z = (Z1,Z2, . . . ,ZT) is an exogenous, observable random process with Z0 = 0.

I ν is the distribution of Z is ν ; it does not have to be Markov.

I The state process is a deterministic function of the random trajectory, i.e., X a
t = xa

t (Z) for some

deterministic function xa.

10

Reformulation

Summarizing : the pay-off associated feedback control or action a ∈ C is given by,

v(a) := Eν [`(a,Z)] = Eν

[∑
t∈T

ψ(t,X a
t , a(t,X a

t ,Zt)) + ϕ(X a
T)

]
, where

`(a, z) :=
∑
t∈T

ψ(t, xa
t (z), a(t, xa

t (z), zt)) + ϕ(xa
T (z)).

and the deterministic function xa
t (z) is defined previously using the dynamics of the problem.

The dynamic stochastic decision problem is to minimize v(a) over all admissible controls a ∈ C.

The optimal value is given by,

v∗ := inf
a∈C

v(a).

11

Outline

Recent Results

Optimal Stopping

Other results

Deep Monte Carlo Optimization

Uncertain Decision Problem

Algorithm

Results

Summary : Analytical results

Numerical Results

Complexity Estimates

12

Training Data and Loss Function

I The training set is a collection of n observations of trajectories :

Ln =
{
Z (1),Z (2), . . . ,Z (n)

}
where Z (i) = (Z

(i)
1 ,Z

(i)
2 , . . . ,Z

(i)
T).

I The loss function is simply the empirical average,

L(a;Ln) :=
1

n

n∑
i=1

`(a,Z (i)) ≈ v(a) = Eν [`(a,Z)] .

I The set of neural networks is given abstractly by

Nk :=
{

Φ(·; θ) : θ ∈ Ok

}
where for each parameter θ ∈ Ok , a neural network is a feedback control, i.e., a continuous function

Φ(·; θ) : T × X × Z → A;

I The compact parameter sets Ok ⊂ Rd(k) have increasing dimensions d(k), and we assume that the

sequence {Nk}k=1,2,... have the approximation capability.

13

Optimization or training

We fix the training set Ln and a set of neural networks Nk , and

minimize θ ∈ Ok 7→ L(Φ(·; θ);Ln).

As L is continuous and Ok is compact, there exists a minimizer θ∗k,n ∈ O∗k . Then,

Φ∗k,n(t, x , z) := Φ(t, x , z ; θ∗k,n), t ∈ T , x ∈ X , z ∈ Z,

is the optimal feedback action that could be constructed by the neural network Nk using Ln.

14

Results

Summary : Analytical results

I a∗ is the optimal control ;

I v∗ := v(a∗) = infa∈C v(a) ;

I Nk = {Φ(·; θ)}θ∈Ok is the neural networks ;

I Ln is the training set ;

I L(Φ(·; θ);Ln) is the loss function ;

I Φ∗k,n = argminΦ∈NkL(Φ;Ln) ;

I L(Φ∗k,n;Ln) = infΦ∈Nk L(Φ;Ln) ;

I v∗k,n := v(Φ∗k,n) ;

I v∗k := minΦ∈Nk v(Φ) ;

I L̂n is the data set chosen identically and

independently of Ln.

We have proved :

I Convergence :

v∗k = lim
n→∞

v∗k,n = lim
n→∞

L(Φ∗k,n;Ln).

v∗ = lim
k→∞

v∗k = lim
k→∞

lim
n→∞

L(Φ∗k,n;Ln).

I Over-Learning : “generically”,

lim
n→∞

lim
k→∞

L(Φ∗k,n;Ln) < v∗.

I non-asymptotic estimates : with 1− δ
probability

sup
Φ∈Nk

|L(Φ;Ln)− L(Φ; L̂n)| ≤ C(Nk , n, δ),

where the constant C(Nk , n, δ) is given by the

Rademacher complexity.
16

Outline

Recent Results

Optimal Stopping

Other results

Deep Monte Carlo Optimization

Uncertain Decision Problem

Algorithm

Results

Summary : Analytical results

Numerical Results

Complexity Estimates

17

Financial Example

I St ∈ Rd
+ is the stock price process, interest rate is taken to be zero and the amount of money to be

invested in the stock, πt = (π1
t , . . . , π

d
t) ∈ Rd , is the control variable.

I We consider feedback controls πt = a(t,X a
t ,Zt) and X a is the corresponding wealth process :

X a
t+1 = Xt + a(t,X a

t ,Zt) · Zt+1, Zt+1 =
St+1 − St

St
, t ∈ T .

I We maximize

v(a) := E[1− exp(−X a
T)].

I The certainty equivalent ce(v) of a utility value v < 1 is a more standard way of comparing different

utility values :

ce(v) := ln(1− v) ⇔ v = u(ce(v)).

18

Problem

I X0 = 0, T = 2. To simplify we fix the initial portfolio to be π0 = (1, . . . , 1)/d ;

I X1 = Z1 · π0 with Z1 is uniform on [−1/2, 1/2]d ;

I The only control is π1 = a(Z1) ∈ Rd (as X1 is a linear function of Z1, we do not need it) ;

I For Z2 = ζη with η ∈ Rd is fixed, ζ ∈ R is Gaussian with mean m and variance s, independent of Z1,

X a
2 =X1 + a(Z1) · Z2 = X1 + [a(Z1) · η] ζ.

I problem is

maximize v(a) = E[(1− exp(−X a
2)].

I Explicit solutions are

a∗ · η =
m

s2
, v∗ = 1− exp(−m2

2s2
) ⇔ ce(v∗) =

m2

2s2
.

I We use m = 18%, s = 0.44% with a∗ · η = 0.9297.

19

Network Structure

The network tries to learn the function Z1 ∈ Rd → a∗(Z1) · η ∈ R.

We use a fully connected neural network with

I 3 hidden layers of width 10 and ReLU activation functions (10d + 241 parameters) ;

I in most cases, a training data of size of n = 100, 000.

I stochastic gradient descent with mini-batches of size 32.

I employ commonly used conservative stopping rules such as :

- after 4 epochs stop when the in-sample-performance increases ;

- after 4 epochs stop when the test-performance increases.

I Unless forced, the optimization is finished in 4-5 epochs in most cases.

20

Neural network

Here Φ(·; θ) = (σ ◦ C4 ◦ σ ◦ C3 ◦ σ ◦ C2 ◦ σ ◦ C1)(·), where σ(a) = a+ and Ck ’s are affine functions with

C1 : Rd → R10, C2,C3 : R10 → R10, C4 : R10 → R1.

The parameters are the coefficients of the affine functions.
21

Results - Learning

I pin :=
nnin-sample−truein-sample

truein-sample
,

I pout :=
nnout-of-sample−trueout-of-sample

trueout-of-sample
,

I nnin-sample := ce(L(Φk,n;Ln)),

I truein-sample := ce(L(a∗;Ln)),

I nnout-of-sample := ce(L(Φk,n; L̂n)),

I trueout-of-sample := ce(L(a∗; L̂n)),

I a∗ is the known optimal control,

I Φk,n is the trained network, (note 6= Φ∗k,n),

I Ln is the training set used to compute Φk,n,

I L̂n is the independent test date set.

d pin (%) pin − pout (%)

100 10.12820 23.67080

85 8.38061 20.16440

70 7.32720 15.62060

55 5.05783 10.93950

40 3.74648 7.91105

25 2.11501 4.58954

10 0.53982 1.46138

Table 1 – Average relative in-sample performance,

and its comparison to the out-of-sample performance

with the above described conservative stopping rule.

Everything is in % with training size of n = 100, 000

and three hidden layers of width 10.

22

Why Over-Learning ?

I We have proved that “generically”

lim
n→∞

lim
k→∞

L(Φ∗k,n;Ln) < v∗.

And the numerical results also show this.

I The trained feedback controls perform better than the optimal : hence it is not “adapted” on the

training set.

I Although the returns Z1,Z2 are independent, networks try to learn Z2 as a function of Z1.

I Learning becomes easier in higher dimensions.

I This is the classical bias-variance trade-off in this context.

23

Over-learning or Importance of Optimization

Keeping all other parameters fixed : (3 hidden layers of width 10, d = 100, n = 105), we ran the

stochastic gradient descent algorithm for a long time.

This resulted in very substantial over-learning.

epochs pin (%) pin − pout (%)

µ σ µ σ

200 30.3161 2.46850 315.875 540.4750

100 25.8374 1.72027 111.553 41.5841

Table 2 – Longer iterations performance in 100 dimensions. Based on 15 runs. Especially the 200 epoch runs

show signs of a heavy tail, as expected with high degrees of overlearning. All other parameters as in Table 1.

24

Results - Convergence

sample size dimension pin (%) pin − pout (%)

µ σ µ σ

2,000,000 100 0.49597 0.11849 1.12846 0.32184

1,000,000 100 1.14094 0.14640 2.39532 0.27415

500,000 100 2.36352 0.20154 5.24018 0.81235

250,000 100 4.41388 0.37928 10.02040 1.45355

Table 3 – Performance for larger sample sizes. Based on 15 runs. All other parameters as before.

This illustrates the convergence as the training data gets larger.

25

Outline

Recent Results

Optimal Stopping

Other results

Deep Monte Carlo Optimization

Uncertain Decision Problem

Algorithm

Results

Summary : Analytical results

Numerical Results

Complexity Estimates

26

Sources of Error

I Time discretization error : well studied but might be a computational difficulty. Here we simply take

the problem to be already discretized.

I Law-of-Large-Numbers type error : this is the discrepancy between

L(a;Ln) =
1

n

n∑
i=1

`(a;Z (i)) and v(a) = E[`(a,Z)].

We use (Radamacher type) complexity estimates to quantify it.

I Network approximation error : this is how well the finite neural network Nk could approximate a∗ or

other near-minimizers. This is a better understood analytical question.

I Optimization error : this is how well the stochastic gradient descent (or the optimization algorithm

used) is doing. Extremely important and not studied here. Also it is not clear whether we should run

the optimization to its end.

27

Estimates and Convergence

I Set v∗k := infθ∈Ok v(Φ(·; θ)). As the neural networks have approximation capability,

lim
k→∞

v∗k = v∗ = inf
a∈C

v(a).

I The following holds with at least 1− δ probability for every θ ∈ Ok ,∣∣∣L(Φ(·; θ);Ln)− L(Φ(·; θ); L̂n))
∣∣∣ ≤ |v(Φ(·, θ))− L(Φ(·; θ);Ln))|+

∣∣∣ v(Φ(·, θ))− L(Φ(·; θ); L̂n)
∣∣∣

≤2cν(Nk , n, δ/2),

where cν(Nk , n, δ/2) (it will be discussed in the next slide) is related to the Rademacher complexity

rν(`(Nk), n) which converges to zero as n tends to zero.

I Then, the following holds with probability one,

lim
n→∞

L(A∗k,n;Ln) = lim
n→∞

L(A∗k,n; L̂n) = lim
n→∞

v(A∗k,n) = v∗k := inf
θ∈Ok

v(Φ(·; θ)).

28

Rademacher Complexity

I G is a hypothesis class of a set of real-valued functions defined on the set of trajectories.

I The empirical Rademacher complexity of G on the training set Ln is

Re(G,Ln) := E

[
sup
g∈G

1

n

n∑
i=1

σig(Z (i))

]
,

where the expectation is over the Rademacher variables σi ’s, which are identically and independently

distributed taking values ±1 with equal probability.

I For a probability measure ν on ZT , the Rademacher complexity of G for the distribution ν is

rν(G, n) := Eν [Re(G,Ln)] ,

where the expectation is over the random training set Ln = {Z (1),Z (2), . . . ,Z (n)} whose elements are

independently and identically drawn from ν.

29

Classical Estimates

I Recall that v(a) := E[`(a,Z)].

I For a neural network Nk and a training set Ln, set

Gν(Nk ,Ln) := sup
θ∈Ok

|v(Φ(·; θ))− L(Φ(·; θ);Ln)| .

I Ln is drawn from ν independently and identically.

I We assume that |`(a, ·)| ≤ c∗ for every a ∈ C.

I Then, for a given δ ∈ (0, 1), with probability at least 1− δ the following estimates hold,

Gν(Nk ,Ln) ≤ cν(Nk , n, δ) ≤ Ce(Nk ,Ln, δ),

where with `(Nk) = {`(Φ(·; θ)|θ ∈ Ok},

cν(Nk , n, δ) := 2rν(`(Nk); n) + 2c∗
√

ln(2/δ)

2n
,

Ce(Nk ,Ln, δ) := 2Re(`(Nk);Ln) + 6c∗
√

ln(2/δ)

n
.

30

Concluding

I Deep Monte-Carlo optimization is an effective and a flexible tool.

I It can handle details of the markets as well as complicated and general dynamics with ease.

I One has to be careful with the complexity of the networks and the size of the training data.

I Optimization step is the least understood part.

THANK YOU FOR YOUR ATTENTION.

joint work with

Max Reppen of Boston University

Bias-Variance Trade-off and Overlearning in Dynamic Decision Problems

https ://arxiv.org/abs/2011.09349

31

Concluding

I Deep Monte-Carlo optimization is an effective and a flexible tool.

I It can handle details of the markets as well as complicated and general dynamics with ease.

I One has to be careful with the complexity of the networks and the size of the training data.

I Optimization step is the least understood part.

THANK YOU FOR YOUR ATTENTION.

joint work with

Max Reppen of Boston University

Bias-Variance Trade-off and Overlearning in Dynamic Decision Problems

https ://arxiv.org/abs/2011.09349

31

	Recent Results
	Optimal Stopping
	Other results

	Deep Monte Carlo Optimization
	Uncertain Decision Problem
	Algorithm

	Results
	Summary: Analytical results
	Numerical Results
	Complexity Estimates

