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Abstract

Modern Monte Carlo-type approaches to dynamic decision problems face

the classical bias-variance trade-off. Deep neural networks can overlearn

the data and construct feedback actions which are non-adapted to the

information flow and hence, become susceptible to generalization error.

We prove asymptotic overlearning for fixed training sets, but also pro-

vide a non-asymptotic upper bound on overperformance based on the

Rademacher complexity demonstrating the convergence of these algorithms

for sufficiently large training sets. Numerically studied stylized examples

illustrate these possibilities, the dependence on the dimension and the

effectiveness of this approach.
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1 Introduction

Recent advances in training of neural networks make high-dimensional numerical
studies feasible for decision problems in uncertain environments. Although rein-
forcement learning has been widely used in optimal control for several decades
[6], only recently Han and E [18], Han et al. [20] combine it with Monte Carlo
type regression for the off-line construction of optimal feedback actions. In
these problems, the randomness and the state are observable and a training
set based on historical or simulated data is readily available. One then ap-
proximates the objective functions of these problems by the empirical averages
over this training data, constructing a loss function which is minimized over
the network parameters. The minimizer or a near-minimizer is the trained net-
work and it is an approximation of the optimal feedback action. This approach,
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which we call dynamic deep Monte Carlo optimization, has proved to be highly
effective in many closely related studies including Bachouch et al. [1], Becker
et al. [4], Buehler et al. [10, 11], Henry-Labordère [22], Huré et al. [24] reporting
impressive numerical results in problems with large number of states.

The generalization of the trained network or its out-of-sample performance
is the key property determining its effectiveness. We study this central ques-
tion by defining the pathwise cost of an action as a deterministic function of
the randomness. Then, the performance of the action is the expected value of
this deterministic function and the loss function described above is simply its
empirical average. This novel reformulation of the optimal decision problem is
our main observation allowing us to directly apply results from statistical ma-
chine learning without detailed analysis, providing useful estimates and tools
for the analysis of dynamic deep Monte Carlo optimization. To articulate this
general roadmap with clarity, we avoid technical constructs and only emphasize
the fundamental structures and the connections between them.

It is well-known that the optimal feedback controls of dynamic optimization
problems are determined by the conditional expectation of the value function
evaluated at the future controlled random state and the above approach es-
sentially uses a regression estimate of this conditional expectation [15]. It is
therefore natural that these successful studies implicitly face the classical bias-
variance trade-off described in the seminal paper of Geman et al. [16]. However,
the dynamic nature of the decisions is an essential feature that separates stochas-
tic optimal control from the classical regression or interpolation. The optimal
or near-optimal decisions depend on a time-varying estimate of the randomness
driving the dynamics of the state. In general there is no causality and in some
applications the available data for training is limited in size. Hence, as opposed
to interesting recent studies arguing the benefits of more complex networks and
interpolation (cf. Belkin et al. [5] and the references therein), in dynamic set-
tings overfitting causes the loss of the most salient restriction of the problem,
namely, the adaptedness of the decisions to the information flow.

Indeed, the global minimum of the loss functions are achieved by feedback
actions depending on the whole random path including the future rather than
an estimate of the conditional expectation which is a function of only the past
information. Therefore, sufficiently large networks may at every time overlearn
the future training data instead of estimating it, causing them to generate out-
put actions that look into the future. This renders the trained feedback actions
on the training set to be non-adapted to the filtration generated by the observ-
able variables. Thus, in-sample they overperform the original control problem,
as they implicitly circumvent the essential restriction of the adaptedness of
the decisions. Consequently, feedback actions constructed by sufficiently wide
networks do not always generalize and may perform poorly out-of-sample. Ex-
amples 5.2, 5.3 below, illustrate the concept of overlearning and the consequent
non-adaptedness of the actions clearly in non-technical settings.

More importantly, in the other direction, Sections 6 and 7 provide an anal-
ysis based on the Rademacher complexity ([3, 9]) and Theorem 7.1 establishes
several non-asymptotic error estimates. These results state that with high prob-
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ability the performance error of a randomly chosen training set is bounded by
the empirical Rademacher complexity. As the complexity of a fixed network
gets smaller with larger training data, for such an appropriate combination of
network structure and data, overlearning would be small as well. On the other
hand, for fixed training sets the complexity increases with the size of the net-
works. Thus, the performance error estimate (7.2) is an analytic manifestation of
the bias-variance or more precisely, bias-complexity trade-off (cf. Shalev-Shwartz
and Ben-David [34], Chp. 5) in this context.

The large sample size-limit of the complexity estimate proves the convergence
of the deep Monte Carlo optimization. Indeed, Corollary 8.2 shows that for
sufficiently large training sets the actions constructed by appropriately wide or
deep neural networks are close to the desired solutions and the overlearning is
negligible. Huré et al. [24] also establishes convergence results for controlled
Markov processes including the above and several other hybrid algorithms that
they propose. Han and Long [19] provides another convergence analysis for
the backward stochastic differential equations which are closely connected to
optimal control.

Our numerical experiments support these theoretical observations. In Sec-
tion 9 we analyze a stylized Merton utility maximization problem of Example 4.1.
Like the previous papers, our results also clearly demonstrate the effectiveness
of the dynamic deep Monte Carlo optimization in handling high dimensional
problems and the ease of including realistic aspects to the problems as done
by Buehler et al. [10]. Additionally, our experiments illustrate the convergence
of the algorithm and the dependence of overlearning on the dimension of the
randomness driving the dynamics.

The potential overlearning is shown by comparing the in-sample and out-
of-sample performances of the algorithm. Although we employ conservative
stopping rules in the stochastic gradient algorithm used in the training, there
is always some amount of overlearning. Our experiments with a training size
of 100, 000 and three hidden layers of width 10 show in-sample to out-sample-
sample performance differences ranging from 1.5% in 10 dimensions to 24% in
100 dimensions. Moreover, more aggressive minimization results in substantial
overlearning. In 100 dimensions, we could achieve up to 30% over-performance
over the known true solution in 100–200 epochs and more would be possible
with longer tries. In these cases, the out-of-sample performance deteriorates
rapidly.

It is well documented in the literature that the size of the training data
is central to the performance of this approach. In 100 dimensions, we achieve
a remarkable improvement in the accuracy of our numerical computations by
increasing the size of the training data. Our estimates also indicate that more
data points is an effective way to ensure the adaptedness of the feedback actions.
So in applications with limited available data, one needs to enrich the training
set by simulations as done in a financial application by Kondratyev and Schwarz
[28] using Boltzmann machines [33] which is also discussed in Buehler et al. [11].

In lower dimensional examples with limited data, robust optimization as
proposed by Bertsimas et al. [7, 8] also provides an effective approach. In
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similar studies, Esfahani and Kuhn [14] and Bartl et al. [2] use Wasserstein
balls to regularize the problem. Although very effective in many problems, as
the space dimension gets larger, this method becomes computationally more
difficult. Still, we believe that one could incorporate these techniques to deep
Monte Carlo optimization to further reduce the overlearning.

The paper is organized as follows. The decision problem is formulated in
Section 2. The Monte Carlo optimization is outlined in Section 3. Two motivat-
ing examples are given in Section 4 and overlearning is defined and proved in
Section 5. The classical Rademacher complexity is recalled in Section 6 and the
error estimate is proved in Section 7. The convergence is discussed in Section
8. Section 9 outlines the specifics of the network structure, the optimization
algorithm and the experiments. After the concluding remarks, in Appendix A
we provide a generalization of the overlearning theorem.

2 Decision Problem

Consider a dynamic decision problem under uncertainty or, equivalently, a
stochastic optimal control problem in discrete time with a finite horizon of T .
Set

T := {0, 1, . . . , T − 1}.

The state space X , disturbance set Z and the control set A are closed subsets of
Euclidean spaces. A finite sequence z := (z1, z2, . . . , zT ) ∈ ZT is a deterministic
trajectory representing the realizations of the random input.

The source of randomness is an exogenous random trajectory Z1, Z2, . . . , ZT

with values in Z defined on a probability space (Ω,P). We set Z0 = 0 and
use the notation Z = (Z1, Z2, . . . , ZT ). For t > 0, Ft is the smallest σ-algebra
(i.e., a collection of subsets of Ω that is closed under countably many usual set
operations) so that the random variables Z1, . . . , Zt are all Ft measurable and
F0 = {∅,Ω}. The collection of increasing sequence of σ-algebras F = (Ft)t∈T is
the filtration.

In our notation, whenever possible, we use capital letters for random vari-
ables, lower case letters for deterministic quantities and sets are denoted by
calligraphic letters. We assume all functions to be continuous.

2.1 Dynamics

We only consider controls or actions that are of feedback form, i.e., an action

a : T × X × Z → A

is a continuous function1 of time and the observed state and randomness. Let
C be the set of all actions satisfying the constraints a(t, ·) ∈ At for every t ∈ T ,

1When the process Z is Markov, one does not gain from enlarging the controls to all adapted
processes [15]. When Z is a general process, restricting the actions to be feedback type defines
a well-defined problem whose optimal value might be different than the one obtained in the
larger class of adapted controls.
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where At ⊂ A are given Borel sets.2

For an action a ∈ C, an initial value x ∈ X and a (deterministic) trajectory
z = (z1, z2, . . . , zT ), the controlled state process xa = (xa

0 , x
a
1 , . . . , x

a
T ) is defined

recursively by
xa

t+1 = f(t, xa
t , zt+1, a(t, xa

t , zt)), t ∈ T ,

where xa
0 = x, z0 = 0 and f : T ×X ×Z×A → X is a given smooth deterministic

function. We fix the initial value x and let xa(z) be the state as a function of
the trajectory z. For a given random trajectory Z = (Z1, . . . , ZT ), we set

Xa := xa(Z) with Xa
t = xa

t (Z).

As xa
t (z) depends only on (z1, z2, . . . , zt), X

a is adapted to the filtration F =
(Ft)t∈T .

2.2 Performance Criteria

The performance criteria of a control process a ∈ C is given by,

v(a) := Eν

[

∑

t∈T

ψ(t,Xa
t , a(t,Xa

t , Zt)) + ϕ(Xa
T )

]

, (2.1)

where ν is the distribution of the random process Z and ψ : T × X × A → R,
ϕ : Rd → R are given smooth functions.3 Since Xa = xa(Z) is a deterministic
function of the random trajectory Z, we may rewrite the above definition as
follows,

v(a) := Eν [ℓ(a, Z)] ,

where ℓ : C × ZT → R is given by,

ℓ(a, z) :=
∑

t∈T

ψ(t, xa
t (z), a(t, xa

t (z)) + ϕ(xa
T (z)). (2.2)

The dynamic stochastic decision problem is to minimize v(a) over all admis-
sible controls a ∈ C. The optimal value is given by,

v∗ := inf
a∈C

v(a). (2.3)

We make the following simplifying assumption on the coefficients.

Assumption 2.1. We assume that the functions ψ, ϕ in (2.1) are uniformly
bounded and continuous so that ℓ defined in (2.2) is continuous in the control
variable uniformly in the z-variable and there exist a constant c∗ satisfying

|ℓ(a, z)| ≤ c∗, ∀ z ∈ ZT , a ∈ C.

In particular, if a sequence of feedback actions an converge to a pointwise, then
limn→∞ v(an) = v(a).

2More general structures, including state constraints can easily be incorporated.
3One may easily generalize the problem by allowing the cost functions ψ, ϕ to explicitly

depend on the randomness. Although potentially important in some applications, we refrain
from this easy generalization as it would unnecessarily further complicate the notation.
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3 Deep Monte Carlo Optimization

In this section, we outline the deep Monte Carlo optimization of Han and E
[18].

The training set is a collection of n observations of trajectories:

Ln =
{

Z(1), Z(2), . . . , Z(n)
}

where Z(i) = (Z
(i)
1 , Z

(i)
2 , . . . , Z

(i)
T ).

For any a ∈ C, this data generates n realizations of the state process xa(Z(i))
as well. We then use the training set to define the loss function for a ∈ C by,

L(a; Ln) :=
1

n

n
∑

i=1

ℓ(a, Z(i)). (3.1)

In the applications that motivate this study, the exogenous process Z is
observable and is the only source of randomness. In the example of portfolio
management (Section 4.2), it is the stock price process and in the production
planning problem (Section 4.1), it is the demand for a certain product. In both
cases, historical data is available. In this study, we do not discuss how the
training set is generated. Rather we take it as given and study its interaction
with the neural networks.

We abstract the neural networks as a parametrized collection of functions.
A parameter θ is a finite sequence of real numbers. For each parameter θ, a
neural network is a continuous function

Φ(·; θ) : T × X × Z → A.

We consider a sequence of compact parameter sets Ok ⊂ Rd(k) with increasing
dimensions d(k). We assume that Φ is continuous. Set

Nk :=
{

Φ(·; θ) : θ ∈ Ok

}

. (3.2)

We fix the training set Ln and a set of neural networks Nk, and

minimize θ ∈ Ok 7→ L(Φ(·; θ); Ln). (3.3)

As L is continuous and Ok is compact, there exists a minimizer θ∗
k,n ∈ O∗

k.
Then,

A∗
k,n(t, x, z) := Φ(t, x, z; θ∗

k,n), t ∈ T , x ∈ X , z ∈ Z,

is the optimal feedback action that could be constructed by the neural network
Nk using Ln. As the training data Ln is random, A∗

k,n and its in-sample per-
formance

L(A∗
k,n; Ln) = inf

θ∈Ok

L(Φ(·; θ); Ln) (3.4)

are both random as well. We are also interested in the out-of-sample perfor-
mance L(A∗

k,n; L̂n) on an independently chosen set L̂n and its average perfor-
mance,

v(A∗
k,n) = E[ℓ(A∗

k,n, Z)].
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The effectiveness of this algorithm depends on the size and the architecture
of the neural networks Nk, the size of the training set Ln, and also on their
interactions. The main goal of this paper is to study this and the connections
between v∗, L(A∗

k,n; Ln), v(A∗
k,n) and L(A∗

k,n; L̂n).
Since numerically one can only construct an approximation of the above min-

imizer, the details of the approximating optimization procedure is an essential
part of the algorithm. In our experiments, we use a standard stochastic gradient
descent with commonly used stopping rules to better study the properties of the
deep Monte Carlo optimization.

The only requirement we impose on Nk is to have the approximation capa-
bility. It is well known that the neural networks have this property as proved
by Cybenko [12] and Hornik [23].

Assumption 3.1. We assume that for any bounded continuous function a :
T × X × Z → A, there exists a sequence θk ∈ Ok such that Φ(·; θk) converges
to a locally uniformly.

This assumption easily implies that the neural networks can approximate
the optimal value. The more interesting question of the convergence of the
computable minimum values v(A∗

k,n) is studied in Section 8.

Lemma 3.2. Suppose that the Assumptions 2.1, 3.1 holds. Then,

lim
k→∞

inf
θ∈Ok

v(Φ(·; θ)) = v∗.

Proof. Set v∗
k := infθ∈Ok

v(Φ(·; θ)). Let a∗
ǫ ∈ C be an ǫ-minimizer of v:

v(a∗
ǫ ) ≤ v∗ + ǫ. In view of Assumption 3.1, there exists a sequence θk ∈ Ok

such that Φ(·; θk) converges to a∗
ǫ locally uniformly. Then, by Assumption 2.1,

lim supk→∞ v∗
k ≤ limk→∞ v(Φ(·; θk)) = v(a∗

ǫ ) ≤ v∗ + ǫ. Since ǫ > 0 is arbitrary
and v∗ ≤ v∗

k, we conclude that v∗
k converges to v∗.

4 Examples

We briefly outline two classes of problems to clarify the model and the notation.
Several other examples are also discussed in [18].

4.1 Production Planning

The above structure includes the multi-stage optimization problems introduced
by Bertsimas et al. [7, 8]. For clarity, here we describe only a simple example
of these problems which is very similar to Example 1 in Bertsimas et al. [7] and
refer the reader to Bertsimas et al. [7, 8] for the more general problems.

Consider producers facing an optimal production decision. They observe
the random demand Z1, Z2 in two stages. The production level is decided after
observing Z1 but before Z2. The second component of the random demand Z2

is observed at the final stage. The goal is to bring the final inventory level close
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to zero by properly choosing the production level at stage one. Let Xa be the
inventory level. We assume the initial inventory is zero and no production is
made initially. Then, Xa

1 = Z1 and with a(·) := a(1, ·), Xa
2 = Xa

1 − a(Z1) + Z2,
and the problem is to minimize

v(a) = E [φ(ZXa
2 )] = E [φ(Z1 + Z2 − a(Z1))]

over all production production functions a ∈ C. The penalty function φ ≥ 0
is convex and equal to zero only at the origin. In our framework, A0 = {0},
A1 = [0,∞), ψ ≡ 0 and f(t, x, z, a) = y − a+ z.

For φ(x) = x2 this is exactly the classical regression problem of estimat-
ing the total demand Z1 + Z2 after observing the first component Z1. It is
well-known that the optimal solution is a∗(Z1) = E[Z1 + Z2 | Z1], and this
optimization problem reduces to the classical regression well-known to face the
bias-variance trade-off. Although this connection may not be as explicit in other
more complex problems, it is always inherent to the problem.

4.2 Merton Problem

Starting with Hutchinson et al. [25], neural networks have been employed in
quantitative finance. Recently, Bachouch et al. [1], Becker et al. [4], Buehler
et al. [10, 11], Henry-Labordère [22], Huré et al. [24] use them to obtain im-
pressive results in high dimensional problems. Here we only outline a portfolio
management problem in a financial market with d many assets. Although this
example does not include many important modeling details, it must be clear
that by choosing Z and Xa appropriately, one can cover essentially all classical
Merton type utility maximization, portfolio optimization and hedging problems
studied in the literature. Also problems with different structures such as free
boundary problems studied by Becker et al. [4] and the hedging problem with
transactions costs by Mulvey et al. [31] can be included in our framework.

Let St ∈ Rd
+ denote the stock price process and assume that one-period

interest rate r is constant. The control variable πt = (π1
t , . . . , π

d
t ) ∈ Rd is the

amount of money to be invested in each of the stock. Classically, it is assumed
that πi

t could take any value. Starting with initial wealth of x > 0, the self-
financing wealth dynamics for the portfolio choice πt ∈ At ⊂ Rd is given by,

Xt+1 = Xt + πt · Zt+1 + r(Xt − πt · 1) = (1 + r)Xt + πt · (Zt+1 − r1) t ∈ T ,

where X0 = x, 1 = (1, . . . , 1) ∈ Rd and the return process Z is given by,

Zt+1 =
St+1 − St

St

∈ Rd, t ∈ T .

We consider feedback controls πt = a(t,Xa
t , Zt) and let Xa be the corresponding

wealth process. Then, the classical problem is to maximize v(a) := E[u(Xa
T )]

with a given utility function u.
In our formulation, X = R, Z ⊂ Rd and f(t, x, ζ, a) := (1 + r)x + a ·

(ζ − r1), ψ ≡ 0, ϕ(x) = u(x). We refer the reader to Buehler et al. [10, 11]
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and the references therein for more general financial markets with frictions and
constraints.

Example 4.1. To illustrate the convergence of the algorithm, the potential
overlearning, the loss of adaptedness, and their consequences, in Section 9 we
study the following stylized example with an explicit solution in detail. We take
T = 2, initial wealth X0 = x = 0 and an exponential utility u(x) = 1 − e−λx

where λ > 0 is the risk-aversion parameter.
To simplify even further we assume that the initial portfolio π0 = (1/d, . . . , 1/d)

to be uncontrolled. Then, X1 = (Z1 ·1)/d−r is also uncontrolled. Then, control
problem is to choose a(Z1) := π1(X1, Z1) ∈ Rd so as to maximize

v(a) = E [1 − exp(−λXa
2 )] ,

where Xa
2 = (1 + r)X1 + a(Z1) · (Z2 − r1). The certainty equivalent of a utility

value v < 1 given by

ce(v) :=
1

λ
ln(1 − v), ⇔ v = u(ce(v)),

is a more standard way of comparing different utility values. Indeed, the agents
with expected utility preferences would be indifferent between the action a and
the cash amount of ce(v(a)) as the expected utilities of both positions are equal
to each other. Thus, for these agents the cash equivalent of the action a is ce(a).

In the numerical experiments, to reduce the output noise we fix a unit vector
η ∈ Rd and take Z2 = ζη independent of Z1 with a real-valued Gaussian random
variable ζ with mean m and volatility s. Then, with r = 0,

a∗(z) = a∗ =
m

λs2
η, ce(v∗) = −

m2

2λs2
.

5 Overlearning

Given a vector α = (α0, . . . , αT −1) ∈ AT , we define a constant (in space) action

aα(t, x, ζ) := αt, t ∈ T , x ∈ X , ζ ∈ Z

which depends only on time. For brevity, we write xα(z) := xaα (z) and let

ℓ̂(α, z) := ℓ(aα, z), α ∈ AT , z ∈ ZT . (5.1)

We need the following simple result.

Lemma 5.1. For every z ∈ ZT , infα∈AT ℓ̂(α, z) = infa∈C ℓ(a, z).

Proof. For z ∈ ZT , a ∈ C and set α
(a,z)
t := a(t, xa

t (z), zt), α
(a,z) := (α

(a,z)
0 , . . . , α

(a,z)
T −1 ).

Then, on the trajectory z (and possibly not on the other trajectories), the orig-
inal feedback action a and the constant action α(a,z) defined through a, z yield
the same state and performance. Indeed, for every t ∈ T , trivially we have

aα(a,z)(t, x, ζ) = α
(a,z)
t = a(t, xa

t (z), zt), ∀x ∈ X , ζ ∈ Z.

9
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Therefore, xα(a,z)

(z) = xa(z), ℓ̂(α(a,z), z) = ℓ(a, z). In particular,

inf
α∈AT

ℓ̂(α, z) ≤ ℓ̂(α(a,z), z) = ℓ(a, z).

Hence infα∈AT ℓ̂(α, z) ≤ infa∈C ℓ(a, z). The opposite inequality is immediate.

For the training data Ln, set

V ∗(Ln) :=
1

n

n
∑

i=1

inf
α∈AT

ℓ̂(α;Z(i)). (5.2)

As by the above Lemma, infα∈AT ℓ̂(α,Z(i)) ≤ ℓ(a, Z(i)) for any a ∈ C and i,

V ∗(Ln) =
1

n

n
∑

i=1

inf
α∈AT

ℓ̂(α,Z(i)) ≤
1

n

n
∑

i=1

ℓ(a, Z(i)) = L(a; Ln), ∀ a ∈ C.

In view of law of large numbers, L(a; Ln) is close to v(a) = E[ℓ(a, Z)] for large
n. Also in most examples, the above inequality is strict as the minimization in
the definition of V ∗(Ln) is pointwise. Hence, typically, one has V ∗(Ln) < v∗.

Moreover, for every k,

V ∗(Ln) ≤ inf
θ∈Ok

L(Φ(·; θ); Ln) = L(A∗
k,n; Ln), ∀ k, (5.3)

where L(A∗
k,n; Ln) is as in (3.4). Thus, the above inequality shows that the

neural network Nk would try to approximate the optimizer or almost-optimizers
of ℓ̂(·, z) on the training data Ln. Since it is well-known that sufficiently wide
or deep neural networks can learn any finite sequence (c.f. Assumption 3.1), the
minimal value L(A∗

k,n; Ln) obtained by the neural networks would be close to
V ∗(Ln) as proved in Theorem 5.5 below. As a consequence, neural networks
may potentially overperform v∗. We refer to this possibility as overlearning the
randomness as the networks predict the future values instead of performing a
regression analysis.

In optimal control, it is centrally important that the decisions are adapted
to the information flow. Sufficiently deep or wide neural networks circumvent
this restriction by overlearning the data and are thus able to overperform on
the training data. However, as the output of the neural networks is in feedback
form, technically the trained actions are always adapted. So the issue of non-
adaptedness is a subtle and a data-dependent one. Indeed, the coefficients of
the trained networks use the future data explicitly and therefore become non-
adapted on the training data and overperform on this set. This observation is
quite clear in the examples discussed in the next subsection.

5.1 Examples

We return to two examples from Section 4 to clarify the above notions.

10
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Example 5.2. Consider the production planning problem of Section 4.1. The
only feedback action in that context is the production decision. For a fixed
control α ∈ R and a given trajectory of demands z = (z1, z2), the cost function
ℓ(α, z) = φ(z1 + z2 − α) ≥ 0 is zero at the origin. Hence, α∗(z) = z1 + z2 is the
optimizer and V ∗(Ln) = 0 < v∗ for any training set Ln = {Z(1), Z(2), . . . , Z(n)}.

More importantly, as discussed above, neural networks may also overperform
by getting close to V ∗(Ln). Indeed, if the training data is distinct, any suffi-
ciently deep and wide neural network constructs an approximation ζ : R → R

so that ζ(Z
(i)
1 ) is uniformly close to Z

(i)
2 for each i. Then, the feedback action

a∗(z1) := z1 + ζ(z1) constructed by the neural network achieves an in-sample
performance value of L(a∗; Ln) which is close to zero. As v∗ > 0, this would be
overlearning and a∗ does not generalize. Also on the training set, the action a∗

constructed by the network implicitly uses the non-observed demand Z2.

Example 5.3. Consider the utility maximization problem discussed in Example
4.1 with one stock. Then, for a fixed control α ∈ R and given returns z = (z1, z2),
the cost function is given by ℓ(α, z) = 1 − exp(((1 + r)(z1 − r) + α(z2 − r)).
Then, the optimal portfolio takes unbounded positions depending on the sign of
z2 − r. Thus, V ∗(Ln) = 1 = supx u(x) for any training set. In financial terms,
large enough neural networks predict the sign of the random variable Z2 − r
by observing Z1 and use this prediction to create a numerical arbitrage caused
by the obvious non-adaptedness and overlearning. Additionally, on the training
data the trained feedback actions almost achieve a performance value of one,
thus overperforming v∗ < 1.

5.2 Asymptotic Overlearning

We continue by proving asymptotic overlearning. We first prove the result under
the following assumption and provide a general result in Appendix A.

Assumption 5.4. We assume that the training data is distinct: for every t ∈ T

and i 6= j, Z
(i)
t 6= Z

(j)
t .

When Z(i)’s are drawn independently from an atomless distribution, they
would all be distinct. This assumption and the proof of Theorem 5.5 below show
the importance of the dimension d. Indeed, in higher dimensions, the training
data is ‘more and more distinct’ allowing easier overlearning. The separation
between the training data is also a factor in the Rademacher complexity that is
discussed in the next section.

Theorem 5.5. Let L(A∗
k,n; Ln) be as in (3.4) and V ∗(Ln) be as in (5.2) and

suppose that Assumptions 2.1, 3.1 and 5.4 hold. Then, for every training set
Ln,

lim
k→∞

L(A∗
k,n; Ln) = V ∗(Ln).

Proof. Fix n,Ln, ǫ > 0 and choose αǫ(·) satisfying

ℓ̂(αǫ(z), z) ≤ inf
α∈AT

ℓ̂(α, z) + ǫ,

11
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For each i, consider the constant vector αǫ,i = αǫ(Z(i)) ∈ AT . Since Z(i)’s are
distinct, there exists a bounded, smooth function ãǫ : T × Z → A, satisfying

ãǫ(t, Z
(i)
t ) = αǫ,i

t = αǫ
t(Z

(i)), t ∈ T , i = 1, 2, . . . , n.

We trivially extend ãǫ to T × X × Z by setting aǫ(t, x, ζ) := ãǫ(t, ζ). As

aǫ(t, xaǫ

(Z(i)), Z(i)) = ãǫ(t, Z
(i)
t ) = αǫ,i

t , ∀t ∈ T ,

we have xaǫ

(Z(i)) = xαǫ,i

(Z(i)) and consequently, ℓ(aǫ, Z(i)) = ℓ̂(αǫ,i, Z(i)) for
every i. Therefore,

L(aǫ; Ln) =
1

n

n
∑

i=1

ℓ̂(αǫ,i, Z(i)) ≤
1

n

n
∑

i=1

inf
α∈AT

ℓ̂(α,Z(i)) + ǫ = V ∗(Ln) + ǫ.

Moreover, by the universal approximation Assumption 3.1, the definition
(3.1) of L and the continuity of ℓ as assumed in Assumption 2.1, there is a
sequence of neural networks approximating the function aǫ, i.e., a sequence of
parameters θǫ

k (depending on fixed n) such that

lim
k→∞

L(Φ(·; θǫ
k); Ln) = L(aǫ; Ln).

Hence,

lim sup
k→∞

L(A∗
k,n; Ln) ≤ lim

k→∞
L(Φ(·; θǫ

k); Ln) = L(aǫ; Ln) ≤ V ∗(Ln) + ǫ.

We now use a diagonal argument to construct a sequence θk satisfying

lim sup
k→∞

L(A∗
k,n; Ln) ≤ lim

k→∞
L(Φ(·; θk); Ln) ≤ V ∗(Ln).

This together with (5.3) completes the proof.

6 Rademacher Complexity

We first recall several classical definitions and results: see Bartlett and Mendel-
son [3], Bousquet et al. [9], Mohri et al. [30], Shalev-Shwartz and Ben-David
[34]. Let G be a hypothesis class of a set of real-valued functions defined on the
set of trajectories.

Definition 6.1. The empirical Rademacher complexity of G on the training set
Ln is defined to be

Re(G,Ln) := E

[

sup
g∈G

1

n

n
∑

i=1

σig(Z(i))

]

,

where the expectation is over the Rademacher variables σi’s, which are identi-
cally and independently distributed taking values ±1 with equal probability.

12
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Definition 6.2. For a probability measure ν on ZT , the Rademacher complexity
of G for the distribution ν is defined to be

rν(G, n) := Eν [Re(G,Ln)] ,

where the expectation is over the random training set Ln = {Z(1), Z(2), . . . , Z(n)}
whose elements are independently and identically drawn from ν.

Let v : C → R be as in (2.1), L be as in (3.1). For a neural network Nk and
a training set Ln, set

Gν(Nk,Ln) := sup
θ∈Ok

|v(Φ(·; θ)) − L(Φ(·; θ); Ln)| .

The following result that uniformly connects empirical averages to expected
values is classical. Since by Assumption 2.1, |ℓ|(a, ·)| ≤ c∗ for every a ∈ A,
|L|, |v| ≤ c∗ as well. Then, for a given δ ∈ (0, 1), with probability at least 1 − δ
the following estimates hold,

Gν(Nk,Ln) ≤ cν(Nk, n, δ) ≤ Ce(Nk,Ln, δ), (6.1)

where with ℓ(Nk) = {ℓ(Φ(·; θ)|θ ∈ Ok},

cν(Nk, n, δ) := 2rν(ℓ(Nk);n) + 2c∗

√

ln(2/δ)

2n
,

Ce(Nk,Ln, δ) := 2Re(ℓ(Nk); Ln) + 6c∗

√

ln(2/δ)

n
.

One-sided version of these estimates for functions 0 ≤ g ≤ 1 is proved in Theo-
rem 3.3 by Mohri et al. [30] and elementary arguments yield the above two-sided
estimates.

Remark 6.3. The random variable Ce(Nk,Ln, δ) is an empirical quantity in-
dependent of the distribution ν. Theoretically, it can be calculated once the
training data is given.

The random variablesGν(Nk,Ln), Ce(Nk,Ln, δ) and the constant cν(Nk, n, δ)
are increasing as the neural networks Nk get wider and deeper. The mono-
tonicity of δ is also clear. One may obtain further estimates by using the
Rademacher calculus as described in Section 26.1 by Shalev-Shwartz and Ben-
David [34]. Indeed, if the mapping a ∈ C 7→ ℓ(a, z) is uniformly Lipschitz,
then, the Kakade & Tewari composition Lemma (see Kakade and Tewari [26],
also Lemma 26.9 in Shalev-Shwartz and Ben-David [34]) implies that one can
estimate the complexities Re(ℓ(Nk); Ln) and rν(ℓ(Nk);n), by the Rademacher
complexities Re(Nk; Ln), rν(Nk;n) of the neural networks.

Moreover, as a consequence of the Massart Lemma and the composition
lemma, the Rademacher complexity rν(Nk;n) of the neural networks converges
to zero as the size n of the training data goes to infinity; see for example problem
3.11 in Mohri et al. [30] or Corollary 3.8 in the lecture notes Wolf [36]. In fact

13
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detailed estimates are also available in Golowich et al. [17], Neyshabur et al. [32].
Since the regularity of ℓ can be directly proven under Lipschitz assumptions on
the coefficients of the decision problem, this procedure shows that under natural
assumptions on the coefficients, the complexity rν(ℓ(Nk);n) also converges to
zero.

We may also use the techniques developed by E et al. [13] for estimating the
Rademacher complexity of residual networks to obtain upper bounds for the
complexities appearing our analysis.

7 Complexity Estimates

Let v∗ be as in (2.3) and A∗
k,n, L(A∗

k,n; Ln), L(A∗
k,n; L̂n), v(A∗

k,n) be as in
Section 3. In this section we prove empirical bounds on their differences.

Theorem 7.1. Under Assumptions 2.1 and 3.1, for every ǫ > 0 there exists kǫ

such that
∣

∣v∗ − L(A∗
k,n; Ln)

∣

∣ ≤ Gν(Nk,Ln) + ǫ, ∀ k ≥ kǫ. (7.1)

In particular, for all δ > 0 the followings holds with at least 1 − δ probability for
every k ≥ kǫ,

∣

∣v∗ − L(A∗
k,n; Ln)

∣

∣ ≤ cν(Nk, n, δ) + ǫ ≤ Ce(Nk,Ln, δ) + ǫ, (7.2)
∣

∣v∗ − v(A∗
k,n)

∣

∣ ≤ 2cν(Nk, n, δ) + ǫ ≤ 2Ce(Nk,Ln, δ) + ǫ.

Proof. For ǫ > 0 choose aǫ ∈ C satisfying v(aǫ) ≤ v∗ + 1
2ǫ. By Assumption 3.1,

there exists a sequence θk and kǫ so that

v(Φ(·; θk)) ≤ v(aǫ) +
1

2
ǫ ≤ v∗ + ǫ, ∀k ≥ kǫ.

Since L(A∗
k,n; Ln) ≤ L(Φ(·; θ); Ln) for any θ ∈ Ok, the definition of Gν implies

that

L(A∗
k,n; Ln) ≤ L(Φ(·; θk); Ln) ≤ v(Φ(·; θk)) +Gν(Nk,Ln)

≤ v∗ +Gν(Nk,Ln) + ǫ, ∀k ≥ kǫ.

As v∗ ≤ v(Φ(·, θ)) for any θ ∈ Ok and A∗
k,n = Φ(·, θ∗

k,n),

v∗ ≤ v(A∗
k,n) ≤ L(A∗

k,n; Ln) +Gν(Nk,Ln).

Now (7.1) follows directly from the above inequalities, and (7.2) from (7.1) and
(6.1). Finally,

∣

∣v∗ − v(A∗
k,n)

∣

∣ ≤
∣

∣v∗ − L(A∗
k,n; Ln)

∣

∣+
∣

∣v(A∗
k,n) − L(A∗

k,n; Ln)
∣

∣ ≤ 2Gν(Nk,Ln)+ǫ.

14
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Let L̂n be another data set drawn identically and independently from the
distribution ν. By (6.1), the following holds with at least 1 − δ probability for
every θ ∈ Ok,

∣

∣

∣
L(Φ(·; θ); L̂n) − L(Φ(·; θ); Ln))

∣

∣

∣
≤ |v(Φ(·, θ)) − L(Φ(·; θ); Ln))|

+
∣

∣

∣
v(Φ(·, θ)) − L(Φ(·; θ); L̂n)

∣

∣

∣

≤Gν(Nk,Ln) +Gν(Nk, L̂n) ≤ 2cν(Nk, n, δ/2).

This shows that the in and out-of-sample performance difference of any network
provides an empirical lower bound for the Rademacher complexity with high
probability. In fact, in many applications it is a standard practice to monitor
this difference. Thus, also in view of the estimate (7.2), the following quantity,
maximal performance difference, could be taken as a proxy for overlearning,

O(Nk,Ln, L̂n) := sup
θ∈Ok

|L(Φ(·, θ); Ln) − L(Φ(·, θ); L̂n)|.

We restate that the following holds with at least 1 − δ probability,

|L(Φ(·, θ); Ln) − L(Φ(·, θ); L̂n)| ≤ O(Nk,Ln, L̂n) ≤ 2cν(Nk, n, δ/2), ∀θ ∈ Ok.
(7.3)

8 Convergence

We make the following assumption on the complexity of the neural networks
Nk.

Assumption 8.1. We assume that for each k, the Rademacher complexity
rν(ℓ(Nk), n) converges to zero as the training size n tends to zero.

As discussed in Remark 6.3, the above assumption holds under natural as-
sumptions on the coefficients. We consider a sequence of training sets Ln and
out-of-sample sets L̂n drawn identically and independently from ν. A∗

k,n is the
optimal feedback action that could be constructed by the neural network Nk

using Ln, c.f., (3.4). Set v∗
k := infθ∈Ok

v(Φ(·; θ)).

Corollary 8.2. Under the Assumptions 2.1 and 8.1, the following holds with
probability one,

lim
n→∞

L(A∗
k,n; Ln) = lim

n→∞
L(A∗

k,n; L̂n) = lim
n→∞

v(A∗
k,n) = v∗

k.

Under the approximation Assumption 3.1, v∗
k converges to v∗ as proved in

Lemma 3.2. Hence, the above result states that as the size of training data
increases, the performance of the feedback actions constructed by the neural
networks converge to the optimal value provided that the size of the neural
networks also tends to infinity in a controlled manner.
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Proof. By the definition of Gν used at A∗
k,n and at Φ(·; θk), we obtain the

following

v∗
k ≤ v(A∗

k,n) ≤ L(A∗
k,n; Ln) +Gν(Nk,Ln),

L(A∗
k,n; Ln) ≤ L(Φ(·; θk),Ln) ≤ v∗

k +Gν(Nk,Ln).

Hence,
∣

∣v∗
k − L(A∗

k,n; Ln)
∣

∣ ≤ Gν(Nk,Ln).

Fix ǫ > 0 and set δn = 2 exp(−2nǫ2/(6c∗)2) so that

cν(Nk, n, δn) = 2rν(ℓ(Nk);n) + 6c∗

√

ln(2/δn)

2n
= 2rν(ℓ(Nk), n) + ǫ.

Then, by (6.1), for every k with at least 1 − δn probability

∣

∣v∗
k − L(A∗

k,n; Ln)
∣

∣ ≤ Ce(Nk,Ln, δn) = 2rν(ℓ(Nk), n) + ǫ.

Equivalently, P(Ωk,n,ǫ) ≤ δn, where

Ωk,n,ǫ :=
{

∣

∣v∗
k − L(A∗

k,n; Ln)
∣

∣ > 2rν(ℓ(Nk), n) + ǫ
}

.

Since
∑

n δn < ∞, by the Borel-Cantelli Lemma, for every k,

lim sup
n→∞

∣

∣v∗
k − L(A∗

k,n; Ln)
∣

∣ ≤ lim
n→∞

2rν(ℓ(Nk), n) + ǫ = ǫ,

with probability one.
In view of (7.3), by at least 1 − δn probability

∣

∣

∣
L(A∗

k,n; L̂n) − L(A∗
k,n; Ln)

∣

∣

∣
≤ 2cν(Nk, n, δn/2) = 4rν(ℓ(Nk), n) + ln(4)ǫ.

The above Borel-Cantelli argument also implies that with probability one,

lim sup
n→∞

∣

∣

∣
L(A∗

k,n; L̂n) − L(A∗
k,n; Ln))

∣

∣

∣
≤ ln(4)ǫ.

9 Numerical Experiments

In this section we present the numerical implementations of Example 4.1. We
take λ = 1, r = 0 and as discussed in that example the return of the second
period Z2 = ζη where ζ is Gaussian with mean 18% and volatility 0.44%4

and is independent of Z1. Then, the optimal solution given in Example 4.1

4We have chosen the µ and σ values randomly among those with a∗ close to one and which
are neither too small or large. For these parameter values, overlearning is not particularly
easy.
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is a∗ = 0.9297. To focus the training on a compact input domain, Z1 is dis-
tributed uniformly over [−0.5, 0.5]d. We use the certainty equivalent ce defined
in Example 4.1 to compare the performances of different actions.

As our main goal is to illustrate the potential overlearning, we try to strike a
balance between avoiding unnecessary tuning parameters while still implement-
ing commonly accepted best practices. The simple but representative structure
of the chosen example allows us to easily evaluate the trained feedback actions
by comparing them to explicit formulae and also provides an understanding of
the performance of this algorithm on a general class of decision problems. We
emphasize that our claim is not that overlearning cannot be alleviated in these
problems, but that it does occur even with a seemingly reasonable learning setup
and that one has to be aware of the possibility. Indeed some degree of tuning
could possibly lead to improvement in this particular example, but such meth-
ods are not systematic, and it is not clear that they generalize when the ground
truth is not available. Corollary 8.2 and Lemma 3.2 show that increasing the
training set (and possibly the architecture complexity in a controlled manner)
does provide a systematic method for improvement. This is also observed in the
computations that follow.

To describe our findings succinctly, let a∗ be the (constant) optimal feedback
action and Ak,n be the feedback action computed by the neural network Nk on
the training set Ln. Although the optimization algorithm is trying to compute
the minimizer A∗

k,n of (3.4), in actual computations, the stochastic gradient
algorithm is stopped before reaching A∗

k,n. Thus, Ak,n depends not only on the
training data Ln and the network Nk but also on the optimization procedure,
in particular, the stopping rule.

By taking advantage of the explicity available solution, we define the in-
sample relative performance pin and the out-of-sample relative performance pout

of the trained actions Ak,n by,

pin :=
nnin-sample − truein-sample

truein-sample
,

pout :=
nnout-of-sample − trueout-of-sample

trueout-of-sample
,

where

nnin-sample := ce(L(Ak,n; Ln)), nnout-of-sample := ce(L(Ak,n; L̂n)),

truein-sample := ce(L(a∗; Ln)), trueout-of-sample := ce(L(a∗; L̂n)),

and Ln is the training set used to compute Ak,n and L̂n is the training set
chosen identically and independently of Ln. Then, the appropriately normalized
performance difference pin − pout provides an understanding of the overlearning
proxy O(Nk,Ln, L̂n) as in (7.3). Indeed, larger values of the difference imply
larger values of O.

We focus on these measures, pin, pout, for two reasons. Firstly, although our
samples are large enough to give a good representation of the distribution, the
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above formulae eliminate some dependency on the sample by subtracting the
true optimizers performance on each sample. Secondly, there are circumstances
where seemingly the training immediately tries to interpolate data instead of
first approaching the true solution before starting to interpolate, as one might
expect. This leads the out-of-sample performance to increase very early on, and
with our stopping rule based on the out-of-sample performance, it thus leads to
almost immediate stopping. In this sense, the combination of stopping rule and
performance measure is relatively conservative for measuring overlearning.

9.1 Implementation Details

Our implementation is written in the programming language OCaml [29] using
the library Owl [35] In all examples, the activation functions are set to ReLU
and the parameters are optimized by stochastic gradient descent using the Adam
scheme with parameters (α, β1, β2) = (0.001, 0.9, 0.999), as proposed by Kingma
and Ba [27]. The neural networks are constructed with three hidden layers.
This architecture is kept fixed regardless of data dimensionality in order to
better isolate the dimensionality’s impact on overlearning. The weights are
initialized with a uniform centered distribution of width inversely proportional
to the square root of the number neuron inputs.5

As the neural networks are capable of overlearning the data, we must employ
stopping rules for early stopping. Such stopping rules are commonly used in
practice as implicit regularizers. In our studies we mainly use a conservative
stopping rule that monitors the out-of-sample performance after each epoch and
terminates when the out-of-sample performance exceeds its past minimum.6 To
demonstrate the potential overlearning, we also performed some experiments
running the stochastic gradient without stopping for a fixed number of epochs.

We train using minibatches sampled randomly from the training set. Over-
learning can also be observed with batch gradient descent—equivalent to the
extreme case of setting the minibatch size to the full training set—but we have
opted to default to minibatches as it is far more common and computationally
efficient7. On the issue of minibatch size, we use the Keras default of 32.

5The uniform He-initializer He et al. [21]—which differs only by a factor
√

6 in the width
of the uniform distribution and is commonly recommended for training ReLU networks—has
not shown qualitatively different results with regards to overlearning.

6As the parameter landscape is expected to have plateaus and the out-of-sample perfor-
mance is not expected to be perfectly monotone, this calls for some tolerance, thereby intro-
ducing a tuning parameter. To be conservative, we keep this tolerance small to encourage
early stopping and reduce overlearning.

7The computational burden of each gradient computation scales as O(N) in the batch size

N , but the accuracy is of order O(1/
√

N), leading to computational advantages of small batch
sizes (but not too small, due to SIMD instructions in modern CPUs and GPUs). It is some-
times argued that the more ‘chaotic’ nature of small batches leads to beneficial regularization.
However, due to the complex interaction between the batch size and the stopping rule, the
effect of this is not clear-cut.
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9.2 Results

Table 1 reports the neural network’s average relative in-sample performance,
and its comparison to the out-of-sample performance with the above described
conservative stopping rule. For each dimension, the corresponding µ value is
the average of 30 runs and σ is the standard deviation. We keep the data size
of N = 100, 000 and the network architecture of three hidden layers of width
10 fixed. Even though with this rule the stochastic gradient descent is stopped
quite early, there is substantial overperformance increasing with dimension.

dims
pin (%) pin − pout (%)
µ σ µ σ

100 10.12820 1.09290 23.67080 2.01177
85 8.38061 1.35575 20.16440 2.30489
70 7.32720 0.86458 15.62060 1.94043
55 5.05783 0.81518 10.93950 1.54431
40 3.74648 0.62588 7.91105 1.32581
25 2.11501 0.43845 4.58954 0.88461
10 0.53982 0.34432 1.46138 0.39078

Table 1: Average relative in-sample performance, and its comparison to the
out-of-sample performance with the above described conservative stopping rule.
Everything is in % with training size of N = 100, 000 and three hidden layers of
width 10. The µ value is the average of 30 runs and σ is the standard deviation.

To isolate the impact of the dimension, in the second experiment, we keep
all parameters except the width of layers as before. The last two hidden layers
again have width 10. But the width of the first hidden layer is adjusted so
that the number of parameters is equal to that of a neural network with three
hidden layers of width 10 and input layer of dimension as in column ‘parameters-
equivalent’. There are three groups with parameters-equivalent dimensions of
40, 70 and 100. For example in the group with parameters-equivalent dimension
70, in the row with actual dimension 70, all layers have width 10. But in that
group, the networks for the actual dimensions of 40 and 10 have wider first
layer so that they all have the same number of parameters. Table 2 also shows
a clear increase of overlearning with dimension. Although, the architecture
is not exactly same, we believe that this experiment shows that the apparent
dimensional dependence is not simply due to the increase in the number of
parameters.

We also implemented an aggressive optimization by running the algorithm
for 100 and 200 epochs in 100 dimensions without a stoping rule with other pa-
rameters as in Table 1. In these experiments the trained actions Ak,n are closer
to the optimal actions A∗

k,n and Theorem 5.5 predicts a larger overperformance.
Indeed, Table 3 shows that, overlearning is quite substantial even with a train-
ing size of 100, 000 and there is a noticeable deterioration in the out-of-sample
performance.

Finally, Table 4 illustrates the convergence proved in Section 8. In 100
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dims
params-

equiv
pin (%) pin − pout (%)
µ σ µ σ

100 100 10.12820 1.09290 23.67080 2.01177
70 100 8.86214 1.45962 21.65000 3.12209
40 100 7.28550 1.19811 15.27540 2.10167
10 100 1.99793 0.54664 4.18041 1.22285
70 70 7.32720 0.86458 15.62060 1.94043
40 70 5.67500 0.84644 12.45610 1.90450
10 70 1.50328 0.93772 3.46245 1.19606
40 40 3.74648 0.62588 7.91105 1.32581
10 40 1.13566 0.65512 2.84677 0.78069

Table 2: All other parameters except the width of layers are as in Table 1. The
last two hidden layers again have width 10 and the width of the first hidden
layer is adjusted so that the number of parameters is equal to that of a neural
network with three hidden layers of width 10 and the number of dimension is
as in parameters-equivalent.

epochs
pin (%) pin − pout (%)

µ σ µ σ
200 30.3161 2.46850 315.875 540.4750
100 25.8374 1.72027 111.553 41.5841

Table 3: Longer iterations performance in 100 dimensions. Based on 15 runs.
Especially the 200 epoch runs show signs of a heavy tail, as expected with high
degrees of overlearning. All other parameters as in Table 1.

dimensions we increase the size of the training data from 100, 000 to twenty-
fold keeping all the other parameters as in the first experiment. The results
show a remarkable improvement in the accuracy demonstrating the power of
the deep Monte Carlo optimization.

10 Conclusions

The deep neural-network optimization is a highly effective computational tool
for the study of stochastic optimal control problems or equivalently, decision
making under uncertainty. It can handle general random structures in high
dimensions and complex dynamics with ease. The simplicity of the algorithm
and the recent advances in deep neural networks are key to these properties. As
one needs sufficient complexity of the neural networks to achieve appropriate
accuracy, the size of the training set is critical and thus, one has to enrich it
when the historical data is not large enough.

By numerical experimentation and also by theoretical results, we have demon-
strated that the networks have the capability to overlearn the data and conse-
quently construct forward looking feedback actions. These solutions may then
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sample
size dims

pin (%) pin − pout (%)
µ σ µ σ

2,000,000 100 0.49597 0.11849 1.12846 0.32184
1,000,000 100 1.14094 0.14640 2.39532 0.27415
500,000 100 2.36352 0.20154 5.24018 0.81235
250,000 100 4.41388 0.37928 10.02040 1.45355

Table 4: Performance for larger sample sizes. Based on 15 runs. All other
parameters as in Table 1.

be non-adapted to the flow of information on the training data. However, the
estimates proved in Theorem 7.1 shows that overlearning is negligible when data
compared to the complexity of the networks is sufficiently large.

Although, this approach is particularly valuable in high dimensions, the
overlearning becomes easier in such problems requiring richer training sets as
also clearly demonstrated by the numerical studies reported in Section 9. For
optimal control, an in-depth-study of this dependence both numerically and the-
oretically remains an interesting question. The asymptotic overlearning result
Theorem 5.5 provides an initial insight indicating that the average distance be-
tween the data points and the regularity of the networks are important for a
better understanding of this dependence. Indeed, the Rademacher complexity
which is present in the upper bound (7.2) is also influenced by both of them.
The closely related covering numbers providing an upper for the Rademacher
complexity [cf. 34, Lemma 27.4] could also be useful in better understanding of
this dependence.

A Appendix: Asymptotic Overlearning

In this section, we prove an extension of Theorem 5.5 without Assumption 5.4.
Fix a training set Ln. Let K = {K(1), . . . ,K(m)} be a partition of Ln satis-

fying:

• K(j)’s are disjoint subsets of Ln;

• ∪jK(j) = Ln;

• if z ∈ K(j) for some j, and if there is a trajectory ẑ ∈ Ln and t ∈ T such
that zt = ẑt, then ẑ ∈ K(j).

There are partitions satisfying the above conditions and one can even define and
would like to use the maximal partition satisfying above conditions. As this is
tangential to the main thrust of the paper, we do not pursue it here. When the
data is distinct, the maximal partition is K(i) = {Z(i)} and we are back in the
setting of Theorem 5.5.
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For a constant control α = (α0, . . . , αT −1) ∈ AT , let ℓ̂(α, z) be as in (5.1).
For j = 1, . . . ,m, define

ℓ(α, j) :=
1

∣

∣K(j)
∣

∣

∑

z∈K(j)

ℓ̂(α, z).

Let αǫ(j) ∈ AT be an ǫ-minimizer of ℓ(·, j). Analogously to V ∗(Ln) defined in
Section 5, define

V
∗
(Ln,K) := lim

ǫ↓0

1

m

m
∑

j=1

ℓ(αǫ(j), j) =
1

m

m
∑

j=1

inf
α∈AT

ℓ(α, j).

For z ∈ Ln, let j(z) be the unique index so that z ∈ K(j(z)). We now
follow the arguments of Theorem 5.5 mutadis mutandis to show that the neural
networks can approximate the function

a∗
ǫ (z) := αǫ(j(z)), z ∈ Ln.

This implies the following extension of the overlearning result Theorem 5.5.

Lemma A.1. Let L(A∗
k,n; Ln) be as in (3.4). Under the universal approxima-

tion Assumption 3.1,

lim
k→∞

L(A∗
k,n; Ln) ≤ V

∗
(Ln,K).

When the partition K of Ln is non-trivial and if the number of partitions m
is large, then we may have V

∗
(Ln) < v∗ and consequently potential overlearning.

The robust approach used in Bertsimas et al. [7, 8] and also in Esfahani and
Kuhn [14], Bartl et al. [2], essentially groups the elements of the training set
into a small number of sets and identifies them by a representative element of
these sets. If we then partition this processed data, this would result in a small
number of partitions and the overlearning will not be possible even with modest
size training sets.
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