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Felix Höfer (Princeton) .

1



Context

I want to establish connections between several mean-field models with the following characteristics :

I Agents or particles or players are identical and are subject to independent idiosyhncrotic noise.

I We assume that the system is large and take the infinite limit.

I By law of large numbers, the collective behavior of the agents are described their distribution.

Hence, the state is the set of probability measures.

Models are :

I Classical dynamical systems assuming that the energy and or the entropy is given.

I Mean Field Games that have similar qualitative behavior.

I The related Mean Field Control.

I How do we construct one from the other systematically ?
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Kuramoto



Dyanmical System

Kuramoto (1975) considered a population of N coupled phase oscillators θkt having natural frequencies

ωk distributed with a given density, and whose dynamics are governed by

d

dt
X k

t = ωk − κ

N

N∑
j=1

sin(X k
t − X j

t ) ≈ ωk − κ(X k
t − X̄t), k = 1, . . . ,N,

where X̄t is the mean location. For large κ values they attract each other.

The following “energy” is related to this system :

E :=

∫ π

−π

∫ π

−π
sin2((x − y)/2) µN

t (dx)µN
t (dy), where µN

t (dx) :=
1

N

N∑
k=1

δX k
t

(dx).
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Visualization

This is from the github page of Helge Dietert from Paris.

https://hdietert.github.io/static/kuramoto-animation/kuramoto.html
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Related Gradient Flow

We write the energy as

E = F(µN
t ), where F(µ) :=

∫ π

−π

∫ π

−π
sin2((x − y)/2) µ(dx)µ(dy).

Then, the linear derivative is given by,

δµF(µ)(x) = 2

∫ π

−π
sin2((x − y)/2) µ(dy) =

∫ π

−π
(1− cos(x − y)) µ(dy).

We directly calculate that Lions derivative is given by,

∂µF(µ)(c) := ∇x(δµF(µ)(x)) =

∫ π

−π
sin(x − y) µ(dy).

Hence, the Kuramoto equation with ωk = 0 can be written as

d

dt
X k

t = − κ

N

N∑
j=1

sin(X k
t − X j

t ) = −
∫ π

−π
sin(X k

t − y) µN
t (dy) = − ∂µF(µN

t )(X k
t ).
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Langevin Equation

We add Brownian motion and write the Kuramoto equation as

dX k
t = − ∂µF(µN

t )(Xt)dt + σdWt = −∇x(δµF(µN
t )(X k

t ))dt + σdW k
t .

I Particles are identical with independent idiosyncratic noise. By Law of Large Numbers,

µN
t (dx) :=

1

N

N∑
k=1

δX k
t

(dx) ⇀ µt(dx), as N →∞.

where µt is the law of the ‘representative’ particle.

I Then, the equation for the representative particle is the following McKean-Vlasov equation,

dXt = − ∂µF(µt)(Xt)dt + σdWt , and µt = Law(Xt).

I Hence, Kuramoto equation is a Langevin flow in L2.
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Kuramoto Mean Field Game

1. Start with a deterministic flow of probability measures µ = (µt)t≥0 with µ0 = µ.

2. Find the optimal control α∗,µ = (α∗,µt )t≥0 minimizing,

α = (αt)t≥0 7→ J(α ; µ) := E
∫ ∞
0

e−βt [κ L(Xα
t , µt) + 1

2
(αt)

2] dt,

where dXα
t = αtdt + σdBt , Law(X0) = µ0, and

L(x , µ) := 2

∫ π

−π
sin2((x − y)/2) µ(dy) = δµF(µ)(x).

3. Find a fixed point µt = Law(Xα∗,µ
t ).

Synchronization of coupled oscillators is a game, by Yin, Mehta, Meyn, Shanbhag, IEEE (2011).

Synchronization in a Kuramoto Mean Field Game, Carmona, Cormier, Soner, CPDE (2023).
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A Remark

I In finite player games, knowing Nash equilibria are characterized by the strategies.

I In the mean field limit, representative agent’s action do not impact the location of the other players.

I Hence, the distribution of the ‘other’ players suffice to describe the minimization problem of the

representative agent.

I However, we could also focus on the feedback controls as the feedback controls determine the

distribution.

I Technically, working with probability distributions has many advantages.
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Incoherent State

Let U(dx) := dx
2π

be the uniform measure on the circle. Then,

L(x ,U) =

∫ π

−π
2 sin2( x−y

2
) U(dx) ≡ 1.

Then, the control problem corresponding to the stationary flow U is

minimize α = (αt)t≥0 7→ J(α ; U) := E
∫ ∞
0

e−βt [κ+ 1
2
(αt)

2] dt.

Cleary the optimal solution is α∗ ≡ 0, and the optimal state is dX ∗t = 0 dt + σdBt . Hence,

X ∗t = X ∗0 + σBt and as Law(X ∗0 ) = U, we have Law(X ∗t ) = U as well. Hence,

The uniform measure U is a stationary Nash equilibrium for every parameter.

The uniform distribution represents incoherence or lack of synchronization.
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Incoherence : sub-critical

Critical interaction parameter is κc := βσ2 + σ4/2.

Theorem (Sub-critical interaction : incoherence)

(Carmona, Cormier, S.)(2023) For κ < κc , the uniform measure is locally stable.

Namely, there exist a positive constant ρ > 0 depending on β, σ, κ such that for any µ0 satisfying

d(µ0 − U) ≤ ρ, there exists a solution µ = (µt)t≥0 of the Kuramoto mean field game with interaction

parameter κ with µ0 = ν and µt converges in law to the uniform distribution as t tends to infinity.

Theorem (Super-critical interaction : synchronization)

(Carmona, Cormier, S.)(2023) For κ > κc , there are non-trivial stationary Nash equilibria.
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Central Planner Problem

I In Mean Field Games, we start with a flow of probability measures µ = (µt)t≥0, and find the optimal

response α∗,µ by minimizing,

α = (αt)t≥0 7→ Jg (α ; µ) := E
∫ ∞
0

e−βt [L(Xα
t , µt) + 1

2
(αt)

2] dt,

where dXα
t = αtdt + σdBt . Then, look for a fixed point µt = Law(X ∗t ).

I In the Central Planner problem, the representative agent minimizes

α = (αt)t≥0 7→ Jp(α) := E
∫ ∞
0

e−βt [L(Xα
t ,Lα

t ) + 1
2
(αt)

2] dt,

where dXα
t = αtdt + σdBt , and Lα

t = Law(Xα
t ).

I In general, they are two different problems, and the difference is the price of anarchy.

I Note that E[L(Xα
t ,Lα

t )] =
∫
L(x ,Lα

t ) Lα
t (dx) =: Lp(Lα

t ).
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Potential Case

I In potential games, the running cost is given by L(x , µ) = δµF(µ)(x) for some F(µ).

I The running cost of the central planner is

Lp(µ) =

∫
δµF(µ)(x) µ(dx).

I In the Mean Field Control, we consider the problem of minimizing

α = (αt)t≥0 7→ Jc(α) := E
∫ ∞
0

e−βt [F(Lα
t ) + 1

2
(αt)

2] dt.

I In all problems, dXα
t = αtdt + σdBt , and Lα

t = Law(Xα
t ).

I In general,

Lp(µ) =

∫
δµF(µ)(x) µ(dx) 6= F(µ).

I In the Kuramoto problem

Lp(µ) = 2

∫ π

−π
sin2((x − y)/2)µ(dy)µ(dx) = 2F(µ).
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Potential MF Games - Central Planner - MF Control

In all problems, dXα
t = αtdt + σdBt , and Lα

t = Law(Xα
t ).

I Mean Field game. Given µt , minimize

E
∫ ∞
0

e−βt [Lg (Xα
t , µt) + 1

2
(αt)

2] dt, Lg (x , µ) = δµF(µ)(x),

and find the fixed point µt = Law(X ∗t ).

I Central Planner Problem is to minimize

Jc(α) := E
∫ ∞
0

e−βt [Lp(Lαt ) + 1
2
(αt)

2] dt, Lp(µ) =

∫
δµF(µ)(x) µ(dx).

I Mean Field Control is to minimize

Jc(α) := E
∫ ∞
0

e−βt [Lc(Lαt ) + 1
2
(αt)

2] dt, Lc(µ) = F(µ).
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Connection

Theorem

Suppose that L(x , µ) = δµF(µ)(x). Then, any minimizer of the Mean Field Control problem is a Nash

equilibrium of the Mean Field game problem.

I Some suggest this connection as a selection mechanism when there are multiple Nash equilibria.

I Although the minimizer of the Mean Field Control problem is a Nash equilibrium of the Mean Field

Game, the value functions are not equal as the running costs are different.

Stable Solutions in Potential Mean Field Game Systems, by Briani, Cardaliaguet, NoDEA (2015).

Potential Mean-Field Games and Gradient Flows, Höfer, Soner, archiv (2024).
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Problem

The general problem is

v(µ) := inf
α

Jc(µ,α) = E
∫ ∞
0

e−βt [F(Lα
t ) + 1

2
(αt)

2] dt,

where dXα
t = αtdt + σdBt ∈ X , Lα

t = Law(Xα
t ), and Lα

0 = µ.

By dynamic programming, we see that the value function v solves,

βv(µ) = H(µ, δµv(µ)) + F(µ), µ ∈ P(X ),

where P(X ) is the set of probability measures on the state space X and

H(µ, ϕ) =

∫
X
H(∇xϕ(x),D2ϕ(x)) µ(dx),

H(p,A) := inf
α

(α · p +
1

2
|α|2) +

1

2
trace(σσTA), ⇒ α∗ = −p.
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Optimal Feedback Control

Since

βv(µ) = H(µ, δµv(µ)) + F(µ), µ ∈ P(X ),

and

H(µ, ϕ) =

∫
X
H(∇xϕ(x),D2ϕ(x)) µ(dx),

H(p,A) := inf
α

(α · p +
1

2
|α|2) +

1

2
trace(σσTA), ⇒ α∗ = −p,

we have

α∗(µ)(x) = −∇x(δµv(µ)(x)) = −∂µv(µ)(x), x ∈ X , µ ∈ P(X ).

So the optimally controlled state equation. is

dX ∗t = α∗(L∗t )(X ∗t ) + σdWt = −∂µv(L∗t )(X ∗t ) + σdWt .

24



Mean Field Control and Gradient Flows

I The value function is given by,

v(µ) = E
∫ ∞
0

e−βt [F(Lα
t ) + 1

2
(αt)

2] dt.

I The optimally controlled state solves,

dX ∗t = −∂µv(µ∗t )(X ∗t ) + σdWt , and µ∗t = Law(X ∗t ).

I Compare it to the original Langevin equation,

dXt = −∂µF(µt)(Xt) + σdWt , and µt = Law(Xt).

I In most cases, v is similar to the original energy functional F .
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Concluding

I Mean Field Control can be used to construct Nash equilibria for the Mean Field Games.

I Mean Field formalism produce models that are analogous to gradient flows.

THANK YOU FOR YOUR ATTENTION.

Synchronization in a Kuramoto Mean Field Game

with Rene Carmona and Quentin Cormier,

Communications in Partial Differential Equations (2023).

Potential Mean-Field games and gradient flows, with Felix Höfer, preprint (2024).
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Dynamic Programming Equation

I dXt = α(t,Xt) dt + σdWt .

I The Kolmogrov equation for the distribution µt is

d

dt

∫
ϕ(x)µt(dx) =

d

dt
E[ϕ(Xt)] = E[α(t,Xt) · ∇ϕ(Xt) + 1

2
trace(σσTD2ϕ(Xt))]

=

∫
(α(t, x) · ∇ϕ(x) + 1

2
trace(σσTD2ϕ(x))) dµt(dx).

I Therefore, the Hamiltonian (with ϕ = δµv), is given by,

H(µ, ϕ) = inf
α(t,·)

∫
(α(t, x) · ∇ϕ(x) + 1

2
|α(t, x)|2 + 1

2
trace(σσTD2ϕ(x))) dµ(dx)

=

∫
[ inf
α∈Rd

(
α · ∇ϕ(x) + 1

2
|α(t, x)|2

)
+ 1

2
trace(σσTD2ϕ(x))] dµ(dx)

=

∫
− 1

2
|∇ϕ(x)|2 + 1

2
trace(σσTD2ϕ(x))] dµ(dx).
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