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Kuramoto Dynamical System



Equation and Order parameter

Kuramoto (1975) considered a population of N coupled phase oscillators θkt having natural frequencies

ωk distributed with a given density, and whose dynamics are governed by

d

dt
θkt = ωk +

κ

N

N∑
j=1

sin(θjt − θkt ), k = 1, . . . ,N.

The following complex order parameter simplifies the equation :

rt e
i ψt :=

1

N

N∑
j=1

e i θ
j
t ⇒ rt sin(ψt−θkt ) =

1

N

N∑
j=1

sin(θjt−θkt ) ⇒ d

dt
θkt = ωk +κ rt sin(ψt−θkt ).

Also, when ωk = 0, the following integral decreases along the solutions.

E :=

∫ ∫
sin2((x − y)/2) µN

t (dx)µ
N
t (dy), where µN

t (dx) :=
1

N

N∑
k=1

δθkt (dx).
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Bifurcation : Critical κ

There exists a critical threshold κ̂c (depending on the distribution of ωi s) such that :

▶ For all κ < κ̂c , the oscillators behave as if they are uncoupled. The phases become uniformly

distributed and the coherence rt decays like 1/
√
N.

▶ For all κ > κ̂c , the incoherent state becomes unstable and rt grows to an eventual level r∞ < 1. In

the partially synchronized state, most oscillators co-rotate with the average phase ψt .

▶ As κ ↑ ∞, synchronization increases and r∞ gets closer to 1.

A good review of these results can be found in the 2000 paper of S. H. Strogatz and also in,

The Kuramoto model : A simple paradigm for synchronization phenomena

by Acebrón, Bonilla, Pérez, Ritort, Spigler (Review of modern physics, 2005).
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Visualization

This is from the github page of Helge Dietert from Paris.

https://hdietert.github.io/static/kuramoto-animation/kuramoto.html
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Kuramoto Mean Field Game

1. Start with a deterministic flow of probability measures µ = (µt)t≥0 with µ0 = µ.

2. Find the optimal control α∗,µ = (α∗,µ
t )t≥0 minimizing,

α = (αt)t≥0 7→ J(α ; µ) := E
∫ ∞

0

e−βt [κ L(Xα
t , µt) +

1
2
(αt)

2] dt,

where dXα
t = αtdt + σdBt , Law(X0) = µ0, and

L(x , µ) := 2

∫ π

−π
sin2((x − y)/2) µ(dy) = δmE(µ)(x).

3. Find a fixed point µt = Law(Xα∗,µ
t ).

Synchronization of coupled oscillators is a game, by Yin, Mehta, Meyn, Shanbhag, IEEE (2011).

Synchronization in a Kuramoto Mean Field Game, Carmona, Cormier, Soner, CPDE (2023).
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Incoherent State

Let U(dx) := dx
2π

be the uniform measure on the circle. Then,

L(x ,U) =

∫ π

−π
2 sin2( x−y

2
) U(dx) ≡ 1.

Then, the control problem corresponding to the stationary flow U is

minimize α = (αt)t≥0 7→ J(α ; U) := E
∫ ∞

0

e−βt [κ+ 1
2
(αt)

2] dt.

Cleary the optimal solution is α∗ ≡ 0, and the optimal state is dX ∗
t = 0 dt + σdBt . Hence,

X ∗
t = X ∗

0 + σBt and as Law(X ∗
0 ) = U, we have Law(X ∗

t ) = U as well. Hence,

The uniform measure U is a stationary solution of the KMFG for every parameter.
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Incoherence : sub-critical

Critical interaction parameter is κc := βσ2 + σ4/2.

Theorem (Sub-critical interaction : incoherence)

(Carmona, Cormier, S.)(2023) For κ < κc , the uniform measure is locally stable.

Namely, there exist a positive constant ρ > 0 depending on β, σ, κ such that for any µ0 satisfying

d(µ0 − U) ≤ ρ, there exists a solution µ = (µt)t≥0 of the Kuramoto mean field game with interaction

parameter κ with µ0 = ν and µt converges in law to the uniform distribution as t tends to infinity.

Theorem (Super-critical interaction : synchronization)

(Carmona, Cormier, S.)(2023) For κ > κc , there exists a non-trivial stationary solutions of the KMFG.

▶ We do not know whether the uniform is the only NE in the subcritical case, or it is globally stable.

▶ We do not know whether the uniform is unstable in the supercritical case.

▶ We do not know the minimizers of the associated control problem.

▶ Only results are by Cesaroni & M. Cirant, CPDE, 2024. 12
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Synchronization Game



Two state Synchronization Game

We discretize the Kuramoto dynamics ‘severely’.

▶ Assume there are two types of particles, {0, 1}.

▶ Without control each particle changes type randomly with rate σ > 0 (thermal noise).

▶ Particles want to have the same type as the majority of the particles.

▶ To achieve their goal, particles can increase the rate of change but with a quadratic penalty.

Synchronization Games (2024), by Höfer & Soner.

Exact same model with σ = 0 is also studied in

Climb on the Bandwagon : Consensus and Periodicity in a Lifetime Utility Model with Strategic

Interactions (2019), by Dai Pra, Sartori, & Tolotti,
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Set-up

▶ We are given a probability flow p(·) representing the proportion of the players in state 1,

or equivalently, the probability of being at the state 1 ;

▶ Note that the probability p(·) is not affected by the type of any individual player ;

▶ Control is any square integrable function αt ;

▶ Given control α,

i. rate from 0 to 1 is σ2 + α+
t ;

ii. rate from 1 to 0 is σ2 + α−
t ;

▶ Let Xα
t ∈ {0, 1} be the type process of the representative particle corresponding to the control α.

▶ Running cost is :
1

2
α2
t + ℓ(Xα

t , p(t)), ℓ(x , p) := pχx=0 + (1− p)χx=1.

▶ The control problem is

minimize E
∫ ∞

0

e−βs [
1

2
α2
s + κℓ(Xα

s , p(s))] ds.

▶ The parameter κ is as in the original model.
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Results - Discounted infinite horizon

For a positive discount factor β > 0 the critical coupling or misalignment strength is

κc = 2βσ2 + 4σ4.

Subcritical regime κ < κc . The uniform distribution is the unique stationary Nash equilibrium (SNE)

and it is stable. Further, for any initial distribution there exists a unique time-inhomogeneous Nash

equilibrium (NE), and it converges to the uniform distribution.

Supercritical regime κ > κc . There exist three SNE : the uniform distribution and two symmetric

self-organizing SNE given by p < 1/2 < p where p = 1− p. We have two sub-regimes :

(A) κc < κ < κc + β2/4. For any non-uniform initial distribution there exists a unique NE and it

converges to one of the self-organizing SNE.

(B) κ > κc + β2/4. For initial conditions close to the uniform distribution there exist many NE that

spiral around the uniform distribution before converging to one of the self-organizing SNE.
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Results - Ergodic cost

Here the critical interaction parameter is

κc = 4σ4.

▶ In the subcritical regime κ < κc , the uniform distribution p∗ = 1/2 is again the unique SNE, and

there are no other ergodic NE.

▶ In the supercritical case κ > κc , in addition to the uniform distribution, there are two other

symmetric SNE. However, in contrast to the discounted model, there are infinitely many periodic NE

rotating around the uniform distribution as well.

▶ In the subcritical regime, the uniform distribution is the minimizer of the associated ergodic

mean-field control (MFC) problem. It fails to be the minimizer in the supercritical case.
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Dynamic programming

Given a probability flow p(·), t ≥ 0 and x ∈ {0, 1}, let

v(t, x) := inf
α

E
∫ ∞

t

e−β(s−t) [
1

2
α2
s + κ ℓ(Xα

s , p(s))] ds, Xα
t = x .

Then,

−vt(t, 0) + βv(t, 0) = H(− a(t)) + κp(t),

−vt(t, 1) + βv(t, 1) = H( a(t)) + κ(1− p(t)),

H(a) := + inf
z≥0

{1
2
z2 + (σ2 + z)a} = σ2a− 1

2
(a−)2, a ∈ R.

where a(t) := v(t, 0)− v(t, 1) is the optimal control. The above equations imply that

ȧ(t) = (β + 2σ2)a(t) +
1

2
sign(a(t))a(t)2 − κ(2p(t)− 1).

Let X a
t be the optimal state process. Then p(·) is a Nash equilibrium if p(t) = P(X a

t = 1) for all t ≥ 0.
18



Characterization of the Nash Equilibria

Since p(t) = P(X a
t = 1), p(·) solves the Fokker-Planck-Kolmogorov equation, which is a one

dimensional ODE, coupled with the equation derived earlier for the optimal control a(·) :

ȧ(t) = (β + 2σ2)a(t) +
1

2
sign(a(t))a(t)2 − κ(2p(t)− 1)

ṗ(t) = (σ2 + a+(t))(1− p(t))− (σ2 + a−(t))p(t).

Theorem

A probability flow p(·) is a Nash equilibrium, if and only if there is a continuous function a(·) such that

the pair (a, p) is a bounded solution of the above dynamical system.

Note that β = 0 corresponds to the ergodic, and also to the finite-horizon problems.
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Proof

⇒ : This follows from the previous calculations. Since the value function v(t, x) is bounded,

a(t) = v(t, 0)− v(t, 1) is also bounded.

⇐ : Suppose (a, p) is a bounded solution. We set

V (t, 0) :=

∫ ∞

t

eβ(t−u)[H(−a(s)) + κp(s)] ds,

V (t, 1) :=

∫ ∞

t

eβ(t−u)[H(a(s)) + κ(1− p(s)))] ds.

Then, A(t) := V (t, 0)− V (t, 1) solves

d

dt
(e−βtA(t)) = 2σ2a(t) +

1

2
sign(a(t))a(t)2 − κ(2p(t)− 1) =

d

dt
(e−βta(t)).

Using the boundedness of a we conclude that A ≡ a. Hence, V (t, x) is a solution of the dynamic

programming equation. Therefore, a = A is the optimal control.
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Phase transitions and Qualitative

behavior



Overview

In the next slights we use the above characterization of the Nash equilibria to prove the phase

transition results. Main tool is the analysis of the two dimensional dynamical system.

To achieve symmetry, we set

q(t) := 2p(t)− 1.

Then, the ODE for the pair (a, q) can be rewritten as

d

dt
(a, q) = f (a, q) := (β + 2σ2)a+ sign(a)a2/2− κq , a− (2σ2 + |a|)q).

We note that div(f ) ≡ β, and the stationary solutions are the zeroes of f .

22



Stationary Solutions

Recall that

f (a, q) := (β + 2σ2)a+ sign(a)a2/2− κq , a− (2σ2 + |a|)q).

A direct calculation reveals that origin is the only solution for κ ≤ κc , where

κc := 2βσ2 + 4σ4.

However, if κ > κc , there are three stationary points {(−a,−q), (0, 0), (a, q)}, where

q̄ =
ā

ā+ 2σ2
, ā = −(β + 3σ2) +

√
(β + 3σ2)2 + 2(κ− κc) > 0.

Phase transition at κ = κc ?
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Phase Diagrams
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Figure 1: κ < κc
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Figure 2: κc < κ < κc + β2/4
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Figure 3: κ > κc + β2/4.
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Phase Diagram - subcritical

Figure 4: κ < κc
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Phase Diagram - supercritical

Figure 5: κc < κ < κc + β2/4
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Phase Diagram - large κ

Figure 6: κ > κc + β2/4
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Phase Diagram - large κ

Figure 7: κ > κc + β2/4
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Phase Diagram - large κ

Figure 8: κ > κc + β2/4
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Local linear stability analysis of equilibria

The local behavior of the dynamical system around the origin is described by the spectral properties of

the linearized system,

d

dt

(
a(t)

q(t)

)
=

(
β + 2σ2 −κ

1 −2σ2

)(
a(t)

q(t)

)
.

An analysis of the eigenvalues of this system shows that :

▶ Subcritical regime κ < κc : The origin is a saddle point (one positive, one negative eigenvalue).

▶ Supercritical regime (A) κc < κ < κc + β2/4 : The origin is unstable (two positive eigenvalues). The

other stationary points are saddles.

▶ Supercritical regime (B) κ > κc + β2/4 : The origin is a spiral source (two complex eigenvalues with

positive real part). The other two stationary points remain saddles.
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Results - Rephrased

We have the following corollary to the previous calculations of the stationary Nash equilibria (SNE) :

Lemma

Both in the ergodic and discounted models, the uniform distribution q = 0 is a SNE for any κ > 0.

Moreover,

Subcritical case : For κ < κc , the uniform distribution is the only SNE, and it is the global attractor.

Supercritical case : For κ > κc , there are three SNE given by q = −q̄, 0, q̄. The origin is unstable and

the other two are local attractors.

Full synchronization : As κ ↑ ∞, q̄ ↑ 1.

The uniform distribution is interpreted as incoherence. Hence, this abrupt transition at κc is analogous

to the phase transitions for the Kuramoto dynamical system and MFG.
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Ergodic Cost



Ergodic cost : Conserved quantity

ȧ(t) = 2σ2a(t) +
1

2
sign(a(t))a(t)2 − κq(t)

q̇(t) = a(t)− (2σ2 + |a(t)|)q(t).

This system is conservative.

It admits the following first integral which is constant along any solution ;

E(a, q) = κ
q2

2
+

a2

2
− 2σ2aq − a2

2
sign(a)q.
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Results

▶ In the subcritical regime, the uniform distribution

is the unique SNE, and there are no other

ergodic NE.

▶ In the supercritical case, in addition to the

uniform distribution, there are two other

symmetric SNE.

▶ In the supercritical case, there are also infinitely

many periodic NE rotating around the uniform

distribution. In dynamical systems terminology,

the origin is a center of the differential equations.
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Figure 9: Phase diagram of the supercritical ergodic.
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periodic Nash Equilibrium
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Potential Structure



Potential structure

▶ Two state synchronization games as well the Kuramoto mean field games are potential.

▶ In the Kuramoto, the running cost is given by

ℓ(x , µ) = 1− µ(cos) cos(x)− µ(sin) sin(x)= δµL(µ),

where

L(µ) =

∫ ∫
sin2( x−y

2
) µ(dx) µ(dy).

▶ Similarly in the two state synchronization,

ℓ(x , p) = pχ{x=0} + (1− p)χ{x=1}.

▶ Given p ∈ [0, 1], let µ({1}) = p. Then,

ℓ(x , p) = δµL(µ)(x),

where

L(µ) :=
1

2

∑
x

∑
y

|x − y | µ(dx) µ(dy) = p(1− p).
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Associated optimal control problem

Recall that any α(t) is a feedback control :

α(t, 0) = α(t)+, α(t, 1) = α(t)−.

Hence, the control problem is,

minimize E
∫ ∞

0

e−βt [
1

2
α(t,Xα

t )2 +
κ

2
L(µαt )] dt,

where µαt is the law of Xα
t . This is a deterministic optimal control problem :

minimize

∫ ∞

0

e−βt [(p(t)(α−(t))2 + (1− p(t))(α+(t))2) +
κ

2
p(t)(1− p(t))] dt,

where ṗ(t) = −p(t)(σ2 + α−(t)) + (1− p(t))(σ2 + α+(t)).
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Uniform is the minimizer when...

▶ Fact : Minimizers are Nash equilibria.

▶ So whenever there is a unique Nash equilibrium, it must be the minimizer.

▶ Ergodic case : uniform is the minimizer only when κ < κc .

▶ Discounted case : uniform is the minimizer if κ < κc +
1
4
β2.

▶ Note that for κc < κ < κc +
1
4
β2, the uniform is unstable but it still is the minimizer.

▶ Notion of a stable Nash equilibrium is an interesting question.
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Concluding

▶ Mean Field formalism have exactly the same solution structure as the dynamical system approach.

▶ As the uniform solutions are the desynchronized states, our results indicate a bifurcation from

incoherence to self-organization at κc , and then convergence to full synchronization for very large

interaction parameters.

▶ We describe all equilibria and minimizers for two state synchronization game.

THANK YOU FOR YOUR ATTENTION.

Synchronization in a Kuramoto Mean Field Game

with Rene Carmona and Quentin Cormier,

Communications in Partial Differential Equations (2023).

Synchronization Games, with Felix Höfer, preprint (2024).
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Subcritical regime

Proposition

Suppose that κ < κc . Then, there exist a strictly increasing

function n : [−1, 1] → R with n(0) = 0 such that its graph

{(n(q), q) : q ∈ [−1, 1]} is the stable manifold of the origin of

the dynamical system. All Nash equilibria are included in the

graph of n. In particular, for any q ∈ [−1, 1] there exists

exactly one discounted Nash equilibrium starting from q, and

all Nash equilibria converge to the origin.
0

-1

0

1

a

q

Q

Sa

Sq

Ms

(-, -) (+, +)
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Super-critical

There exist three SNE : the uniform distribution and two symmetric self-organizing SNE given by

p < 1/2 < p where p = 1− p. The local behavior around the uniform distribution depends on two

sub-regimes :

(A) κc < κ < κc + β2/4. For any non-uniform initial distribution there exists a unique NE and it

converges to one of the self-organizing SNE.

(B) κ > κc + β2/4. For initial conditions close to the uniform distribution there exist many NE that

spiral around the uniform distribution before converging to one of the self-organizing SNE.
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Super-critical Phase Diagrams
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Figure 10: Supercritical case (A) :

κc < κ < κc + β2/4. The thick line

corresponds to the monotone curve C, and
the dots show the stationary equilibria.
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Figure 11: Supercritical case (B) :

κ > κc + β2/4. The thick line again

corresponds to the curve C, which spirals

around (0, 1/2).
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