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Abstract

We propose a new mean-field game model with two states to study synchronization phenomena, and
we provide a comprehensive characterization of stationary and dynamic equilibria along with their
stability properties. The game undergoes a phase transition with increasing interaction strength.
In the subcritical regime, the uniform distribution, representing incoherence, is the unique and
stable stationary equilibrium. Above the critical interaction threshold, the uniform equilibrium
becomes unstable and there is a multiplicity of stationary equilibria that are self-organizing. Under
a discounted cost, dynamic equilibria spiral around the uniform distribution before converging to
the self-organizing equilibria. With an ergodic cost, however, unexpected periodic equilibria around
the uniform distribution emerge.

Keywords: Kuramoto synchronization, mean-field games, consensus problems, Markov processes, Nash equi-
librium, dynamic programming.

Mathematics Subject Classification: 34C25, 34H05, 37G35, 49L20, 91A16, 92B25

1 Introduction

Building on Winfree’s work in the 1960s, the Kuramoto model [27] has become the corner stone of mathematical
models of collective synchronization and has received attention in all natural sciences, engineering, and math-
ematics. The model consists of coupled oscillators that exhibit spontaneous synchronization once the coupling
strength exceeds a critical threshold. While the classical model postulates the dynamics of each oscillator in
the form of a system of nonlinear ordinary differential equations, we use the mean-field game (MFG) formalism.
Indeed, instead of positing the dynamics of the particles, we let the individual particles determine their behavior
endogenously by minimizing a cost functional and settling in a Nash equilibrium. More generally, MFGs were
independently introduced by Lasry & Lions [28]–[30] and Huang, Caines, & Malhamé [20]–[23] to approximate
large population games in which the interaction appears through the empirical distribution of all agents.

The MFG approach to synchronization was first proposed by Yin, Mehta, Meyn, & Shanbhag in [33], [34],
and later used by Carmona & Graves [7] to study jet-lag recovery by modeling the alignment with the circadian
rhythm. These studies and the recent work of Carmona, Cormier, & Soner [5] establish phase transitions in the
Kuramoto MFGs analogous to the one exhibited by the original Kuramoto dynamical system, providing strong
evidence for a connection between these two seemingly very different models.

In the mean-field game, each oscillator is treated as a rational agent that minimizes the distance to other
oscillators while incurring a quadratic cost. The coupling strength, or the misalignment cost, is the central
parameter in these models and the phase transition can be summarized as follows:

• Subcritical regime: Below the critical coupling strength, oscillators behave incoherently and the uniform
distribution is the unique stationary Nash equilibrium. Additionally, [5] obtains a local stability result
by proving that from any initial condition that is sufficiently close to the uniform distribution there exist
time-inhomogeneous Nash equilibria converging to the uniform measure as time passes.

• Supercritical regime: Above the critical interaction parameter, multiple non-uniform stationary Nash
equilibria emerge, leading to partial self-organization. As the interaction strength goes to infinity, these
stationary Nash equilibria become more coherent and converge to a Dirac measure representing full
synchronization.

∗This work was partially supported by the National Science Foundation grant DMS 2106462.
†Both authors are with Princeton University, Department of Operations Research and Financial Engineering (e-mails:

fhoefer@princeton.edu, soner@princeton.edu).

1

ar
X

iv
:2

40
2.

08
84

2v
2 

 [
m

at
h.

O
C

] 
 2

2 
Fe

b 
20

24



x1

x2

x3

x4

x5

x6

Figure 1: Example of a six-state model.

Recently, Cesaroni & Cirant [12] obtained further results with an
ergodic cost functional in the large parameter regime. They prove
that for large misalignment parameters, there is only one non-uniform,
self-organizing, stationary Nash equilibrium modulo translations. Fur-
thermore, [12] show that there are Nash equilibria of the finite horizon
problem that converge to the self-organizing equilibrium.

In the Kuramoto model, the one-dimensional torus given by
T = R/(2πZ) represents the set of possible phases of the oscilla-
tors. We simplify this by considering an equidistant discretization
XN = {x1, . . . , xN} ⊂ T of the phase space, as done more generally by
Bertucci & Cecchin [4]. We assume that the oscillators are subject to
non-zero thermal noise of strength σ2 > 0 and without any control,
they would move to their left or right on XN with a rate of N2σ2/2.
In the game setting, oscillators are allowed to influence this transition
by choosing a feedback control α := (αℓ, αr) : [0,∞)× XN → [0,∞)2.
Then, the position of a generic oscillator is described by a continuous-
time Markov chain Xα

t with controlled transition rates λα
i,j = λ(xi, xj , α) from state xi to xj given by,

λα
i,j =


Nαℓ(t, xi) +N2σ2/2 if j = i− 1 (modN),

Nαr(t, xi) +N2σ2/2 if j = i+ 1 (modN),

0 else.

Figure 1 is a visualization of a six-state model.
We now describe the discretized Kuramoto MFG which is a game between infinitely many such oscillators

while the number of possible phases N is kept finite. Let the probability flow (µt)t≥0 on XN represent the
population distribution of oscillators’ phases. Then, µt solves a forward Kolmogorov equation which the repre-
sentative oscillator or agent cannot influence. Instead, they try to align their own phase with µt by minimizing
the corresponding discounted infinite cost,

Jβ(α) := E
∫ ∞

0

e−βt

(
1

2
|α(t,Xα

t )|2 + κ ℓ(Xα
t , µt)

)
dt,

over feedback controls α, where Xα
t ∈ XN is the random position of the representative oscillator with controlled

rates (λα
i,j) and Xα

0 ∼ µ0, the discount factor is β > 0, the running cost ℓ is defined by

ℓ(x, µ) := 2
∑

y∈XN

sin2
(x− y

2

)
µ({y}),

and κ > 0 is the strength of the interactions between oscillators. We emphasize again that µt is fixed for the
representative agent, and any optimal control α∗ and the distribution L(Xα∗

t ) is a function of µt. Hence, this
construction defines a map (µt)t≥0 7→ (L(Xα∗

t ))t≥0, and the fixed points of this map are the mean-field game
(Nash) equilibria. If a Nash equilibrium t 7→ µ∗

t is constant, we call it a stationary MFG (Nash) equilibrium. We
say that a stationary Nash equilibrium µ∗ is stable if all time-inhomogeneous Nash equilibria (µ∗

t )t≥0 converge
towards µ∗ as t → ∞.

1.1 Results

We study a two-state model, providing a complete characterization of the set of stationary and time-inhomogeneous
equilibria and their stability properties for all values of the parameters (β, σ2, κ). In addition to the discounted
cost functional, we also investigate the models with ergodic cost which formally correspond to the limit β ↓ 0,
and further identify the equilibria that are obtained as first-order conditions of the associated mean-field control
problem, see Sections 5.3 and 6.1. A short discussion of the finite horizon problem and its convergence to the
ergodic one is given in subsection 6.2.

In what follows, the state space X2 is mapped to the discrete set X := {0, 1}, and a probability measure µ
on X is identified with its value p = µ({1}). For a measurable real-valued function α : [0,∞) → R we construct
a unique feedback control by letting the control from state 0 to 1 be α(t, 0) := α+(t) and the control from 1
to 0 be α(t, 1) := α−(t). These special feedback controls are the only ones that satisfy α(t, 0)α(t, 1) = 0 for all
t ≥ 0. In the two state model, it is clear that optimal controls also have this property. Therefore, there is no
loss of generality to consider the set A of measurable functions α : [0,∞) → R to be the feedback controls, so
that σ2 + α+(t) is the rate from 0 to 1 and σ2 + α−(t) is the rate from 1 to 0.
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Suppose that a flow of probabilities p(·) is a Nash equilibrium. Then, there is an optimal feedback control
a ∈ A such that p(t) = P(Xa

t = 1). Consequently, these probabilities solve the forward Kolmogorov equation,

ṗ(t) = (σ2 + a+(t))(1− p(t))− (σ2 + a−(t))p(t). (1)

Moreover, by standard techniques from optimal control, we show in subsection 3.3 that for a given flow of
probabilities p(·) there is a unique optimal feedback control a(·) solving

ȧ(t) = (β + 2σ2)a(t) +
1

2
sign(a(t))a(t)2 − κ(2p(t)− 1), (2)

where β = 0 corresponds to the ergodic cost. Combining these, we characterize all Nash equilibria as bounded
solutions of (1,2). This one-to-one connection between the Nash equilibria and (1,2) is established in Propositions
3.1 and 3.2. We continue by summarizing its consequences, while precise statements and their proofs are provided
in the following sections.

1.1.1 Discounted cost

0

0

1

2

1

a

p

Figure 2: Phase diagram of the discounted subcritical
system (1,2). The dot shows the location of the sta-
tionary Nash equilibrium while the thick lines illustrate
time-inhomogeneous Nash equilibria.

For a positive discount factor β > 0 the critical cou-
pling or misalignment strength is

κc = 2βσ2 + 4σ4.

Subcritical regime κ < κc. The uniform distribution
is the unique stationary Nash equilibrium (SNE) and
it is stable. Further, for any initial distribution there
exists a unique time-inhomogeneous Nash equilibrium
(NE), and it converges to the uniform distribution.

Supercritical regime κ > κc. There exist three SNE:
the uniform distribution and two symmetric self-
organizing SNE given by p < 1/2 < p where p = 1−p.
The local behavior around the uniform distribution
depends on two sub-regimes:

(A) κc < κ < κc + β2/4. For any non-uniform ini-
tial distribution there exists a unique NE and it
converges to one of the self-organizing SNE.

(B) κ > κc + β2/4. For initial conditions close to
the uniform distribution there exist many NE
that spiral around the uniform distribution be-
fore converging to one of the self-organizing SNE.

We visualize these results by the phase diagrams
of the ordinary differential equation (1,2). The uniform SNE with zero control corresponds to the fixed point
(a, p) = (0, 1/2) of this system of equations. The local behavior of the solutions around this point changes with
increasing interaction and can be summarized by the eigenvalues λ1, λ2 of the linearized system around (0, 1/2).
In the subcritical regime, the point (0, 1/2) is a saddle, i.e. λ1 < 0 < λ2, and its stable manifold crosses the
boundary {p = 0, 1} as seen in Figure 2.

When κ > κc, the two self-organizing SNE are saddles and their stable manifolds join at the origin, creating
a curve C that connects all SNE and hits the boundaries {p = 0, 1}. In the weakly supercritical regime (A), the
curve C is monotone and the uniform SNE becomes repellent with both eigenvalues being positive, as shown
in Figure 3a. In the supercritical regime (B) however, λ1, λ2 become complex with positive real parts, so that
(0, 1/2) is a spiral source, see Figure 3b. In all phase diagram, the thick dots show the location of stationary
equilibria.

All Kuramoto MFGs are potential and there is an associated mean-field control (MFC) problem introduced
in subsections 5.3, 6.1 below. The minimizers of these problems are Nash equilibria for the MFG. Surprisingly,
with a discounted cost, the uniform distribution is selected as the minimizer even in parts of the supercritical
regime.
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(a) Supercritical case (A): κc < κ < κc + β2/4. The
thick line corresponds to the monotone curve C, and
the dots show the stationary equilibria.
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(b) Supercritical case (B): κ > κc + β2/4. The thick
line again corresponds to the curve C, which spirals
around (0, 1/2).

Figure 3: Phase diagrams of the supercritical discounted system (1,2)

1.1.2 Ergodic cost
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Figure 4: Phase diagram of the supercritical ergodic
system (1,2).

Here the critical interaction parameter is

κc = 4σ4.

In the subcritical regime, the uniform distribution
p∗ = 1/2 is again the unique SNE, and there are no
other ergodic NE.

In the supercritical case κ > κc, in addition to the
uniform distribution, there are two other symmetric
SNE. However, in contrast to the discounted model,
there are infinitely many periodic NE rotating around
the uniform distribution as well. Figure 4 shows the
phase diagram of the system (1,2) close to the uniform
distribution, and in dynamical systems terminology,
the origin is a center of the equations (1,2).

In the subcritical regime, the uniform distribution
is the minimizer of the associated ergodic mean-field
control (MFC) problem. It fails to be the minimizer
in the supercritical case.

1.2 Related studies

This paper studies the emergence and properties of
self-organizing equilibria as the outcome of a game
among a continuum of rational agents that favor alignment with the majority. As such it is situated at the
intersection of several fields. In addition to several already mentioned studies on Kuramoto MFG and synchro-
nization, our model is related to the studies of opinion dynamics as studied in [1], [3], [9] and the references
therein. The static mean-field game “Where do I put my towel on the beach?” that Lions discusses in [31] is
also similar to our model. In such a setting, there is non-uniqueness once agents favor crowds as opposed to
avoiding them. Also, Dai Pra, Sartori, & Tolotti [14] investigate a dynamic model that is similar to ours in the
special case of σ = 0 to study the emergence of collective behavior. The absence of thermal noise, however,
precludes the emergence of the phase transition and random structures.

Furthermore, our work contributes to a growing literature of finite-state mean-field games [6][Chapter 7.2].
These include [24]–[26] who study the spread of corruption and a botnet defense model. The first two papers
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analyze a game with three and four states in a bang-bang type model that exhibits a multiplicity of stationary
equilibria. Socio-economic applications of finite-state MFGs, including a description of the potential game
structure, can be found in [15]. Classical results establishing existence, uniqueness under the Lasry-Lions
monotonicity condition, and the convergence of the finite player games in finite-state MFGs can for example be
found in [8], [10], [17]. Finally, Cohen & Zell [13] treat the infinite horizon case, and [11] studies the convergence
problem of a two-state MFG under an anti-monotonous cost.

2 Two state mean-field game

Recall that X = {0, 1} and we identify any p ∈ [0, 1] with a measure on X whose value on {1} is equal to p.
For x ∈ X , x + 1 denotes summation mod 2. The set of feedback controls A consists of measurable functions
α : [0,∞) → R that are locally integrable. Following the interpretation discussed in the Introduction, for any
α ∈ A and initial distribution there exists a Markov chain Xα

t with the transition matrix

Qα
t =

(
−σ2 − α+(t) σ2 + α+(t)
σ2 + α−(t) −σ2 − α−(t)

)
,

where σ2 > 0 is the strength of the thermal noise. For x ∈ X , p ∈ [0, 1], we introduce the running cost ℓ by

ℓ(x, p) :=

{
p if x = 0,

1− p if x = 1.

Further, we denote the misalignment or the coupling strength by κ > 0, and call it the coupling constant.

Definition 2.1 Fix a discount factor β > 0 and a coupling constant κ. We say that a flow of probabilities
t 7→ p(t) ∈ [0, 1] is a discounted mean-field game Nash equilibrium starting from p(0), if there exists α∗ ∈ A
such that

1. α∗ minimizes the discounted cost functional

Jβ(α) := E
∫ ∞

0

e−βt

(
1

2
α(t)2 + κℓ(Xα

t , p(t))

)
dt,

where Xα
t is the inhomogeneous Markov chain with P[Xα

0 = 1] = p(0) and transition matrix (Qα
t )t≥0.

2. For all times t ≥ 0, we have p(t) = P[Xα∗
t = 1].

We next consider the ergodic cost.

Definition 2.2 We say that a periodic or stationary flow of probabilities p(·) ∈ [0, 1] is an ergodic mean-field
game Nash equilibrium if there exists α∗ ∈ A such that

1. α∗ minimizes the ergodic cost functional

Je(α) := lim
T↑∞

1

T
E
∫ T

0

(
1

2
α(t)2 + κℓ(Xα

t , p(t))

)
dt.

2. For all times t ≥ 0, we have p(t) = P[Xα∗
t = 1].

As t 7→ P(Xα
t = 1) is continuous for any α ∈ A, all NE p(·) are continuous.

Since Je(α) is invariant under changes of the control and the probabilities on bounded time intervals, one
has to restrict either the controls or the probabilities to obtain a meaningful definition. In the above, we use
the periodicity condition on the probabilities since it does not cause a loss of generality in our model. Indeed,
as we will show in the next subsection, all Nash equilibria are characterized by a planar dynamical system and
the limit behavior of such systems is always periodic.

3 Characterization of Nash Equilibria

Nash equilibria are in a natural one-to-one correspondence with a system of forward-backward differential
equations which we refer to as the MFG system. To state this characterization, for x ∈ X , v ∈ R, and p ∈ [0, 1],
we define a Hamiltonian by

H(x, v, p) := inf
z≥0

{
(σ2 + z)v +

1

2
z2
}
+ κ ℓ(x, p) = σ2v − 1

2
(v−)2 + κℓ(x, p). (3)
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3.1 Ergodic MFG system

The ergodic dynamic programming equation is

−vt(t, x) + λ = H(x, v(t, x+ 1)− v(t, x), p(t)), (4)

for every x ∈ X , t ≥ 0, and the unique optimal control is given by

a(t) = v(t, 0)− v(t, 1). (5)

Classically, given a flow p(·), such a solution pair (λ, v) is constructed by letting β to zero in the corresponding
discounted control problem. Indeed, if vβ is the value function of the discounted problem, then λ is the limit of
βvβ , and v(t, x) is the limit of vβ(t, x)− vβ(0, 0), see [2].

When the flow p(·) is a Nash equilibrium, then p(·) solves (1) with the feedabck control defined above,
and the ergodic mean-field game system (MFG0) consists of the equations (4), (1) coupled by (5). Precisely,
we call a triplet (λ, v, p) a classical solution of (MFG0) if λ ∈ R is a real number, and v : [0,∞) × X → R,
p : [0,∞) → [0, 1] are continuously differentiable in the time variable, and they satisfy (4) and (1) with a given
by (5).

We proceed to establish the correspondence of NE with solutions of (MFG0), and also show that λ has an
interpretation as the optimal value of the ergodic cost,

λ = inf
α∈A

lim
T↑∞

1

T
E
∫ T

0

(
1

2
α(t)2 + κℓ(Xα

t , p(t))

)
dt. (6)

Let Ac be the set of feedback controls in A that are continuous in the time variable.

Proposition 3.1 For a periodic flow of probabilities p(·), the following are equivalent:

(i) p(·) is an ergodic Nash equilibrium.

(ii) There are a constant λ and v : [0,∞)×X → R such that (λ, v, p) is a bounded classical solution of (MFG0).

(iii) p(·) is an ergodic Nash equilibrium with an optimal feedback control a ∈ Ac.

(iv) There is a feedback control a ∈ Ac such that (a, p) is a periodic solution of (1,2) with β = 0.

In all cases, λ is given by (6).

Proof. (ii) ⇒ (iii). Since v(·, x) is continuously differentiable, Dynkin’s formula implies that for any feedback
control α ∈ A,

E[v(t,Xα
T )]− E[v(0, Xα

0 )] = E
∫ T

0

(∂t +Aα) v(t,Xα
t ) dt ≥ Tλ− E

∫ T

0

(
1

2
α(t)2 + κℓ(Xα

t , p(t))

)
dt,

where Xα
0 ∼ p(0) and Aα is the infinitesimal generator of the controlled Markov chain: for x ∈ X , t ≥ 0,

AαΦ(t, x) = (σ2 + α(t, x))(Φ(t, x+ 1)− Φ(t, x)),

where with an abuse of notation, we set α(t, 0) := α+(t), α(t, 1) := α−(t). Since v is bounded, dividing by T
and sending T ↑ ∞ shows that λ is a lower bound for the ergodic cost. Same argument with a ∈ Ac given by
(5) shows (6). Hence, a is optimal. Since P[Xa

t = 1] satisfies the same forward Kolmogorov equation (1) as p(·),
by uniqueness p(t) = P[Xa

t = 1] for all t ≥ 0. Together with the periodicity condition, this proves that p(·) is
an ergodic NE.

(iii) ⇒ (i). This is trivial.
(i) ⇒ (ii). Suppose p(·) = P[Xα∗

t = 1] is an ergodic NE corresponding to the optimal control α∗ ∈ A. Let
(λ, v(t, x)) be a bounded solution of the dynamic programming equation (4) with p(t), and define a by (5). We
claim that for Lebesgue a.e. t ≥ 0, α∗(t) = a(t). As p(t) = P[Xα∗

t = 1] solves the Kolmogorov equation (1) with
α∗(t) replacing a(t), this claim would imply that the triplet (λ, v, p) is a bounded classical solution of (MFG0).
So it suffices to prove this claim.

Indeed, we first observe that since p(·) is periodic, so is the map t 7→ v(t, x). Let τ > 0 be the common
period, and let X∗

t be the Markov chain starting in X∗
0 ∼ p(0) and controlled by α∗. Then, as ṗ(·) is τ -periodic,

so is α∗(·), and we obtain

lim
T↑∞

1

T
E
∫ T

0

(
1

2
(α∗(t))2 + κℓ(X∗

t , p(t))

)
dt =

1

τ
E
∫ τ

0

(
1

2
(α∗(t))2 + κℓ(X∗

t , p(t))

)
dt.
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Towards a contraposition, assume there is x′ ∈ X , δ > 0, and a subset I ⊂ [0, τ) of positive Lebesgue measure
satisfying

(σ2 + α∗(t, x′))(v(t, 1 + x′)− v(t, x′)) +
1

2
(α∗(t, x′))2 + κℓ(x′, p(t))− δ

≥ H(x′, v(t, 1 + x′)− v(t, x′), p(t)), ∀t ∈ I.

By periodicity, equation (4), and the Dynkin’s formula,

0 = E[v(τ,X∗
τ )]− E[v(0, X∗

0 )] = E
∫ τ

0

(∂t +Aα∗
) v(t,X∗

t ) dt

≥ τλ− E
∫ τ

0

(
1

2
(α∗(t))2 + κℓ(X∗

t , p(t))

)
dt+ δ

∫
I

P(X∗
t = x′) dt.

Hence, τλ + δ
∫ τ

0
P(X∗

t = x′) dt ≤ τλ. This is impossible, as σ > 0 precludes the Markov chain X∗ to be
identically equal to one state. This proves the claim.

(iv) ⇒ (ii). Let (a, p) be a periodic solution of (1,2) with period τ > 0. For any λ ∈ R, and x ∈ X , t ∈ [0, τ ]
set

V (t, 0) := a(0) +

∫ t

0

[λ−H(0,−a(s), p(s))] ds, V (t, 1) :=

∫ t

0

[λ−H(1, a(s), p(s))] ds,

and A(t) := V (t, 0)− V (t, 1). We now use the fact that a satisfies (2) and the explicit form of H, to compute

Ȧ(t) = H(1, a(t), p(t))−H(0,−a(t), p(t)) = 2σ2a(t)− 1

2
(a(t)−)2 +

1

2
((−a(t))−)2 − κ(2p(t)− 1)

= 2σ2a(t) +
1

2
sign(a(t))a(t)2 − κ(2p(t)− 1) = ȧ(t).

As A(0) = a(0), A ≡ a. Therefore, V solves the dynamic programming equation (4) with p(·). Since by
hypothesis p(·) solves (1) with a, the triplet (λ, V, p) is a classical solution of (MFG0) for any λ. To obtain a
bounded solution, we choose

λ =
1

τ

∫ τ

0

H(1, a(s), p(s))ds.

Since a and p are τ -periodic, the above choice of λ ensures that V (·, 1) is also τ -periodic. Since V (·, 0) =
V (·, 1) +A(·), it is also periodic. Therefore, V is periodic, and hence bounded.

(ii) ⇒ (iv). Let (λ, v, p) be a bounded, classical solution of (MFG0), and let a be as in (5). Then, a direct
calculation shows that the pair (a, p) solves (1,2). □

3.2 Discounted MFG system

Given a discount factor β > 0, a flow of probabilities p(·), t ≥ 0, and x ∈ X , the optimal control problem of the
representative oscillator is given by

v(t, x) := inf
α∈A

E
∫ ∞

t

eβ(t−u)

(
1

2
α(u)2 + κℓ(Xα

u , p(u))

)
du,

where Xα is as before and Xα
t = x. Let H be as in (3). Then, the dynamic programming equation for this

problem is
−vt(t, x) + βv(t, x) = H(x, v(t, x+ 1)− v(t, x), p(t)), (7)

for all x ∈ X , t ≥ 0. Moreover, the optimal control a is given by (5). Then, in view of Definition 2.1, p(·) is a
discounted NE if it solves (1) with this control a.

We say that a pair (v, p) is a classical solution of (MFGβ) with initial condition p(0) ∈ [0, 1] if v is a classical
solution of the dynamic programming equation (7) and p is classical solution of (1) with a given by (5). As for
the ergodic cost we have the following characterization.

Proposition 3.2 For β > 0 and a flow of probabilities p(·), the following are equivalent:

(i) p(·) is a discounted Nash equilibrium.

(ii) There is v : [0,∞)×X → R such that (v, p) is a bounded classical solution of (MFGβ).

(iii) p(·) is a discounted Nash equilibrium with an optimal feedback control a ∈ Ac.

(iv) There is a feedback control a ∈ Ac such that the pair (a, p) is a bounded solution of (1,2).

7



Proof. For all implications except (iv) ⇒ (ii), we follow the proof of Proposition 3.1 mutatis mutandis.
(iv) ⇒ (ii). Let (a, p) be a bounded solution of (1,2). We set

v(t, 0) :=

∫ ∞

t

eβ(t−u)H(0,−a(s), p(s)) ds, v(t, 1) :=

∫ ∞

t

eβ(t−u)H(1, a(s), p(s)) ds,

and A(t) := v(t, 0)− v(t, 1). We directly show that

Ȧ(t) = ȧ(t) + β(A(t)− a(t)), ⇒ d

dt
(e−βt(A(t)− a(t))) = 0, ⇒ e−βt(A(t)− a(t))) = A(0)− a(0).

Since A and a are bounded, we conclude that a(t) = A(t) = v(t, 0)− v(t, 1). Therefore,

−vt(t, 0) + βv(t, 0) = H(0,−a(t), p(t)) = H(0, v(t, 1)− v(t, 0), p(t),

−vt(t, 1) + βv(t, 1) = H(1, a(t), p(t)) = H(1, v(t, 0)− v(t, 1), p(t).

Hence, the pair (v, p) is a classical solution of (MFGβ).
□

3.3 Change of variables

We have shown that NE are characterized by bounded classical solutions to the coupled system of ordinary
differential equations (1) and (2). For further analysis, it is convenient to introduce the following change of
variables to achieve symmetry,

q(t) = 2p(t)− 1.

Then, (1,2) is equivalent to

ȧ(t) = (β + 2σ2)a(t) +
1

2
sign(a(t))a(t)2 − κq(t), (2)

q̇(t) = a(t)− (2σ2 + |a(t)|)q(t). (8)

We study this differential equation on the strip (a, q) ∈ D := R× [−1,+1]. Notice that D is invariant under the
above equations.

4 Stationary Equilibria

A stationary mean-field game Nash equilibrium (SNE) is a constant mean-field game equilibrium. We should
emphasize that in this case the initial condition p(0) (or q(0)) is not given anymore, but becomes part of the
solution. In view of the results of the Section 3 and the above change of variables, SNE are given by the second
component of the fixed points of the planar system of ordinary differential equations (2, 8), both in the ergodic
and discounted cases. To compute them, let Sa and Sq denote the nullclines of this system:

Sa = {(a, q) | (β + 2σ2)a+ sign(a)a2/2− κq = 0}, Sq := {(a, q) | a− (2σ2 + |a|)q = 0},

and set
κc := 2βσ2 + 4σ4.

Clearly, Sa ∩ Sq are the fixed points of (2, 8), and the origin is always in this set. A direct calculation shows
that Sa ∩ Sq is a singleton for κ ≤ κc. However, if κ > κc, there are three stationary points Sa ∩ Sq =
{(−a,−q), (0, 0), (a, q)}, where

q̄ =
ā

ā+ 2σ2
, ā = −(β + 3σ2) +

√
(β + 3σ2)2 + 2(κ− κc) > 0. (9)

Hence, we have the following immediate corollary.

Lemma 4.1 Both in the ergodic and discounted models, the uniform distribution q = 0 is a SNE for any κ > 0.
Moreover,

(i) Subcritical case: For κ < κc, the uniform distribution is the only SNE.

(ii) Supercritical case: For κ > κc, there are three SNE given by q = −q̄, 0, q̄.

(iii) Full synchronization: As κ ↑ ∞, q̄ ↑ 1.

In the above, β = 0 corresponds to the ergodic cost.

8



5 Analysis of the Discounted Problem

We fix β > 0 and study all time-inhomogeneous discounted NE starting from an arbitrary initial distribution.
In view of Proposition 3.2, and the change of variables introduced in Section 3.3, these NE are given by the
bounded solutions of the nonlinear dynamical system (2, 8) with β > 0.

5.1 Linear stability analysis of equilibria

The local behavior of the dynamical system around the origin is described by the spectral properties of the
linearized system,

d

dt

(
a(t)
q(t)

)
=

(
β + 2σ2 −κ

1 −2σ2

)(
a(t)
q(t)

)
.

An analysis of the eigenvalues of this system shows that:

• Subcritical regime κ < κc: The origin is a saddle point (one positive, one negative eigenvalue).

• Supercritical regime (A) κc < κ < κc +β2/4: The origin is unstable (two positive eigenvalues). The other
stationary points are saddles.

• Supercritical regime (B) κ > κc + β2/4: The origin is a spiral source (two complex eigenvalues with
positive real part). The other two stationary points remain saddles.

5.2 Global analysis

We rewrite the equations (2, 8) as (ȧ, q̇)⊺ = f(a, q), where

f(a, q) :=

(
(β + 2σ2)a+ sign(a)a2/2− κq

a− (2σ2 + |a|)q

)
.

A direct calculation shows that div(f) ≡ β. Moreover, for a given initial condition (a, q) ∈ D, we let Φ(t, a, q)
be the unique solution at time t ∈ I(a, q). Here I(a, q) ⊂ R is the maximal interval where the solution is defined.
An orbit of the dynamical system (2, 8) is any set given by {Φ(t, a, q) : t ∈ I(a, q)} for some (a, q) ∈ D.

We start with a result that is repeatedly used in our arguments and which follows from the fact that
div(f) > 0.

Lemma 5.1 If U ⊂ D is an open bounded set whose boundary is the closure of finitely many orbits, then
U = ∅. In particular, the dynamical system (2, 8) does not have closed orbits and all bounded solutions of
this dynamical system converge to one of the stationary points of the system. Similarly, as time goes to minus
infinity, all bounded solutions either converge to one of the stationary points or hit the lines {q = ±1}.

Proof. Toward a contraposition, suppose that U ̸= ∅. Then, using the Gauss’ lemma (divergence theorem),
we integrate along the ∂U to arrive at

0 < β Leb(U) =

∫
U

divf(x) dx =

∫
∂U

f(x) · ν(x) dS(x) = 0,

where S is the “surface” measure and ν(x) denotes the exterior unit normal, which is orthogonal to f(x) as ∂U
is an orbit, up to finitely many points. This contradiction implies that there are no bounded closed orbits. Also,
by the Poincaré-Bendixson theorem, [18](Theorem II.1.3), all bounded solutions of a planar dynamical system
must converge to a stationary point or a bounded closed orbit. Hence, as time goes to plus or minus infinity the
bounded solutions either converge to a fixed point or hit {q = ±1}. Moreover, the flow cannot cross {q = ±1}
going forward. □

Note that this lemma rules out homoclinic orbits, and using a symmetry argument, heteroclinic orbits
connecting non-trivial fixed points as well. We now study the structure of the Nash equilibria.

Proposition 5.2 (Subcritical regime) Suppose that κ < κc. Then, there exist a strictly increasing function
n : [−1, 1] → R with n(0) = 0 such that its graph {(n(q), q) : q ∈ [−1, 1]} is the stable manifold of the origin of
the dynamical system (2, 8). All Nash equilibria are included in the graph of n. In particular, for any q ∈ [−1, 1]
there exists exactly one discounted Nash equilibrium starting from q, and all Nash equilibria converge to the
origin.

9
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Figure 5: Subcritical discounted system (2, 8).

Proof. It suffices to show that the stable manifold
Ms of the origin is a monotone curve in phase space
that hits the boundary {q = ±1} as t → −∞. Ad-
ditionally, by symmetry it is enough to provide the
proof for the upper boundary. Let Q denote the re-
gion above the nullclines Sa and Sq, as shown in Fig-
ure 5. Any trajectory passing through Q is strictly
monotone in the phase space as both components of
f are negative on Q, and hence is represented by a
function. Moreover, linear analysis around the origin
shows that the upper stable manifold Ms ∩ {a > 0}
lies locally inside Q, and therefore it is locally rep-
resented by a strictly monotone graph. If time is re-
versed, this manifold cannot leave Q as Sa can only
be crossed vertically. We thus conclude that it crosses
the upper boundary {q = 1} in finite time as there
are no fixed points of the dynamical system in Q.
The same analysis in {a < 0} completes the construc-
tion of n. In summary, there is a strictly increasing
function n : [−1, 1] → R with n(0) = 0 such that
Ms = {(n(q), q) : q ∈ [−1, 1]}. Then, for any q ∈ [−1, 1], the solution of (2, 8) starting at (n(q), q) remains
in the graph of n and converges to the origin as time goes to infinity. Moreover, by Lemma 5.1, all bounded
solutions must converge to the origin which is the unique stationary point. Thus, they must be contained the
stable manifold Ms of the origin. As Nash equilibria are precisely the bounded solutions of the dynamical
system, we conclude that all of them must be in Ms and thus in the graph of n. □

Recall that in the supercritical regime, we have three stationary points of the dynamical system: (−a,−q),
(0, 0), and (a, q). We now study the supercritical regime whose relevant phase diagrams are drawn in Figures
3a and 3b.

Theorem 5.3 (Supercritical regime) Suppose that κ > κc. Then, there is a curve C ⊂ D that connects all
three stationary points of the dynamical system (2, 8) and hits the boundary {q = ±1}. It is given by the stable
manifolds of the non-trivial equilibria joining the origin. All discounted NE are included in C so that for any
q ∈ [−1,+1] there is at least one NE starting from q. Moreover,

(A) if κ < κc+β2/4, then C is a strictly monotone curve, so that there is a unique discounted NE starting from
q, and when q ̸= 0 it converges to sign(q)q.

(B) if κ > κc + β2/4, then C spirals around the origin. In particular, for initial data q close to the origin there
exist many NE that spiral around the origin before converging to one of the self-organizing SNE. However,
for |q| sufficiently large, there is a unique NE starting from q.

Proof. We first establish the picture depicted in Figure 6. Let Mu denote the unstable manifold of the
positive stationary point (a, q). We claim that Mu extends to the left as a monotone graph that lies above
(−a,−q). We continue by proving this claim. Let Q1 be the region above both Sa and Sq, let Q2 be the
lens enclosed by Sa and Sq in {a < 0}, let Q3 be the area below both Sa and Sq, and finally let Q4 be the
lens enclosed by Sa and Sq in {a > 0}, as shown in Figure 6. Consider a trajectory starting at a point in
Mu ∩ {a < a} which is close to (a, q). Linear analysis shows that locally this trajectory lies in Q1, and it stays
above Sq ∩ {a > 0} which can only be intersected horizontally. We claim that once it enters Sq ∩ {a < 0}, it
stays in Q1 by following a monotone graph that lies above (−a,−q). Indeed, while being in {−a < a < 0}, it
can only leave Q1 by entering into Q2. Suppose this happens. Then, it either stays bounded or unbounded.
Suppose it stays bounded. As the origin is unstable and the stationary point (−a,−q) can be reached from Q1,
the trajectory would have to converge to (a, q), contradicting Lemma 5.1. Hence it has to be unbounded by
entering into Q3 through Q2.

If this happens, by symmetry, we can construct another unbounded trajectory starting from (−a,−q) which
enters into Q1 from Q4. Then, these two trajectories would intersect, leading to a contradiction. Thus the
original trajectory does not enter into Q2 and stays in Q1, proving the claim and establishing Figure 6 where
the unstable manifolds are drawn by thick lines.
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Figure 6: Supercritical discounted system (2, 8).

Next we construct C. We claim that the lower
stable manifold Ms ∩ {q < q} of (a, q) extends to
the origin. Indeed, if it is unbounded, by symme-
try, we conclude that it would cross the upper stable
manifold M̃s ∩ {q > −q} of (−a,−q) yielding a con-
tradiction. Hence, it must remain bounded. More-
over, it cannot intersect the unstable manifold em-
anating from (−a,−q). This prevents it hitting the
lower boundary {q = −1}. Then, by Lemma 5.1 in
reverse time, it converges to any of the fixed points
of the flow. We analyze all cases separately. As there
are no homoclinic orbits, it cannot converge to (a, q).
If it converges to (−a,−q) connecting two non-zero
fixed points, we can construct a symmetric orbit con-
necting them in the opposite direction. The union of
these heteroclinic orbits is also not possible by Lemma
5.1. Hence, it must converge to the origin.

We have shown that Ms joins the origin. By sym-
metry, this implies that the stable manifold M̃s of
(−a,−q) joins the origin as well. Moreover, a direct
argument shows that the stable manifolds of the non-trivial equilibria extend to the boundary {q = ±1} as
monotone curves. In summary, the union C of the stable manifolds of the non-trivial fixed points together with
the origin is a curve that extends from {q = 1} to {q = −1} going through all three fixed points. Moreover,
an application of Lemma 5.1 shows that all bounded solutions lie on C. To construct a discounted NE starting
from q ∈ [−1, 1], we choose a∗(q) such that (a∗(q), q) ∈ C. Then, the q-component of the solution starting from
this point is a discounted NE starting from q.

In case (A), we claim that C constructed above is a monotone graph. Indeed, linear analysis around the
origin implies that Ms connecting the origin to (a, q) must enter into Q3. Linear analysis around (a, q) implies
that Ms enters into Q3 in reverse time. Hence, for these two parts to connect, all of Ms ∩ {0 < q < q̄} must
lie in Q3. Since the components of the vector field of the dynamical system are positive in Q3, C ∩ Q3 is a
monotone graph. By symmetry we conclude that C is a monotone graph. Further, the monotonicity of C implies
that a∗(q) is unique. Since all NE starting from q are given as the q-component of a bounded solution that lies
in C, we conclude that there is a unique one for every q.

In case (B), by the Hartman-Grobman theorem, [32](Chapter 2.8), the nonlinear dynamical system is topo-
logically conjugate to the linearized system in a neighborhood of the origin. As the linear system spirals around
the origin, so does C of the nonlinear system. Therefore, for small q, there are many points a so that (a, q) ∈ C,
and for each one there is a discounted NE starting from q. When |q| sufficiently large, a∗(q) is unique and so is
the NE starting from q. □

5.3 Analysis as a potential game

All Kuramoto mean-field games discussed in this paper are potential, so that the MFG systems are the first-
order conditions of an associated mean-field optimal control problem, see [19]. In the special case of finite-state
MFGs, this is a direct consequence of the necessary part of Pontryagin’s maximum principle, see for example
[15], [16] for accounts of this fact.

We continue by describing the optimal control problem associated to the two-state model that we study. We
first recall that a feedback control is a measurable function α : [0,∞) → R, and the value of the control from
state 0 to 1 is α(t, 0) := α+(t) and from 1 to 0 is α(t, 1) := α−(t). Let Xα

t be the process corresponding this
feedback control, and set p(t) := P(Xα

t = 1), q(t) := 2p(t)− 1 as before. Then, with this interpretation,

E[α(t,Xα
t )

2] = p(t)(α−(t))2 + (1− p(t))(α+(t))2 =
1

2
(α(t)2 − sign(α(t))α(t)2q(t)).

The running cost of the mean-field control problem is given by,

1

2
E[α(t,Xα)2] +

κ

2
E[ℓ(Xα

t , p(t))] =
1

4
(α(t)2 − sign(α(t))α(t)2q(t)) + κp(t)(1− p(t))

=
1

4
[(α(t)2 − sign(α(t))α(t)2q(t)) + 1− q(t)2].
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Then, an equivalent optimal control problem is

inf
α∈A

∫ ∞

0

e−βt (α(t)2 − sign(α(t))α(t)2q(t)− κq(t)
)
dt, (MFCβ)

where the controlled state process q(·) is a solution of (1) with a replaced with α, and initial condition q(0) = q.
If α∗ is an optimal control, the optimally controlled path q∗(·) is a discounted NE starting from q. Then,
the minimizers of the above problem are one of the discounted NE characterized in the previous section. We
leverage this connection to obtain several results about the minimizers. The following is an immediate corollary
of Proposition 5.2 and Theorem 5.3.

Corollary 5.4 Suppose that κ < κc+β2/4. Then, for every q ∈ [−1, 1] there is a unique minimizer of (MFCβ),
and the optimally controlled state converges to the uniform distribution.

Proposition 5.5 For sufficiently large κ, the optimally controlled state q∗(·) converges to one of the self-
organizing SNE.

Proof. We only have to consider the case of a uniform initial condition, q(0) = 0. Then, we simply take a
constant control α ≡ a > 0 and compute the discounted cost explicitly. A straightforward computation shows
that we can achieve a strictly negative cost if

κ > κc +
β2

2
+ βσ2 =: κ̃

and a < (κ− κ̃)/(β+2σ2). This proves that the zero control cannot be optimal for sufficiently large κ, and the
minimizer must follow one of the Nash equilibria that converge to the self-organizing SNE. □

6 Analysis of the Ergodic Problem

The critical interaction parameter is κc = 4σ4, and the dynamical system (2, 8) reduces to

ȧ(t) = 2σ2a(t) +
1

2
sign(a(t))a(t)2 − κq(t), (10)

q̇(t) = a(t)− (2σ2 + |a(t)|)q(t). (11)

This system is conservative, and admits the following first integral which remains constant along any solution
to (10, 11),

E(a, q) = κ
q2

2
+

a2

2
− 2σ2aq − a2

2
sign(a)q.

Proposition 6.1 (Ergodic subcritical regime) If κ < κc, then the uniform SNE is the unique ergodic Nash
equilibrium.

Proof. We already know that the origin is an ergodic NE, and the only stationary one. By Proposition 3.1,
any other ergodic NE is the q-component of a periodic trajectory or equivalently a closed orbit. Moreover, linear
stability analysis shows that the origin is a saddle point, and any solution (a, q) that goes through the origin
satisfies E(a, q) = E(0, 0) = 0. Hence, the stable manifold of the origin is given as the graph of the following
function,

a 7→ 1

2κ

(
sign(a)a2 + 4σ2a+ a

√
a2 + 8σ2|a|+ 4(κc − κ)

)
.

This is a strictly increasing function in phase space that crosses the origin and hits the boundary {q = ±1}.
If there is a closed orbit, it must enclose the origin since it is the only stationary point of this system. Then,

this closed orbit would have to cross the stable manifold, creating a contradiction. □

We next analyze the supercritical regime. In this case, a direct calculation implies that the origin is a
strict local minimum of the energy E. Since the origin is an isolated stationary point of (10, 11), all trajectories
sufficiently close to the origin are closed. Then, the origin becomes a nonlinear center, and we have the following
rather unexpected result.

Proposition 6.2 (Ergodic supercritical regime) If κ > κc, then there exist infinitely many time-periodic
NE rotating around the uniform.
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6.1 Analysis as a potential game

This sections studies Nash equilibria that arise as first-order conditions of the following ergodic control problem,

inf
α∈A

lim
T↑∞

1

T

∫ T

0

(
α(t)2 − sign(α(t))α(t)2q(t)− κq(t)2

)
dt, (MFC0)

where q(·) is the solution of (8) with a = α and any initial data. Notice that since σ > 0, changes in the
initial condition do not affect the ergodic cost. Moreover, there are minimizers of the above control problem.
As explained in Section 5.3, any optimally controlled path q∗(·) of (MFC0) that is periodic is an ergodic NE.

Theorem 6.3 (Ergodic mean-field control problem) Fix any initial condition. If κ < κc, the zero control
is optimal and the associated state converges to the uniform distribution. In the supercritical regime κ > κc,
however, the zero control is not optimal and the state does not converge to the uniform dsitribution.

Proof. If κ < κc, we have shown in the proof of Proposition 6.1 that any bounded solution (a, q) to (10, 11)
converges to the origin. Hence the cost of the ergodic control problem (MFC0) is zero, and we can achieve this
cost by taking the zero control. Now let κ > κc. Let a > 0 denote the stationary control corresponding to the
positive supercritical SNE, given by (9). We take the constant control α ≡ a > 0 and directly compute that

a2 − a2q − κq2 < 0 ⇐⇒ κ > κc.

This implies that we can achieve a strictly negative ergodic cost if κ > κc, proving the claim. □

6.2 Convergence of the finite horizon game

Fix T > 0 and for a given flow of probabilities (p(t))t∈[0,T ] consider the finite horizon problem of the represen-
tative agent:

vT (t, x) := inf
α∈A

E
∫ T

t

(
1

2
α(u)2 + κℓ(Xα

u , p(u))

)
du,

where Xα
t = x. Then, the finite horizon Nash equilibria are defined analogously, and following the proof of

Proposition 3.1, we conclude that finite horizon Nash equilibria are in one-to-one correspondence with bounded
trajectories (aT , qT ) of the conservative system (10, 11), together with an initial condition for qT (0) and the
terminal condition aT (T ) = 0.

0

0

a

q

Figure 7: Stable and unstable manifolds of the non-
trivial equilibria of (10, 11), and periodic orbits in the
supercritical regime κ > κc.

In the supercritical case, a direct analysis of the
energy E reveals that the stable and unstable mani-
folds of the non-trivial equilibria join each other, cre-
ating a lens as depicted in Figure 7. Inside this lens,
any orbit is periodic. Since solutions depend contin-
uously on the initial data, we can compare trajecto-
ries starting on the stable manifolds of the non-trivial
equilibria to ones close to them to conclude that or-
bits spend most time near the self-organizing SNE.
Further, as periodic orbits inside the lens approach
the boundary of the lens, their period goes to infinity.
Therefore, we have the following turnpike property :
For any self-organizing SNE and any initial distri-
bution there exists a sequence of finite horizon NE
qT (·), T ∈ N, that gets arbitrarily close to the self-
organizing one as T ↑ ∞. This property is somehow
in analogy with the local stability result proved in
[12](Theorem 3.1) for the original Kuramoto mean-
field game in the large coupling constant regime.
However, for initial conditions in (−q, q), there are
many other sequences of finite horizon Nash equilib-
ria that stay bounded away from any SNE as T ↑ ∞
as well.
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7 Conclusion

We study a two-state mean-field game as a tractable model for synchronization obtained as the discretization
of the Kuramoto mean-field game introduced and studied in [5], [34]. After characterizing Nash equilibria
(NE) as the bounded solutions of a planar dynamical system (1,2), we provide a complete analysis of all
cases. In particular, the game exhibits phase transitions as the classical Kuramoto model [27]. While the
uniform distribution, representing the incoherent state, is the unique stationary Nash equilibrium (SNE) for
small coupling constants, coherent SNE emerge as this interactions get stronger. Moreover, in the supercritical
regime, there are many time-inhomogeneous NE starting from the same initial distribution. Surprisingly, there
are also periodic NE with the ergodic cost.
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