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ABSTRACT
The classical Kuramoto model is studied in the setting of an infinite
horizon mean field game. The system is shown to exhibit both syn-
chronization and phase transition. Incoherence below a critical value of
the interaction parameter is demonstrated by the stability of the uni-
form distribution. Above this value, the game bifurcates and develops
self-organizing time homogeneous Nash equilibria. As interactions get
stronger, these stationary solutions become fully synchronized. Results
are proved by an amalgam of techniques from nonlinear partial dif-
ferential equations, viscosity solutions, stochastic optimal control and
stochastic processes.
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1. Introduction

Originally motivated by systems of chemical and biological oscillators, the classical Kuramoto
model [1] has found an amazing range of applications from neuroscience to Josephson
junctions in superconductors, and has become a key mathematical model to describe self
organization in complex systems. These autonomous oscillators are coupled through a
nonlinear interaction term which plays a central role in the long time behavior of the system.
While the system is unsynchronized when this term is not sufficiently strong, fascinatingly
they exhibit an abrupt transition to self organization above a critical value of the interaction
parameter. Synchronization is an emergent property that occurs in a broad range of complex
systems such as neural signals, heart beats, fire-fly lights and circadian rhythms, and the
Kuramoto dynamical system is widely used as the main phenomenological model. Expository
papers [2, 3] and the references therein provide an excellent introduction to the model and
its applications.

The analysis of the coupled Kuramoto oscillators through a mean field game formalism
is first explored by [4, 5] proving bifurcation from incoherence to coordination by a formal
linearization and a spectral argument. [6] further develops this analysis in their application
to a jet-lag recovery model. We follow these pioneering studies and analyze the Kuramoto
model as a discounted infinite horizon stochastic game in the limit when the number of
oscillators goes to infinity. We treat the system of oscillators as an infinite particle system, but
instead of positing the dynamics of the particles, we let the individual particles endogenously
determine their behaviors by minimizing a cost functional and hopefully, settling in a Nash
equilibrium. Once the search for equilibrium is recast in this way, equilibria are given by
solutions of nonlinear systems. Analytically, they are characterized by a backward dynamic
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programming equation coupled to a forward Fokker-Planck-Kolmogorov equation (see
equation (1.3) below), and in the probabilistic approach, by forward-backward stochastic
differential equations. Stability analysis of the solutions is delicate because of this forward-
backward nature of the solution, and to the best of our knowledge, it remains a challenging
problem. Except possibly in the finite horizon potential case (cf. [7] and the references therein)
it has not been fully addressed in the existing literature on the subject. For the stability results
of the Kuramoto model in the classical setting, the interested reader could consult [8, 9] and
the references therein.

With finitely many oscillators, we consider the following version of the model already
introduced in [5, 6]. We fix a large integer N and for i ∈ {1, . . . , N} let θ i

t be the phase of the
i-th oscillator at time t ≥ 0. We assume the phases θ i

t are controlled Ito diffusion processes
satisfying, dθ i

t = αi
tdt+σdBi

t , where Bi’s are independent Brownian motions, and the control
processes αi are exerted by the individual oscillators so as to simultaneously minimize their
costs given by

αi #→ Ji(α) := E
∫ ∞

0
e−βt [

κ L(θ i
t , θ t) + 1

2 (αi
t)

2] dt,

where α = (α1, . . . , αN) and θ t = (θ1
t , . . . , θN

t ). The positive constants σ , β are respectively,
the common standard deviations of the random shocks affecting the dynamics of the phases,
and the common discounting factor used to compute the present value of the cost. The
centrally important positive constant κ models the strength of the interactions between the
oscillators.

In line with the classical literature on Kuramoto’s synchronization theory, we assume that
the running cost function L is given by

L(θ i, θ) = 1
N

∑

j̸=i
2
(
sin

(
(θ i − θ j)/2

))2 = 1
N

N∑

j=1
2
(
sin

(
(θ i − θ j)/2

))2.

The cost L accounts for the cooperation between the N oscillators by incentivizing them to
align their frequencies, while the term (αi

t)
2 represents a form of kinetic energy which is also

to be minimized. It is convenient to express the above cost functional by using the empirical
distribution measure of the oscillators as follows,

L(θ i
t , θ t) = c(θ i

t , µ̄N
t ), where c(θ , µ) :=

∫
2
(
sin

(
(θ − θ ′)/2

))2
µ(dθ ′), (1.1)

and the empirical measure µ̄N
t is given by

µ̄N
t = µ̄(θ t) := 1

N

N∑

j=1
δ
θ

j
t
.

As the finite particle system is essentially intractable, especially for large values of N, we
follow the approach of [10–15] that is now considered standard, and approximate the Nash
equilibria for the above system of oscillators by letting their number N go to infinity. Then,
for a given flow of probability measures µ = (µt)t≥0, the stochastic optimal control problem
for the representative oscillator is to minimize

α ∈ A #→ E
∫ ∞

0
e−βt

(
ℓ(t, Xt) + 1

2
α2

t

)
dt, (1.2)
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where A is the set of all progressively measurable processes, the running cost ℓ(t, x) is equal to
κc(x, µt) with c as in (1.1), and Xt is the controlled phase of the representative oscillator given
by Xt = X0 +

∫ t
0 αudu + σBt , for a Brownian motion Bt . The Nash equilibrium, as defined

in Definition 3.1, is achieved when the flow µ = (µt)t≥0 is given by the marginal laws of the
optimal process X∗

t . By direct methods, Lemma 4.5 proves the existence of such equilibrium
flows starting from any initial distribution.

The model is equivalently described by the following two coupled partial differential
equations for the value function v and the density µ(t, x)

βv(t, x) − ∂tv(t, x) − σ 2

2
∂2

xx(t, x) + 1
2
(∂xv(t, x))2 = κc(x, µt) (1.3)

∂tµ(t, x) − σ 2

2
∂2

xxµ(t, x) − ∂x(∂xv(t, x)µ(t, x)) = 0.

The first equation is the backward Hamilton-Jacobi-Bellman equation, and the second
equation is the forward Fokker-Planck equation. It is immediate that the uniform distribution
U(dx) = dx/(2π) on the torus gives a stationary equilibrium flow. Indeed, c(x, U) ≡ 1 and
therefore, the optimal control for the above problem with the constant flow U is identically
equal to zero. As the uniform distribution has no special structure, it represents incoherence
among the oscillators, and when the interaction parameter is small, we show that all the
solutions of the Kuramoto mean field game converge to this incoherent state. This global
attraction is proved in Lemma 4.3 for κ < βσ 2/4 which is analogous to the long time behavior
studied in [16] with small running cost, proving not only stability but also uniqueness.
Theorem 4.4 considers all κ less than the critical value

κc := βσ 2 + σ 4/2, (1.4)

and proves that there are solutions that start “close” to the uniform distribution and converge
to it as time tends to infinity. Thus, Lemma 4.3 and Theorem 4.4 reveal that incoherence is the
main paradigm in the sub-critical regime κ < κc. Theorem 4.1 analyzes the case κ > κc, and
proves that there are infinitely many non-uniform stationary solutions for these interaction
parameter values. In particular, these solutions do not converge to the incoherent uniform
distribution and numerically they are stable. Furthermore, Theorem 4.2 shows convergence
to full synchronization as κ gets larger. As in the earlier works [4, 5], we interpret non-uniform
distributions as self-organizing states, and formally conclude that synchronization is the main
paradigm for κ > κc.

Hence, these results suggest that κc is the sharp threshold for the stability of incoherence,
and that there is a phase transition from total disorder to self organization exactly at this
critical interaction parameter κc. However, further analysis is needed to strengthen this
statement. Indeed, the phase transition in the classical Kuramoto model is a pitchfork
bifurcation. For the mean-field game version, it is also possible that for κ > κc, the uniform
measure could become unstable and the non-uniform invariant probability measure become
stable. We leave these interesting questions and the uniqueness of non-uniform states to future
studies.

These questions also arise in a similar one-dimensional model for congestion with a local
interaction studied in [17, 18]. In particular, they consider deterministic optimal control
problems with ergodic cost. Additionally, a class of problems with trigonometric running
cost are studied and some explicit solutions are constructed in [19].
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The classical Kuramoto model with noise has been the object of many studies, and the
mean field version is the following McKean-Vlasov stochastic differential equation

dXt = −κ

∫

T
sin(Xt − y)L(Xt)(dy) dt + σdBt ,

where L(Xt) is the law of the random variable Xt . The uniform distribution is shown in [20]
to be both locally and globally stable when κ < σ 2. The corresponding finite particle system
is studied in [21, 22]. There, it is proven that the solutions of the finite model remain close
to the solution of the above equation for a very long time, on the order of o(exp(N)). Similar
results are also proved for the Kuramoto mean field game with an ergodic cost in [5], by
using bifurcation theory techniques including the Lyapunov-Schmidt reduction method to
show the existence of non-uniform stationary solutions near the critical value κ∗

c = σ 4/2.
Rabinowitz bifurcation theorem and other global techniques are used in [23] for similar
results.

The classical Kuramoto model and its mean field game versions provide a mechanism for
the analysis of self organization. However, they cannot model synchronization with external
drivers, thus requiring additional terms. Indeed, the jet-lag recovery model of [6] introduce a
cost for misalignment with the exogenously given sunlight frequency, providing an incentive
to be in synch with the environment as well. These studies are clear evidences of the modeling
potential of the mean field game formalism in all models when self organization is the salient
feature.

The paper is organized as follows. After a short section on notation, the Kuramoto mean
field game is introduced in Section 3, and the main results are stated in Section 4. Section 5
briefly summarizes all control problems used in the paper. Stationary solutions are defined
and a fixed-point characterization is proved in Section 6. The super-critical case is studied
in Section 7 and full synchronization in Section 8. Incoherence is demonstrated in Section 9
by proving the convergence of all solutions to the uniform distribution when the interaction
parameter is small, and local stability of the uniform distribution is established in Section 10
for all κ < κc. For completeness, solutions starting from any distribution are constructed
in the Appendix A, and we provide the expected comparison result for a degenerate Eikonal
equation in the Appendix B.

2. Notation

The state-space is the one-dimensional torus T := R/(2πZ), P(T) is the space of all
probability measures on T. For ν ∈ P(T), f ∈ C(T), we use the standard notation
ν(f ) :=

∫
T f (x) ν(dx). We say that a probability measure ν ∈ P(T) is the law L(X) of X, if

E[f (X)] = ν(f ) for every f ∈ C(T). We also use the following space of continuous functions,

C := { ξ = (γ , η) : [0, ∞) #→ R2 : continuous and bounded }.

We fix a filtered probability space (., F, P) supporting an F-adapted Brownian motion
(Bt)t≥0. We assume that the filtration F = {Ft}t≥0 satisfies the usual conditions, i.e. F0
is complete and Ft is right-continuous. The initial filtration is nontrivial so that for any
probability measure µ0 ∈ P(T), one can construct an F0 measurable, T valued random
variable X0 with distribution µ0. For t ≥ 0, the set of admissible controls At is the collection
all progressively measurable processes α : [t, ∞) → R, and we set A := A0.
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For µ ∈ P(T), z ∈ T and a Borel subset B ⊂ T, we define the translation of µ by,
µ(B; x) := µ({z ∈ T : x + z ∈ B }). (2.1)

Finally, we record several elementary trigonometric identities that are used repeatedly. For
µ ∈ P(T), let c(x, µ) be as in the Introduction. As 2 (sin (x/2))2 = 1 − cos(x),

c(x, µ) =
∫

T
2
(
sin

(
(x − y)/2

))2
µ(dy) = 1 − a(µ) cos(x) − b(µ) sin(x), (2.2)

where a(µ) := µ(cos), and b(µ) := µ(sin). In particular, there is z∗ ∈ T such that
a(µ(·; z∗)) = g(µ) :=

√
(a(µ))2 + (b(µ))2 , and b(µ(·; z∗)) = 0. (2.3)

3. Kuramoto mean-field game

Given a flow of probability measures µ = (µt)t≥0, set
ℓµ(t, x) := κ[c(x, µt) − 1] = −κµt(cos) cos(x) − κµt(sin) sin(x), x ∈ T, t ≥ 0.

Consider the optimal control problem (1.2) with this running cost. Then, the problem is

vµ := inf
α∈A

Jµ,κ(α) := inf
α∈A

E
∫ ∞

0
e−βt

(
ℓµ(t, Xα

t ) + 1
2
α2

t

)
dt, (3.1)

where as in the introduction, Xα
t := X0 +

∫ t
0 αudu + σBt , with a Brownian motion (Bt)t≥0

and an initial condition X0 satisfying L(X0) = µ0.

Definition 3.1. We say that µ = (µt)t≥0 is a solution to the Kuramoto mean-field game with
interaction parameter κ starting from initial distribution µ0, if there exists α∗ ∈ A such that
Jµ,κ(α∗) = infα∈A Jµ,κ(α) and µt = L(Xα∗

t ) for all t ≥ 0.

Example 3.2. Consider an initial condition X0 satisfying E cos(X0) = E sin(X0) = 0, and
the flow of probability measures µ = (µt)t≥0 with µt := L(X0 +σBt). Then, for every t ≥ 0,

ℓµ(t, x) = −κ(µt(cos) cos(x) + µt(sin) sin(x))

= −κ( cos(x)E[cos(X0 + σBt)] + sin(x)E[sin(X0 + σBt)])

= −κ(cos(x)e− σ2
2 tE[cos(X0)] − sin(x)e− σ2

2 tE[sin(X0)]) = 0.

Therefore, for any α ∈ A, Jµ,κ(α) = E
∫ ∞

0 e−βt α2
t

2 dt ≥ 0 = Jµ,κ(0), implying that α∗ ≡ 0
is the minimizer of Jµ,κ(α), and µ is the law of the dynamics controlled by α∗. Hence, µ is a
solution of the Kuramoto mean-field game for every κ .

Now suppose that L(X0) is the uniform probability measure on the torus U(dx) =
dx/(2π). As any translation of U is equal to itself, µt = L(X0 + σBt) = U for all t ≥ 0.
Thus, U is a stationary solution.

The uniform distribution represents complete incoherence, and we refer to it as the
incoherent (or uniform) solution. We next introduce the stationary solutions of the Kuramoto
mean-field game.

Definition 3.3. We call a probability measure µ ∈ P(T) a stationary solution if the constant
flow µ = (µt)t≥0 with µt = µ for all t ≥ 0 is a solution of the Kuramoto mean-field game.
We say that µ is self-organizing or non-uniform if it is not equal to the uniform measure U.
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We record the following simple result for future reference.

Lemma 3.4. The uniform probability measure U on the torus is the incoherent stationary
solution of the Kuramoto mean-field game. Moreover, a stationary solution µ is the uniform
probability measure if and only if µ(cos) = µ(sin) = 0.

Proof In Example 3.2, we have shown that U is a stationary solution and that c(·, U) ≡ 1. Now
suppose that µ is a stationary solution with µ(cos) = µ(sin) = 0. Then, as in Example 3.2,
we conclude that the optimal solution of the control problem (1.2) is α∗ ≡ 0, and the optimal
state process satisfies dX∗

t = σdBt . As by stationarity L(X∗
t ) = µ for every t ≥ 0, the density f

of µ solves the Fokker-Plank equation fxx(x) = 0 on the torus. Hence, f is equal to a constant,
and µ = U.

Remark 3.5 (Invariance by translation). Assume that µ is a stationary solution. The symme-
try of the problem implies that the translated measure µ(·; z) is also a stationary solution for
every z.

4. Main results

In this section, we state all the main results of the paper. Recall the critical interaction
parameter κc of (1.4). In Section 7, we study the super-critical case κ > κc, and prove the
following result.

Theorem 4.1 (Super-critical interaction: synchronization). For all interaction parameters
κ > κc, there are non-uniform stationary solutions of the Kuramoto mean field game.

Suppose µ is one of the non-uniform stationary solutions given by the above result. Then,
any translation µ(·; z) is also a stationary solution. We conjecture that up to these translations,
there exists a unique non-uniform stationary solution of the Kuramoto mean-field game for
every interaction parameter κ > κc, see Remark 7.4.

We interpret these non-uniform stationary solutions as partially organized states of the
Kuramoto mean-field game, and conclude that for interaction parameters κ larger than
the critical value κc, there is self organization. As κ gets larger the stationary measure
become more localized and Theorem 4.2, proved in Section 8, shows convergence to the fully
synchronized regime corresponding to stationary Dirac measures.

Theorem 4.2 (Strong interaction: full synchronization). Let µn be a sequence of non-uniform
stationary solutions of the Kuramoto mean-field game with interaction parameters κn tending
to infinity. Then, there exists a sequence zn ∈ T such that the translated stationary solutions
µn(· ; zn) converge in law to the Dirac measure δ{0}.

We already argued in Example 3.2 that the uniform measure is always a stationary solution
for all interaction parameters. In Section 9, we consider small interaction parameters and
prove that all solutions converge to this incoherent state.
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Lemma 4.3 (Weak interaction: incoherence). If κ < βσ 2/4, then any solution µ = (µt)t≥0 of
the Kuramoto mean field game with interaction parameter κ converges to the incoherent state,
i.e., as t tends to infinity, µt converges in law to U.

The next result, proved in Section 10, addresses the local stability for all κ < κc, showing
that a phase transition occurs exactly at κc. This result requires the initial distribution µ0
to be sufficiently close to the uniform distribution. To quantify the distance of any measure
µ0 ∈ P(T) to the uniform measure, we set

d(µ0) := max
{
|µ0(cos)| , |µ0(sin)| , |µ0(sin cos)| , |µ0(cos2) − 1

2 |
}

. (4.1)

Theorem 4.4 (Sub-critical interaction: desynchronization). For κ < κc, there is cκ such that
for every µ0 ∈ P(T) satisfying d(µ0) ≤ cκ , there exists a solution µ∗ = (µ∗

t )t≥0 of the
Kuramoto mean field game with interaction parameter κ and initial distribution µ0, such that
µ∗

t converges in law to the uniform distribution as t tends to infinity. Moreover, this convergence
is exponential in the sense that for some λ∗

κ > 0,

sup
t≥0

eλ∗
κ t d(µ∗

t ) < ∞. (4.2)

The existence of solutions to mean field games is well known for problems with ergodic
cost [13–15]. However, for discounted infinite horizon problems it follows directly from our
general approach. Thus, we provide this proof for completeness in Appendix A.

Lemma 4.5 (Existence of solutions). For any probability measure µ0 ∈ P(T) and κ ≥ 0, there
exists a solution µ = (µt)t≥0 of the Kuramoto mean field game with interaction parameter κ

starting from initial distribution µ0.

4.1. Illustration of the results

We illustrate our main results by computing numerically the solutions of the Kuramoto mean
field game for different parameters. To do so, we follow the method of [24]. We fix a large time
horizon, and then solve iteratively the HJB and the Fokker-Planck equations, until the flow of
probability measures converges to a fixed point. We use finite difference schemes: an explicit
scheme for the Fokker-Planck equation, and an implicit scheme for the HJB equation, in order
to handle the non-linearity. We consider the problem with parameters β = 1/2, σ = 1 with
critical value κc = 1 and examine two interaction parameters.

The first case κ = 0.8 is below the threshold, and we are in the regime considered in
Theorem 4.4. We compute a solution with initial condition ν(dx) = C exp (− sin(x)) dx. Left
panel in Figure 1 illustrates the convergence of the solution to the uniform distribution.

The case κ = 2 is above the critical value and Theorem 4.1 implies that there are non-
uniform stationary solutions. Indeed, we compute a solution of the Kuramoto mean field
game with initial distribution that has two clusters around π/2 and 3π/2,

ν(dx) = C χ[π/4,π/4+π/10]∪[π ,π+π/10](x) dx.

As seen in the right panel of Figure 1, the two clusters quickly merge and the solution
converges towards a non-uniform invariant probability measure, whose shape is reported
Figure 2.
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Figure 1. Left panel sub critical interaction, right panel super critical.

Figure 2. For parameters β = 1/2, σ = 1, κ = 2κc = 2, the function Fκ has two fixed points at γ = 0 and γ∗ ≈ 1.47.

In all our numerical experiments with κ > κc, the solutions converge to shifts of the
solutions constructed in the proof of Theorem 4.1. The exact translation is determined by
the initial distribution. We do not provide a study of this interesting phenomenon.

5. Control problems

The original and central stochastic optimal control problem is defined in (3.1). However,
in the sequel, we use several other closely related problems in our analysis. So to highlight
the subtle differences among them and to provide a general overview of the notation, we
define all of them in this section. It is also clear that adding a constant to the running cost of
any control problem does not alter the minimizing control. As we are only interested in the
optimal behavior, we use this flexibility and appropriately modify the problem whenever it is
convenient.

5.1. Inhomogeneous problems

For ξ = (γ , η) ∈ C, we consider the stochastic control problem

vξ (µ0) := inf
α∈A

Jξ (µ0, α) := inf
α∈A

E
∫ ∞

0
e−βt

(
ℓξ (t, Xα

t ) + 1
2
α2

t

)
dt, (5.1)

where Xα
t := X0 +

∫ t
0 αudu + σBt is as before with initial data satisfying L(X0) = µ0, and

the running cost is given by,
ℓξ (t, x) = −γ (t) cos(x) − η(t) sin(x), x ∈ T, t ≥ 0. (5.2)



1222 R. CARMONA AND Q. CORMIER, AND H. M. SONER

We let Xξ be the optimal state process. The dependence on µ0 through the condition L(Xξ
0 ) =

µ0 is omitted in the notation for simplicity. To characterize the dynamics of Xξ , we also need
to introduce a family of control problems starting from any pair (t, x) ∈ [0, ∞) × T. Recall
that At is the set of all progressively measurable control process α : [t, ∞) #→ R. We set

vξ (t, x) := inf
α∈At

Jξ (t, x, α) := inf
α∈At

E
∫ ∞

t
e−β(u−t)[ℓξ (u, Xα,(t,x)

u ) + 1
2α2

u] du, (5.3)

where

Xα,(t,x)
u = x +

∫ u

t
αsds + σ [Bu − Bt], u ≥ t. (5.4)

We use the notation Xα,x = Xα,(0,x). For a given ξ , let α∗ be the optimal control with initial
data (t, x) and let Xξ ,(t,x) = Xα∗,(t,x) be the optimal state process making the dependence on
ξ explicit.

5.2. Stationary problem

When the flow µ is given by one probability measure µ ∈ P(T), we obtain a stationary
problem. The corresponding value function is given by,

vµ,κ(x) := inf
α∈A

Jµ,κ(x, α) := inf
α∈A

E
∫ ∞

0
e−βt[ℓµ,κ(Xα,x

t ) + 1
2α2

t ] dt, (5.5)

where as before ℓµ,κ(x) := κ[c(x, µ) − 1] = −κ[µ(cos) cos(x) + µ(sin) sin(x)].

5.3. Parametrized problems

Similarly, we may consider functions ξ ∈ C that are time-homogeneous. Additionally, in this
case we can translate the corresponding measure appropriately so that the second component
is zero. So we only use the first component γ ∈ R and let ℓγ (x) := −γ cos(x). We then set

vγ (x) := inf
α∈A

Jγ (x, α) := inf
α∈A

E
∫ ∞

0
e−βt[ℓγ (Xα,x

t ) + 1
2α2

t ] dt. (5.6)

We further elaborate on this problem in Section 6.

6. Stationary solutions

In this section, we establish a one-to-one correspondence between the stationary solutions
and fixed points of a scalar function of one-variable that we construct.

6.1. System of partial differential equations

It is well-known that the solutions of mean-field games can be obtained by solving a system
of coupled partial differential equations, (6.1) and (6.2) in the present situation. Indeed, the
dynamic programming (Hamilton-Jacobi-Bellman) equation related to the stochastic optimal
control problem (1.2) with any time-homogeneous running cost ℓ is given by,

βv(x) − σ 2

2
vxx(x) + 1

2
(vx(x))2 = ℓ(x). (6.1)
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For smooth ℓ, the above equation has classical solutions (cf. Lemma 6.3) and the solution is
the value function given by (5.6) with running cost ℓ. Moreover, the optimal feedback control
is α∗(x) = −vx(x), and the optimal state process solves dX∗

t = −vx(X∗
t )dt + σdBt . The

stationary law of X∗
t has a density f that solves the following stationary Fokker-Plank equation,

∂x

(
vx(x)f (x) + σ 2

2
fx(x)

)
= 0. (6.2)

The unique solution fv of the above equation is explicitly available, cf. (6.3).

Remark 6.1. We emphasize that the initial condition X∗
0 of the optimal process is random

and its density is given by fv. In particular, the density of X∗
0 is also a part of the solution. This

is in contrast with the time-varying problems (3.1) and (5.1), in which the initial distribution
µ0 is given and the solutions depend on µ0.

Recall the value function vµ,κ of (5.5), and let fvκ ,µ be the solution of (6.2) with this value
function. The following characterization follows directly from these definitions.

Lemma 6.2. A probability measure µ is a stationary solution of the Kuramoto mean field game
with interaction parameter κ , if and only if its density is equal to fvκ ,µ .

We close this subsection with another simple result reported for completeness.

Lemma 6.3. For β > 0 and ℓ ∈ C1(T), there exists a unique solution v ∈ C2(T) of (6.1).
Moreover, when ℓ is even so is v.

Proof As the equation (6.1) is one-dimensional and uniformly elliptic, a unique smooth
solution v of it can be constructed by classical and direct arguments. Now suppose that ℓ is
even, and set v̂(x) := v(−x). It is clear that v̂ also solves (6.1). Thus, by uniqueness v = v̂.

6.2. Characterization

Using the system of differential equations (6.1) and (6.2), we establish a one-to-one corre-
spondence between the stationary solutions and fixed points of a scalar-valued function of
one-variable. For γ ≥ 0, let vγ be as in (5.6) and set µγ (dx) = fvγ (x)dx. Then, the solution
is explicitly given by,

µγ (dx) = 1
Zγ

exp
(

− 2
σ 2 vγ (x)

)
dx, Zγ =

∫

T
exp

(
− 2

σ 2 vγ (y)
)

dy. (6.3)

For κ ≥ 0, set

Fκ(γ ) := κ µγ (cos), γ ≥ 0, (6.4)

Note that for γ = 0, the measure µ0 is the uniform measure as vγ (x) ≡ 0, and therefore,
γ = 0 is a fixed point of the function Fκ for every κ . The case γ > 0 is treated next. For the
following discussion, recall a(µ), b(µ) of (2.2), g(µ) of (2.3), and µ(·; z) of (2.1).

Proposition 6.4. A probability measure µ ∈ P(T) is a non-uniform stationary solution of the
Kuramoto mean-field game with an interaction parameter κ , if and only if κg(µ) is a strictly
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positive fixed point of Fκ and µκg(µ) = µ(·; z) for some z ∈ T. Moreover, if γ ∈ (0, κ] is a fixed
point of Fκ , then µγ is a non-uniform stationary solution.

The above result also implies that the existence of non-uniform stationary solutions is
equivalent to the existence of positive fixed points of Fκ .

Proof Suppose that µ is a stationary solution. By Remark 3.5, any translation µ(·; z) is again a
stationary solution. Choose z ∈ T as in (2.3) so that b(µ(·; z)) = 0, and a(µ(·; z)) = g(µ) ≥
0. Set, γ := κ a(µ(·; z)) = κ g(µ). By (2.2),

ℓµ(·;z),κ(x) := κ[c(x, µ(·; z)) − 1] = −γ cos(x).

Then, the value function vκ ,µ(·;z) of (5.5), and vγ of (5.6) are equal. Moreover, as µ(·; z)
is a stationary solution, it is equal to the law of the optimal state process of this problem.
Therefore, its density is equal to the solution fvγ of the Fokker-Plank equation (6.2). Hence,
µ(·; z) = µγ . By its definition Fκ(γ ) = κ a(µγ ), and by our choice γ := κ a(µ(·; z)). Hence,
γ is a fixed point of Fκ .

To prove the opposite implication, assume that γ := κg(µ) is a fixed point of Fκ . By
Lemma 6.3, vγ and therefore the density of µγ are even. This implies that b(µγ ) = 0. Also
γ = Fκ(γ ) = κ a(µγ ). Hence by (2.2), ℓµγ ,κ = −γ cos(x) and vκ ,µγ of (5.5) is equal to vγ

of (5.6). Hence, by Lemma 6.2, µγ is a stationary solution.
Moreover, choose z ∈ T as in (2.3) so that κ c(x, µ(·; z)) = κ − κg(µ) cos(x). Since by

definition γ = κg(µ), the control problems (1.2) for the stationary flows µ(·; z) and µγ are
the same. Hence, µ(·; z) is equal µγ with γ = κg(µ).

Finally suppose that γ ∈ (0, κ] is a fixed point of Fκ . In the above we have shown that µγ

is a stationary solution. Moreover, κµγ (cos) = Fκ(γ ) = γ ̸= 0. Hence, by Lemma 3.4, µγ is
non-uniform.

7. Partial self-organization

In this section, we use the characterization obtained in the previous section to prove the exis-
tence of non-uniform (or self-organizing) stationary solutions for super-critical parameters,
proving Theorem 4.1. Towards this goal, we analyze the function Fκ defined by (6.4) near the
origin and at infinity. A numerical example of Fκ with κ > κc is given in Figure 2.

Set A(γ ) := a(µγ ) so that by (6.4), Fκ(γ ) = κA(γ ).

Lemma 7.1. The function A defined above is differentiable at the origin and A′(0) = 1/κc. In
particular, F′

κ(0) > 1 for all κ > κc and there is γ0 > 0 such that

Fκ(γ ) > γ , ∀ κ ≥ 2κc, γ ∈ (0, γ0). (7.1)

Proof As vγ solves (6.1) with ℓ(x) = −γ cos(x), k(x) := (vγ )x(x) solves

βk(x) − σ 2

2
kxx(x) + (vγ )x(x) kx(x) = γ sin(x).

Since | sin(x)| ≤ 1, by maximum principle, we conclude that |k(x)| ≤ (γ /β). Next consider
h(x) := vγ (x) − u(x) where u(x) = −(2γ cos(x))/(2β + σ 2). Since u solves the linear
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equation βu(x) − σ 2
2 uxx(x) = −γ cos(x), h satisfies

βh(x) − σ 2

2
hxx(x) = −1

2
k2(x).

By Feynman–Kac,

|h(x)| = 1
2
|
∫ ∞

0
e−βtE

[
k2(x + σBt)

]
dt| ≤ γ 2

2β3 .

Summarizing, we have shown that

vγ (x) = −2γ cos(x)

2β + σ 2 + h(x), and |h(x)| ≤ γ 2

2β3 .

As a result, limγ↓0 vγ (x) = 0 and by dominated convergence, limγ↓0 Zγ = 2π . Therefore,
for any y ∈ T,

lim
γ→0

1
γ

[exp(− 2
σ 2 vγ (y)) − 1] = lim

γ→0

1
γ

[
exp(− 2

σ 2 [−2γ cos(y)
2β + σ 2 + h(y)]) − 1

]

= lim
γ→0

1
γ

[exp(− 2
σ 2 [−2γ cos(y)

2β + σ 2 ]) − 1] = 4
σ 2(2β + σ 2)

cos(y).

Moreover, there exists a constant c such that | exp(− 2
σ 2 vγ (y)) − 1| ≤ cγ for every y ∈ T. We

also directly calculate that
Z0 = 2π , lim

γ→0
Fκ(0) = 0.

Hence, by the dominated convergence theorem and the above calculations,

A′(0) = lim
γ→0

A(γ )

γ
= lim

γ→0

1
Zγ

∫ π

−π
cos(y) 1

γ
exp(− 2

σ 2 vγ (y))dy

= 1
2π

lim
γ→0

∫ π

−π
cos(y) 1

γ
[exp(− 2

σ 2 vγ (x)) − 1]dy

= 1
2π

4
σ 2(2β + σ 2)

∫ π

−π
cos2(y) dy = 2

σ 2(2β + σ 2)
.

To prove the final statement, we choose γ0 > 0 so that A(γ ) ≥ 2γ /(3κc) for all γ ∈ [0, γ0].
Then, for κ ≥ 2κc, Fκ(γ ) = κA(γ ) ≥ 4γ /3 > γ for all γ ∈ [0, γ0].

We continue with an easy upper bound.

Lemma 7.2 (Upper bound).

vγ (x) ≤ −γ

β
+ √

γ [x2

2
+ σ 2

2β
], ∀ x ∈ [−π , π].

Proof Since − cos(x) ≤ −1 + x2/2, vγ ≤ v̄γ , where

v̄γ (x) := inf
α∈A

E
∫ ∞

0
e−βt(−γ + 1

2
[
α2

t + γ (Xx,α
t )2]) dt.

This linear quadratic stochastic optimization problem has an explicit solution given by

v̄γ (x) = −γ

β
+ √

γ [ax2 + b],

where a = − β
4√

γ
+ 1

4

√
β2
γ + 4 ≤ 1

2 , and b = aσ 2/β ≤ σ 2/(2β).
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Lemma 7.3. Fκ is continuous on R+.

Proof Fix γ , δ ∈ R and define u(x) := vγ+δ(x) − vγ (x). In view of (6.1),

βu(x) − σ 2

2
uxx(x) + 1

2
ux(x)(vγ+δ

x (x) + vγ
x (x)) = −δ cos(x).

By maximum principle, we conclude that ∥u∥∞ ≤ |δ|/β . In particular, ∥vγ − v0∥∞ ≤ |γ |/δ,
so γ #→ ∥vγ ∥∞ is bounded on bounded sets. Hence, by an application of the dominated
convergence theorem, we conclude that Fκ is continuous.

Proof of Theorem 4.1 By its definition |Fκ(γ )| ≤ κ . Moreover, Fκ is continuous on R+, and is
differentiable at γ = 0 with F′

κ(0) = κ/κc. Therefore, for κ > κc, F′
κ(0) > 1 and consequently,

Fκ has a second fixed point γ∗ > 0. Since Fκ is bounded by κ , γ∗ ≤ κ . By Proposition 6.4,
µγ ∗ is a non-uniform stationary solution of the Kuramoto mean-field game with interaction
parameter κ .

Remark 7.4. In our numerical experiments, we always find that the function γ #→ Fκ(γ ) is
concave on R+, as depicted in the Figure 2, and observed that in the super-critical case, self-
organizing stationary solutions are unique up to translations. Moreover, time inhomogeneous
solutions converge to a stationary solution. We thus conjecture that the function Fκ is concave
for R+ for every interaction parameter and that non-uniform solutions are unique. Concavity
would also imply that this unique stationary measure converges to the uniform measure as κ ↓
κc. A complete analysis of these observations and the conjecture would be highly interesting.

8. Full synchronization: κ → ∞
In this section, we prove Theorem 4.2. An important step is the following result.

Proposition 8.1. As γ tend to infinity, µγ converges in law to the Dirac measure δ{0}.

The above result follows from several lemmas proved in the next Section 8.1.

Proof of Theorem 4.2 Let µn and κn be as in the statement of the theorem. Choose zn as in
(2.3). Then by Proposition 6.4, γn = κng(µn) = κna(µn(·; zn)) is a fixed point of Fκn and
µn(·; zn) = µγn . We claim that limn→∞ γn = ∞. If this claim holds, then by Proposition 8.1,
we conclude that µn(·; zn) converges in law to δ{0}, completing the proof of Theorem 4.2.

We continue by proving our claim that limn→∞ γn = ∞, by a counter argument. So
we assume that on a subsequence γn remains bounded. Without loss of generality, we take
the subsequence to be the whole sequence. Then, on a subsequence, denoted by n again, γn
converges to γ ∗. It is clear that vγn converges to vγ ∗ and consequently, µγn converges in law
to µ∗ := µγ ∗ . Also, for sufficiently large n, κn ≥ 2κc and in view of (7.1), the fixed point γn
of Fκn is larger than γ0. So we conclude that the limit point γ ∗ ≥ γ0 > 0.

Summarizing v∗ := vγ ∗ is the value function of (1.2) with running cost ℓ(x) =
−γ ∗ cos(x). The stationary law of the optimal state process is µ∗ = µγ ∗ . Furthermore,

a(µ∗) = lim
n→∞ a(µγn) = lim

n→∞
Fκn(γn)

κn
= lim

n→∞
γn
κn

= 0.
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Also by (6.3),

a(µ∗) =
∫

cos(x)µ∗(dx) = 1
Zγ ∗

∫ 3π
2

− π
2

cos(x) exp
(

− 2
σ

v∗(x)

)
dx

= 1
Zγ ∗

[∫ π
2

− π
2

cos(x) exp
(

− 2
σ

v∗(x)

)
dx +

∫ 3π
2

π
2

cos(x) exp
(

− 2
σ

v∗(x)

)
dx

]

= 1
Zγ ∗

[∫ π
2

− π
2

cos(x) exp
(

− 2
σ

v∗(x)

)
dx +

∫ π
2

− π
2

cos(x + π) exp
(

− 2
σ

v∗(x + π)

)
dx

]

= 1
Zγ ∗

∫ π
2

− π
2

cos(x) exp
(

− 2
σ

v∗(x)

)[
1 − exp

( 2
σ

[v∗(x) − v∗(x + π)]
)]

dx.

By Lemma 8.2, we conclude that the above integral is strictly positive, which is in contradic-
tion with the fact that a(µ∗) = 0.

The following lemma is used in the above proof. Set

ŵ(x) := vγ (x) − vγ (x + π), x ∈ [−π

2
, π

2
].

Lemma 8.2. For x, y, ∈ R, γ > 0, if cos(x) ≥ cos(y), then vγ (x) ≤ vγ (y). In particular,
ŵ(x) ≤ 0 on [−π

2 , π
2 ], and it is not identically equal to 0.

Proof Let vγ be as in (5.6). For any stopping time τ , dynamic programming implies that
vγ (x) = inf

α∈A
Jγ (x, τ , α),

where

Jγ (x, τ , α) := E
∫ τ

0
e−βt [−γ cos(Xα,x

t ) + 1
2
α2

t ] dt + e−βτ vγ (Xα,x
τ ),

as in Section 5, Xα,x
t = x +

∫ t
0 αudu + σBt . In particular,

vγ (x) − vγ (y) ≤ sup
α∈A

[Jγ (x, τ , α) − Jγ (y, τ , α)]. (8.1)

First suppose that cos(x) = cos(y). Then, either x = y or x = −y. As vγ is even, in either
case vγ (x) = vγ (y).

We now fix x, y such that cos(x) > cos(y) and consider the stopping time

τ = inf{t > 0 : cos(Xα,x
t ) = cos(Xα,y

t ) }.

Then, cos(Xα,x
τ ) = cos(Xα,y

τ ), and consequently, vγ (Xα,x
τ ) = vγ (Xα,y

τ ). Since for every t ∈
[0, τ ), cos(Xα,x

t ) > cos(Xα,y
t ) we have

Jγ (x, τ , α) − Jγ (y, τ , α) ≤ 0.

Hence, by (8.1) we conclude that vγ (x) ≤ vγ (y).
Since for x ∈ [−π

2 , π
2 ], cos(x) ≥ cos(x + π), this implies that ŵ(x) ≤ 0. Suppose that

vγ (0) = vγ (π). As cos(0) ≥ cos(x) ≥ cos(π) for every x ∈ [0, π], this implies that vγ ≡
vγ (0). However, vγ is a classical solution of (6.1) with ℓ(x) = −γ cos(x) and a constant
function is not a solution of this equation. So we conclude that ŵ(0) < 0.
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8.1. Proof of Proposition 8.1

The central analytical object in this proof is the following scaled function

wγ (x) := 1√
γ

[vγ (x) + γ

β
], (8.2)

which solves the equation

βγ wγ (x) −
σ 2

γ

2
wγ

xx(x) + 1
2
(wγ

x (x))2 = 1 − cos(x) = 2(sin(x/2))2, (8.3)

where σγ := σγ −1/4, and βγ := βγ −1/2. Then, wγ has the following stochastic optimal
control representation,

wγ (x) = inf
α∈A

Lγ (x, α) := E
∫ ∞

0
e−βγ t

[
α2

t
2

+ 1 − cos(Xα,x
t )

]
dt,

with Xα,x
t := x +

∫ t
0 αudu + σγ Bt . Therefore, wγ ≥ 0. Using Lemma 7.2, we deduce that

|wγ (x)| ≤ x2

2
+ σ 2

2β
≤ π2

2
+ σ 2

2β
, ∀ x ∈ [−π , π].

We start with a uniform Lipschitz estimate.

Lemma 8.3. For all γ > 0,

|wγ
x (x)| ≤ 1

2
[3 + π + π2 + σ 2

β
], ∀ x ∈ [0, 2π].

Proof Let Lγ (z, α) be as above. Fix x, x′, ϵ > 0 and choose an ϵ-optimal control αϵ ∈ A
satisfying Lγ (x, αϵ) ≤ wγ (x) + ϵ. Define a new control α′ by,

α′
t :=

{
αϵ

t + (x − x′), if t ≤ 1,
αϵ

t , if t > 1.

It is clear that α′ ∈ A and also we have the following,

Xα′,x′
t − Xαϵ ,x

t =
{

(x′ − x)(1 − t), if t ≤ 1,
0, if t > 1.

This implies that

Lγ (x′, α′) − Lγ (x, αϵ) = E
∫ 1

0
e−βγ t(At + Bt)dt,

where At := cos(Xαϵ ,x
t ) − cos(Xα′,x′

t ) and Bt := 1
2
[
αϵ

t + (x − x′)
]2 − 1

2 (αϵ
t )2. Therefore,

|At| ≤ |x − x′|, and

|Bt| ≤ |αϵ
t ||x − x′| + (x − x′)2

2
≤ 1

2
[|x − x′| (αϵ

t )2 + |x − x′| + (x − x′)2].
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These imply that
wγ (x′) − wγ (x) − ϵ ≤ Lγ (x′, α′) − Lγ (x, αϵ)

≤ E
∫ 1

0
e−βγ t(At + Bt)dt

≤ 1
2
[3|x − x′| + |x − x′|2] + |x − x′| E

∫ 1

0
e−βγ t 1

2
(αϵ

t )2dt

≤ 1
2
[3 + |x − x′|]|x − x′| + |x − x′| Lγ (x, αϵ)

≤ 1
2
[3 + π]|x − x′| + |x − x′| [wγ (x) + ϵ]

≤ 1
2
[3 + π + π2 + σ 2

β
+ 2ϵ] |x − x′|.

As the argument is symmetric in x, x′ and ϵ is arbitrary, the proof of the lemma is
complete.

Above estimates imply that (wγ )γ>0 is equicontinuous and uniformly bounded. Hence, by
Arzelà–Ascoli, it converges uniformly on subsequences. We continue by identifying the limit
of wγ (·)−wγ (0) which is sufficient for our purposes. We achieve this by using standard tools
from the theory of viscosity solution [25–27].

Proposition 8.4. As γ tends to infinity, wγ (·) − wγ (0) converges uniformly to w given by,
w(x) := 4 (1 − | cos(x/2)|). (8.4)

In particular, the function w is the unique viscosity solution of the Eikonal equation
1
2
(wx)

2 = 2(sin(x/2))2, x ∈ (0, 2π), with w(0) = w(2π) = 0. (8.5)

Proof Observe that wγ is a classical and hence, a viscosity solution of (8.3). As βγ , σγ

converge to zero, the equation (8.3) formally converges to the Eikonal equation (8.5). Then,
the classical stability results for viscosity solutions (cf. Theorem 1.4 in [26] or Lemma II.6.2
in [27]), any uniform limit w of wγ (·)−wγ (0) is a viscosity solution of (8.5). We also directly
verify that w defined above is a viscosity solution of (8.5). By the standard comparison result
for this equation (proved in Lemma B.1 for completeness), we conclude that, any uniform
limit of wγ (·) − wγ (0) is equal to w.

Proof of Proposition 8.1. Set w̃γ := 2
σ 2 (wγ (x) − wγ (0)), so that by (8.2),

vγ (x) =
√

γ σ 2

2
w̃γ − γ

β
+ √

γ wγ (0).

The definition of µγ implies that

µγ (dx) = exp
(
−√

γ w̃γ

)
dx

∫ π
−π exp

(
−√

γ w̃γ (y)
)

dy
=: 1

Z̃γ

exp
(
−√

γ w̃γ

)
dx.

By Proposition 8.4, w̃γ converges to w̃(x) := 8
σ 2 (1 − | cos(x/2)|). Hence, w̃γ (x) = w̃(x) +

ϵγ (x), for some function ϵγ converging uniformly to zero as γ tends to infinity. It is clear that
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on x ∈ [−π , π], w̃ is strictly convex and has a unique global minimum w̃(0) = 0. Therefore,
there exists a constant c1 such that

∫ π

−π
χ{w̃(y)≤ 1√

γ
} dy ≥ c1γ

−1/4.

Fix ϵ > 0. There is γϵ such that for all γ ≥ γϵ , we have ∥ϵγ ∥∞ ≤ ϵ. Therefore, for γ ≥ γϵ ,

Z̃γ =
∫ π

−π
exp

(
−√

γ [w̃(y) + ϵγ (y)]
)

dy

≥ exp(−ϵ
√

γ )

∫

{w̃≤ 1√
γ

}
exp(−√

γ w̃(y)) dy

≥ exp(−[ϵ√γ + 1]) c1γ
−1/4 =: (c0 eϵ

√
γ γ 1/4)−1.

As ∥ϵγ ∥∞ ≤ ϵ for all γ ≥ γϵ , for these values of γ the following estimate holds
∫ π

−π
χ{w̃≥3ϵ}µγ (dx) = 1

Z̃γ

∫ π

−π
χ{w̃≥3ϵ}e−√

γ w̃γ dx

≤ c0 eϵ
√

γ γ 1/4 e
√

γ ∥ϵγ ∥∞
∫ π

−π
χ{w̃≥3ϵ}e−√

γ w̃(x) dx

≤ 2π c0 γ 1/4e−ϵ
√

γ .

Since the above quantity converges to zero as γ tends to infinity, we conclude that any limit
point of µγ does not have any mass in the set {w̃ ≥ 3ϵ} for every ϵ. This set shrinks to the
singleton {0} as ϵ tends to zero. Hence, µγ converges in law to δ{0}.

9. Weak interaction and incoherence

In this section we consider small κ values, and prove the convergence of all solutions to the
Kuramoto mean field game to the uniform solution as time gets larger. In the next section, we
consider all κ < κc, and prove the existence of convergent solutions provided that the initial
distribution is sufficiently close to the uniform distribution.

9.1. Setting

For a continuous function ξ = (γ , η) ∈ C and a probability measure µ0 ∈ P(T), recall the
value function vξ (t, x) of (5.3), running cost ℓξ of (5.2), the state processes Xα,(t,x) of (5.4),
and the optimal state process Xξ ,(t,x) of (5.6), Xξ of the problem (5.1) with initial distribution
L(Xξ

0 ) = µ0 (the dependence on µ0 is omitted in the notation for simplicity).
It is well-known [27] that the value function vξ (t, x) of (5.3) is a classical solution of the

time inhomogeneous dynamic programming equation,

βvξ (t, x) − vξ
t (t, x) − σ 2

2
vξ

xx(t, x) + 1
2
(vξ

x(t, x))2 = ℓξ (t, x), t > 0, x ∈ T. (9.1)

Then, the optimal state process Xξ is given by

dXξ
t = − vξ

x(t, Xξ
t ) dt + σdBt , (9.2)

with initial data L(X0) = µ0.
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We now define a map
T (·; µ0) : ξ ∈ C #→ T (ξ ; µ0) := (E[cos(Xξ

t )], E[sin(Xξ
t )])t≥0. (9.3)

For a given probability flow µ = (µt)t≥0, define
ξ(µ) = (µt(cos), µt(sin))t≥0. (9.4)

The following is an immediate consequence of the definitions.

Lemma 9.1. A probability flow µ = (µt)t≥0 is a solution of the Kuramoto mean field game if
and only if ξ(µ) defined in (9.4) is a fixed point of κT (·; µ0). Moreover, if ξ is a fixed point of
κT (·; µ0), then the probability flow (L(Xξ

t ))t≥0 is a solution of the Kuramoto mean field game
starting from the distribution µ0.

9.2. Estimates

For any function k : [0, ∞) × T #→ Rd and t ≥ 0, we set
∥k∥t,∞ := sup

u≥t
∥k(u, ·)∥∞.

Lemma 9.2. For any ξ ∈ C, κ > 0 and t ≥ 0, ∥vξ
x∥t,∞ ≤ 1

β ∥ξ∥t,∞.

Proof For any x, y ∈ T and t ≥ 0,
vξ (t, x) − vξ (t, y) ≤ sup

α∈At
[Jξ (t, x, α) − Jξ (t, y, α)]

≤ sup
α∈At

E
∫ ∞

t
e−β(u−t)[ℓξ (u, Xα,(t,x)

u ) − ℓξ (u, Xα,(t,y)
u )] du,

where ℓξ is as in (5.2). Then,
∣∣∣ℓξ (u, Xα,(t,x)

u ) − ℓξ (u, Xα,(t,y)
u )

∣∣∣ ≤ ∥ξ∥t,∞ |x − y|, ∀ u ≥ 0, x, y ∈ T,

and therefore,

vξ (t, x) − vξ (t, y) ≤ sup
α∈At

E
∫ ∞

t
e−β(u−t) ∥ξ∥t,∞ |x − y| du = ∥ξ∥t,∞

β
|x − y|.

The following estimate follows directly from Ito’s formula.

Lemma 9.3. For any ξ ∈ C, n ≥ 1, and 0 ≤ t ≤ s,
∣∣∣E[cos(nXξ

s )]
∣∣∣ +

∣∣∣E[sin(nXξ
s )]

∣∣∣ ≤ 2e− n2σ 2
2 (s−t) + 4∥ξ∥t,∞

nβ σ 2 .

Proof Set At := E[cos(nXξ
t )]. Ito formula implies that

As − At = n E[
∫ s

t
vξ

x(u, Xξ
u) sin(nXξ

u) du] − n2σ 2

2

∫ s

t
Au du.

By Duhamel’s principle, we have

As = e− n2σ 2
2 (s−t) At +

∫ s

t
e− n2σ2

2 (s−u)nE[vξ
x(u, Xξ

u) sin(nXξ
u)] du.
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Therefore, by the previous lemma,

|As| ≤ e− n2σ 2
2 (s−t) |At| +

∫ s

t

n∥ξ∥t,∞
β

exp(−n2σ 2

2
(s − u))du

≤ e− n2σ 2
2 (s−t) + 2∥ξ∥t,∞

nβ σ 2 [1 − e− n2σ 2
2 (s−t)].

The inequality for the sin is proved exactly the same way.

9.3. Proof of Lemma 4.3

Let µ = (µt)t≥0 be a solution of the Kuramoto mean field game. By Lemma 9.1, ξt := ξt(µ)

given by (9.4) is a fixed-point of κT (·; µ0). Hence, ξt = κ
(
E[cos(Xξ

t )], E[sin(Xξ
t )]

)
. By

Lemma 9.3, for any 0 ≤ t ≤ τ ,

∥ξ∥τ ,∞ = κ sup
s≥τ

[
∣∣∣E[cos(Xξ

s )
∣∣∣ +

∣∣∣E[sin(Xξ
s )

∣∣∣] ≤ κ sup
s≥τ

[2e−σ 2
2 (s−t) + 4 ∥ξ∥t,∞

β σ 2 ]

= 2κe−σ 2
2 (τ−t) + 4κ ∥ξ∥t,∞

β σ 2 .

As ∥ξ∥τ ,∞ is non-increasing in τ , it has a limit, and the above inequality implies that

lim
τ→∞ ∥ξ∥τ ,∞ ≤ lim

τ→∞ 2κe−σ 2
2 (τ−t) + 4κ ∥ξ∥t,∞

β σ 2 = 4κ ∥ξ∥t,∞
β σ 2 , ∀ t ≥ 0.

We now take the limit as t tends to infinity. The result is the following,

lim
τ→∞ ∥ξ∥τ ,∞ ≤ 4κ

β σ 2 lim
t→∞

∥ξ∥t,∞.

Thus for κ < βσ 2/4, limt→∞ ∥ξ∥t,∞ = 0. By Lemma 9.3,

lim
t→∞

∣∣∣E[cos(nXξ
t )]

∣∣∣ +
∣∣∣E[sin(nXξ

t )]
∣∣∣ = 0,

for every n. Let f be a twice continuously differentiable function on T. Then,

f (x) = c0 +
∞∑

n=1
[cn cos(nx) + en sin(nx)],

for some constants cn, en. One may directly show that they satisfy
∑∞

n=1[|cn| + |en|] < ∞.
Hence, by dominated convergence,

lim
t→∞

µt(f ) = c0 + lim
t→∞

∞∑

n=1
(cnE[cos(nXξ

t ) + enE[sin(nXξ
t )]) = c0 = U(f ).

This implies the convergence of µt to the uniform distribution U.

10. Sub-critical case: κ < κc

For a positive constant λ > 0, consider the subspace of C given by,
Cλ := { ξ = (γ , η) ∈ C : ∥ξ∥λ < ∞}, where ∥ξ∥λ := sup

t≥0
eλt|ξt| = sup

t≥0
eλt (|γ (t)| + |η(t)|) .

Then, (Cλ, ∥ · ∥λ) is a Banach space.
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10.1. Preliminaries

Let vξ (t, x) be as in Section 9.1, and recall that the optimal state processes Xξ and Xξ ,(t,x) solve
the same stochastic differential equation (9.2) but with different initial conditions. Namely,
Xξ

0 = X0 satisfies L(X0) = µ0, and Xξ ,(t,x)
t = x. The drift term in the stochastic differential

equation (9.2) is vξ
x . We differentiate the equation (9.1), to show that it solves the following

equation,

βvξ
x − vξ

xt(t, x) − M(vξ
x)(t, x) = (ℓξ )x(t, x) = γ (t) sin(x) − η(t) cos(x),

where M is the infinitesimal generator of the stochastic differential equation (9.2), i.e., for a
smooth function ϕ of (t, x),

M(ϕ)(t, x) = σ 2

2
ϕxx(t, x) − ϕx(t, x) vξ

x(t, x).

Hence, we have the following representation of vξ
x ,

vξ
x(t, x) =

∫ ∞

t
e−β(u−t)

[
γ (u)Bξ

u(t, x) − η(u)Aξ
u(t, x)

]
du, (10.1)

where

Aξ
u(t, x) := E

[
cos(Xξ ,(t,x)

u )
]

, Bξ
u(t, x) := E

[
sin(Xξ ,(t,x)

u )
]

.

Lemma 10.1. For every t ≥ 0, x ∈ T,

∥vξ
x∥∗

λ := sup
t≥0,x∈T

|vξ
x(t, x)|eλt ≤ ∥ξ∥λ

β
.

Proof We use the representation (10.1) with the estimate

|γ (u)Bξ
u(t, x) − η(u)Aξ

u(t, x)| ≤ |γ (u)| + |η(u)| ≤ ∥ξ∥λe−λu ≤ ∥ξ∥λe−λt , ∀ u ≥ t,

to obtain

|vξ
x(t, x)| ≤

∫ ∞

t
e−β(u−t) ∥ξ∥λe−λtdu = ∥ξ∥λ

β
e−λt .

We close this subsection with a simple application of the Ito’s rule.

Lemma 10.2. Let X be a solution of the stochastic differential equation (9.2) on (t, ∞). Then,
for f (x) = cos(x) or f (x) = sin(x),

∣∣∣∣E[f (Xu)] − e−σ 2
2 (u−t) E[f (Xt)]

∣∣∣∣ ≤ 2 ∥vξ
x∥∗

λ

σ 2 e−λt , ∀ u ≥ t.

Proof We only consider f (x) = cos(x), the other case is proved in exactly the same way. By
Ito’s rule,

d cos(Xu) = − sin(Xu) dXu − σ 2

2
cos(Xu) du.
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Therefore,

E[cos(Xu)] = e−σ 2
2 (u−t)E[cos(Xt)] +

∫ u

t
e−σ 2

2 (u−s) E[vξ
x(s, Xs) sin(Xs)] ds.

Moreover, E[vξ
x(s, Xs) sin(Xs)] ≤ ∥vξ

x∥∗
λ e−λt for every s ≥ t. We substitute this into the above

equation to complete the proof of the claimed inequality.

Set

ρ := κc
σ 2 = β + σ 2

2
.

Lemma 10.3. For ξ = (γ , η) ∈ Cλ, the negative drift vξ
x has the representation,

vξ
x(t, x) = wξ (t, x) + rξ (t, x) = Mt(ξ) sin(x) − Nt(ξ) cos(x) + rξ (t, x),

where

Mt(ξ) =
∫ ∞

t
e−ρ(s−t) γ (s) ds, Nt(ξ) =

∫ ∞

t
e−ρ(s−t) η(s) ds.

In addition,

∥(Mt(ξ), Nt(ξ))∥λ ≤ ∥ξ∥λ

ρ
|rξ (t, x)| ≤ 4

β2σ 2 ∥ξ∥2
λ e−2λt . (10.2)

Proof We first use Lemma 10.2 with Xξ ,(t,x) to obtain

Aξ
u(t, x) = e−σ 2

2 (u−t) cos(x) + aξ
u(t, x), and |aξ

u(t, x)| ≤ 2 ∥vξ
x∥∗

λ

σ 2 e−λt ,

Bξ
u(t, x) = e−σ 2

2 (u−t) sin(x) + bξ
u(t, x), and |bξ

u(t, x)| ≤ 2 ∥vξ
x∥∗

λ

σ 2 e−λt .

Let wξ , Mt , Nt be as in the statement of the lemma. Then, formula (10.1) gives,

rξ (t, x) := vξ
x(t, x) − wξ (t, x) =

∫ ∞

t
e−β(u−t)

[
γ (u)bξ

u(t, x) − η(u)aξ
u(t, x)

]
du.

The claimed estimates of N, M, rξ now follows directly from Lemma 10.1.

10.2. Linearization

For small ξ , one expects the value function and its derivatives to be small. We exploit this
formal observation and obtain the following representation of the map T (·; µ0). Recall,
wξ , N(ξ), M(ξ) of Lemma 10.3, and d(µ0) of (4.1).

Proposition 10.4. For any ξ ∈ Cλ, t ≥ 0, µ0 ∈ P(T), and λ ≤ σ 2/8,

Tt(ξ ; µ0) = e−σ 2
2 t (µ0(cos), µ0(sin)) + 5t(ξ) + Rt(ξ , µ0),

where the linear operator 5 is given by

5t(ξ) := 1
2

∫ t

0
e−σ 2

2 (t−u) (Mu(ξ) , Nu(ξ)) du.
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Moreover, there is a constant c2(β , σ ) > 0 satisfying

|Rt(ξ , µ0)| ≤ [ 8d(µ0)

κc
∥ξ∥λ + c2(β , σ ) ∥ξ∥2

λ ] e−2λt . (10.3)

Proof Recall that for ξ = (γ , η) ∈ Cλ and t ≥ 0,

Tt(ξ ; µ0) = (E[cos(Xξ
t ), E[sin(Xξ

t )]), t ≥ 0,

where Xξ solves (9.2) with initial condition L(X0) = µ0. We continue in several steps.
Step 1. By Ito’s rule,

E[cos(Xξ
t )] = e−σ 2

2 t µ0(cos) +
∫ t

0
e−σ 2

2 (t−u) E[vξ
x(u, Xξ

u) sin(Xξ
u)] du. (10.4)

Moreover, by Lemma 10.3,

vξ
x(u, Xξ

u) sin(Xξ
u) = Mu(ξ) sin2(Xξ

u) − Nu(ξ) sin(Xξ
u) cos(Xξ

u) + rξ (u, Xξ
u) sin(Xξ

u).

Step 2. Set Yu := sin2(Xξ
u) − 1

2 . By Ito’s rule,

dYu = 2vξ
x(u, Xξ

u) sin(Xξ
u) cos(Xξ

u) du − 2σ 2Yudu + (. . .)dBu.

This implies that

E[Yu] = e−2σ 2uE[Y0] +
∫ u

0
2e−2σ 2(u−s)E[vξ

x(s, Xξ
s ) sin(Xξ

s ) cos(Xξ
s )] ds.

Then, by Lemma 10.1 and (4.1),

|E[sin2(Xξ
u)] − 1

2
| ≤ e−2σ 2u |E[sin2(Xξ

0 )] − 1
2
| + ∥ξ∥λ

βσ 2 e−λu

≤ e−2σ 2u d(µ0) + ∥ξ∥λ

βσ 2 e−λu. (10.5)

A similar calculation implies that

|E[sin(Xξ
u) cos(Xξ

u)]| ≤ e−2σ 2u d(µ0) + ∥ξ∥λ

βσ 2 e−λu. (10.6)

Step 3. Set

R1
u(ξ ; µ0) := E[vξ

x(u, Xξ
u) sin(Xξ

u)] − 1
2

Mu(ξ).

We directly estimate R1 by using the previous steps and (10.2). The result is the following,

|R1
u(ξ ; µ0)| ≤ (|Nu(ξ)| + |Mu(ξ)|) [e−2σ 2ud(µ0) + ∥ξ∥λ

βσ 2 e−λu] + E[|rξ (u, Xξ
u)|]

≤ 2∥ξ∥λ

ρ
e−λu [e−2σ 2ud(µ0) + ∥ξ∥λ

βσ 2 e−λu] + 4
β2σ 2 ∥ξ∥2

λ e−2λu

≤ [ 2d(µ0)

ρ
∥ξ∥λ + c(β , σ ) ∥ξ∥2

λ ] e−2λu,

where

c(β , σ ) := (2β + 4ρ)

ρβ2σ 2 = (12β + 4σ 2)

(2β + σ 2)β2σ 2 .
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Step 4. Using Step 3 in (10.4), we obtain

E[cos(Xξ
t )] = e−σ 2

2 t µ0(cos) + 1
2

∫ t

0
e−σ 2

2 (t−u) Mu(ξ) du + R2
t (ξ , µ0),

where

R2
t (ξ , µ0) =

∫ t

0
e−σ 2

2 (t−u) R1
u(ξ , µ0) du.

By the estimate obtained in Step 3, and as λ < σ 2/8,

|R2
t (ξ , µ0)| ≤

∫ t

0
e−σ 2

2 (t−u) [2d(µ0)

ρ
∥ξ∥λ + c(β , σ ) ∥ξ∥2

λ] e−2λudu

≤ 4
σ 2 [2d(µ0)

ρ
∥ξ∥λ + c(β , σ ) ∥ξ∥2

λ] e−2λt .

Step 5. Proceeding exactly as in the previous steps, we also obtain,

E[sin(Xξ
t )] = e−σ 2

2 t µ0(sin) + 1
2

∫ t

0
e−σ 2

2 (t−u) Nu(ξ) du + R3
t (ξ , µ0),

where

|R3
t (ξ , µ0)| ≤ 4

σ 2 [2d(µ0)

ρ
∥ξ∥λ + c(β , σ ) ∥ξ∥2

λ] e−2λt .

As ρσ 2 = κc, above estimates implies (10.3) with c2(β , σ ) = 4c(β , σ )/σ 2.

Corollary 10.5. For every λ small, 5 is bounded on Cλ. In particular, for all ξ ∈ Cλ, T (ξ ; µ0) ∈
Cλ and

∥5(ξ)∥λ

∥ξ∥λ
≤ 1

(κc − 2λρ)
, ∀ ξ ∈ Cλ.

Proof By the definitions of M, and N,

|(Mu, Nu)| ≤
∫ ∞

u
e−ρ(s−u) e−λu∥ξ∥λdu = ∥ξ∥λ

ρ + λ
e−λu ≤ ∥ξ∥λ

ρ
e−λu.

Then,

|5t(ξ)| ≤ 1
2

∫ t

0
e−σ 2

2 (t−u) ∥ξ∥λ

ρ
e−λu du = ∥ξ∥λ

(σ 2 − 2λ)ρ
e−λt = ∥ξ∥λ

(κc − 2λρ)
e−λt ,

where in the last calculation we used the identity κc = σ 2ρ. As all terms in the representation
of T (ξ ; µ0) are in Cλ, consequently, so is T (ξ ; µ0).

Note that for all κ < κc, and all sufficiently small λ, the map ξ ∈ Cλ #→ κ5(ξ) ∈ Cλ is
a contraction. Therefore, in view of Proposition 10.4, κT is equal to a contraction perturbed
by a quadratic nonlinearity. This formal observation drives the subsequent analysis.

10.3. Proof of Theorem 4.4

We start with a uniform bound. Recall d(µ0) of (4.1).
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Lemma 10.6. For every κ < κc, there are Cκ , cκ , λκ > 0 depending only on κ , β , σ , such that
if d(µ0) ≤ cκ , then

∥ξ∥λκ ≤ Cκ ⇒ ∥κ T (ξ ; µ0)∥λκ ≤ Cκ .

Proof We fix µ0, κ < κc and set

δ := κc − κ

4κc
, ⇒ κ = κc(1 − 4δ).

Choose λκ < δσ 2/2. Then,

(κc − 2λκρ)(1 − 3δ) = κc(1 − 2λκ

σ 2 )(1 − 3δ) ≥ κc(1 − δ)(1 − 3δ) ≥ κc(1 − 4δ) = κ .

By definition κ T0(ξ ; µ0)0 = κ(µ0(cos), µ0(sin)). Therefore, |κ T0(ξ ; µ0)0| ≤ 2κd(µ0).
Then, by Proposition 10.4 and Corollary 10.5,

∥κ T0(ξ ; µ0)∥λκ ≤ |κ T0(ξ ; µ0)0| + [ κ

κc − 2λκρ
+ 8κd(µ0)

κc
] ∥ξ∥λκ + κc2(β , σ ) ∥ξ∥2

λκ

≤ 2κd(µ0) + [(1 − 3δ) + 8κd(µ0)

κc
] ∥ξ∥λκ + κc2(β , σ ) ∥ξ∥2

λκ
.

Set

Cκ = C(κ , β , σ ) := δ

κc2(β , σ )
, cκ = c(κ , β , σ ) := min{δCκ

2κ
, δ

8
}.

Then, if d(µ0) ≤ cκ and ∥ξ∥λκ ≤ Cκ ,
∥κ T (ξ ; µ0)∥λκ ≤ 2κcκ + [(1 − 3δ) + 8d(µ0)]∥ξ∥λκ + [κc2(β , σ )∥ξ∥λκ ] ∥ξ∥λκ

≤ δCκ + (1 − 2δ)Cκ + [κc2(β , σ )Cκ ] Cκ

= Cκ [δ + (1 − 2δ) + δ] = Cκ .
This completes the proof of this lemma.

Let λκ , Cκ , cκ > 0 be as in the above lemma and set
Bκ := { ξ ∈ Cλκ : ∥ξ∥λκ ≤ Cκ } ⊂ Cλ, ∀ λ ∈ (0, λκ ].

We have shown above that κ T (·; µ0) maps Bκ into itself provided that d(µ0) ≤ cκ .

Lemma 10.7. For every 0 < λ < λκ and d(µ0) ≤ cκ , κ T (Bκ ; µ0) is pre-compact in Cλ.

Proof Fix 0 < λ < λκ and µ0 with d(µ0) ≤ cκ . Let ξn be a sequence Bκ , and set
ζ n := κ T (ξn; µ0). By the previous lemma, ζ n ∈ Bκ . As in the proof of Lemma 4.5 given
in Appendix A.4, we use Lemma A.3 with Arzelà–Ascoli in a diagonal argument to construct
a subsequence, denoted by n again, and ζ ∗ ∈ Bκ such that ζ n converges to ζ ∗ uniformly on
every compact set [0, T]. Since ζ n, ζ ∗ ∈ Bκ , for every n, T,

sup
t≥T

|ζ n
t − ζ ∗

t |eλt ≤ sup
t≥T

|ζ n
t − ζ ∗

t |e(λ−λκ )teλκ t ≤ ∥ζ n − ζ ∗∥λκ e−(λκ−λ)T ≤ 2Cκe−(λκ−λ)T .

Given ϵ > 0, we choose Tϵ > 0 such that 2Cκe−(λκ−λ)Tϵ ≤ ϵ. As ζ n converges to ζ ∗

uniformly on every bounded set, there exists nϵ satisfying
sup

t∈[0,Tϵ ]
|ζ n

t − ζ ∗
t |eλt ≤ ϵ, ∀ n ≥ nϵ .
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Hence, for every n ≥ nϵ , ∥ζ n − ζ ∗∥λ ≤ ϵ. So we conclude that ζ n converges to ζ ∗ in ∥ · ∥λ,
proving that κ T (Bκ ; µ0) is pre-compact in Cλ.

Proof of Theorem 4.4 Let λκ , cκ , Cκ be as in the Lemma 10.6. Fix λ ∈ (0, λκ). Suppose that
the initial distribution µ0 satisfies d(µ0) ≤ cκ . We have shown that κ T (·; µ0) is pre-compact
on the convex set Bκ and it maps Bκ onto itself. The continuity of κ T (·; µ0) can be proved
as in Lemma A.4. Therefore, we can use the Schauder fixed point theorem to conclude that
there exists ξ∗ ∈ Cλ so that ξ∗ = κ T (ξ∗; µ0). Let X∗ be the optimal process for the problem
(3.1) with ξ∗. In view of Lemma 9.1, (L(X∗

t ))t≥0 is a solution of the Kuramoto mean field
game with interaction parameter κ and initial distribution µ0. We now use Lemma (9.3) as
in Section 9.3, to conclude that L(X∗

t ) converges to the uniform distribution.
As ξ∗ ∈ Bκ , we have ∥ξ∗∥λ ≤ Cκ . Therefore, by (10.5) and (10.6), we conclude that (4.2)

holds with λ∗
κ = λ.
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A. Existence of solutions

We first approximate the infinite horizon problem (3.1) by finite horizon problems and prove
the existence of solutions for them. Then, we use a limiting argument to construct solutions
to the original problem.

A.1. Finite horizon problem

For a finite horizon T, we modify the control problem (3.1) slightly and consider

minimize α #→ Jµ(α; T) := E
∫ T

t
e−β(u−t)[ℓµ(u, Xα

u ) + 1
2α2

u] du, t ∈ [0, T], x ∈ T,

where ℓµ and X are as in (3.1). The solution to the finite horizon Kuramoto mean field game
is defined exactly as in Definition 3.1.

Arguments of the Section 9.1 leading to Lemma 9.1 can be followed mutatis mutandis to
obtain a similar fixed point characterization of the solutions. Indeed, let

CT,κ := { ξ = (γ , η) : [0, T] #→ R2 : continuous and ∥ξ∥∞ ≤ κ },
and for t ∈ [0, T], x ∈ T set

vξ ,T(t, x) := inf
α∈At

Jξ ,T(t, x, α) := E
∫ T

t
e−β(u−t)[ℓξ (u, Xα,(t,x)

u ) + 1
2α2

u] du, (A.1)



1240 R. CARMONA AND Q. CORMIER, AND H. M. SONER

where ℓξ is as in (5.2) and Xα,(t,x) is as in (5.3).
Note that the corresponding dynamic programming equation is exactly (9.1). The only

difference is that the equation holds for t ∈ (0, T) and vξ ,T satisfies the terminal condition
vξ ,T(·, T) ≡ 0. This equation has a smooth solution, and in particular, the Lipschitz estimate
|vξ ,T

x (x, t)| ≤ ∥ξ∥∞/β is proved as in the proof of Lemma 9.2. Also the optimal state process
Xξ ,T starting from any initial condition X0 is the unique solution of the stochastic differential
equation (9.2) with vξ ,T

x replacing vξ
x , i.e.,

dXξ ,T
t = − vξ ,T

x (t, Xξ ,T
t ) dt + σdBt , (A.2)

Definition A.1. A flow of probability measures µ := (µt)t∈[0,T] is a solution of the finite
horizon Kuramoto mean field game with initial data µ0, if and only the solution of (A.2) with
L(X0) = µ0 satisfies L(Xt) = µt for all t ∈ [0, T].

As in Lemma 9.1 to prove the existence of a solution to the finite horizon Kuramoto mean
field game, it suffices construct a fixed point of κT (·; T, µ0), where

T (·; T, µ0) : ξ ∈ CT,κ #→ T (ξ ; T, µ0) := (E[cos(Xξ ,T
t )], E[sin(Xξ ,T

t )])t∈[0,T].

A.2. A convergence result

In this subsection, we consider the stochastic optimal control problem (A.1) with a running
cost ℓξ given by (5.2) and with both finite and infinite T. It is classical that the value
function vT,ξ of (A.1) or v∞,ξ := vξ of (5.3) are smooth, classical solutions of the dynamic
programming equation (9.1). The main result of this subsection is the following convergence
result that is used repeatedly in our forthcoming arguments.

Lemma A.2. For T ≤ ∞, suppose that Tn converges to T and a sequence ξn ∈ CTn,κ converges
locally uniformly to ξ∗ ∈ CT,κ . Then, vn := vξn,Tn and vn

x converge locally uniformly to v∗ :=
vT,ξ∗ and to v∗

x, respectively.

Proof Convergence of the value function follows directly from the definitions. Also we have
argued earlier that vξ ,T

x (t, x)| ≤ ∥ξ∥∞/β . In particular, vn
x is uniformly bounded.

Set wn := vn
xx and ℓn := ℓξn . The dynamic programming equation (9.1) implies that wn

satisfies the linear parabolic equation

−wn
t (t, x) + βwn(t, x) − σ 2

2
wn

xx(t, x) + wn
x(t, x) vn

x(t, x) = (ℓn)xx(t, x) − (wn(t, x))2,

with wn(T, ·) ≡ 0 when T < ∞. Since |ξn| ≤ κ , we have (ℓn)xx(t, x) ≤ κ . Therefore,
Feynman-Kac implies that

wn(t, x) = vn
xx(t, x) ≤ κ

β
, ∀ t ∈ [0, T], x ∈ T.

Therefore, v̄n(t, x) := vn(t, x) − κ
2β x2 is concave. Consider a sequence (tn, xn) converging to

(t0, x0) and set pn := vn
x(tn, xn) − (κ/β)xn. Then, pn = v̄n

x(tn, xn) and since v̄n is concave, we
have

v̄n(tn, y) ≤ v̄n(tn, xn) + pn(y − xn), ∀ y ∈ R.
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Since as argued before vn
x is uniformly bounded, pn converges to p∗ on a subsequence. Set

v̄∗(t, x) := v∗(t, x) − κ
2β x2 and let n tend to infinity, to conclude that

v̄∗(t0, y) ≤ v̄∗(t0, x0) + p∗(y − x0), ∀ y ∈ R.

As v̄∗ is concave and differentiable, the above inequality implies that p∗ = v∗
x(t0, x0), proving

the local uniform convergence of vn
x to v∗

x .

A.3. Finite horizon solution

Fix T > 0 and for ξ ∈ CT,κ , let Xξ ,T be as in (A.2), and set

Aξ ,T
t := E[cos(Xξ ,T

t )], Bξ ,T
t := E[sin(Xξ ,T

t )], t ∈ [0, T].

Lemma A.3. There exists a constant c∗ depending only on β , σ , κ such that

|Aξ ,T
s − Aξ ,T

t | + |Bξ ,T
s − Bξ ,T

t | ≤ c∗(s − t), ∀ ξ ∈ CT,κ , 0 ≤ t ≤ s ≤ T.

Proof Using Ito’s formula as in the proof of Lemma 9.3 we arrive at the following estimate:

Aξ ,T
s = e−σ 2

2 (s−t) Aξ ,T
t +

∫ s

t
e−σ 2

2 (u−t) E[vξ ,T
x (u, Xξ ,T

u ) sin(Xξ ,T
u )]du.

Since vξ ,T
x (x, t)| ≤ ∥ξ∥∞/β and ∥ξ∥∞ ≤ κ for every ξ ∈ CT,κ , we conclude that A is

uniformly Lipschitz. The statement for B is proved exactly the same way.

We have shown that κT (·; T, µ0) maps CT,κ into itself, and by Arzelà–Ascoli, the above
uniform Lipschitz estimate implies that it is a compact map.

Lemma A.4. For every T < ∞, interaction parameter κ , and µ0, there are solutions to the
finite horizon Kuramoto mean field game.

Proof We first prove that T (·; T, µ0) is continuous on CT,κ . Suppose that a sequence ξn ∈
CT,κ converges uniformly to ξ∗. Let vn := vξn,T be the value function defined in (A.1), and
set v∗ := vξ∗,T . Since T < ∞, by Lemma A.2, vn, vn

x converge uniformly to v∗, v∗
x . Let Xn

be the solution of (9.2) with vn
x and X∗ be the solution with v∗

x . Since vn
x converges to v∗

x
uniformly, we conclude that Xn

t converges to X∗
t in L1 for every t ∈ [0, T]. Consequently,

E[cos(Xn
t ), sin(Xn

t )] converges to E[cos(X∗
t ), sin(X∗

t )] for every t ∈ [0, T], and this implies
the continuity of T .

Summarizing, we have shown that κT (·; T, µ0) is a continuous, compact operator mapping
CT,κ into itself. Therefore, we can apply the Schauder fixed point theorem to conclude that
κT (·; T, µ0) has a fixed point. Then, the finite horizon version of Lemma 9.1 implies that
there are solutions to the finite horizon Kuramoto mean field game.

A.4. Proof of Lemma 4.5

Let N be the set of all positive integers. We represent subsequences by strictly increasing
functions of N into itself. Fix κ and for m ∈ N, set

Cm := C(m, κ) = {ξ : [0, m] #→ R2 : ∥ξ∥∞ ≤ κ}.
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Let µm = (µm
t )t∈[0,m] be a solution of the Kuramoto mean field game with horizon m, and

ξm := ξ(µm) ∈ Cm be as in (9.4). By Lemma A.3 they are uniformly Lipschitz continuous,
and by their definition, are bounded by κ . We now use the diagonal argument to construct a
locally convergent subsequence. Set M0(n) = n for every n ∈ N. For m ∈ N we recursively
construct subsequences Nm, Mm : N #→ N as follows. Suppose that Mm is constructed so that
Mm(1) ≥ m, and the sequence of functions

(ξMm(n))n∈N = (ξMm(1), ξMm(2), . . .) ⊂ Cm

is uniformly convergent to a function ξm,∗ ∈ Cm. If n ≥ 2,

Mm(n) ≥ Mm(2) ≥ Mm(1) + 1 ≥ m + 1.

Hence, (ξMm(n))n=2,3, are all in Cm+1. Moreover, they are uniformly Lipschitz continuous on
[0, m + 1]. By Arzelà–Ascoli there exists an increasing function Nm : N #→ {2, 3, . . .} such
that with

Mm+1(n) := Mm(Nm(n)), n ∈ N,

the sequence of functions (ξMm+1(n))n∈N = (ξMm+1(1), ξMm+1(2), . . .) ⊂ Cm+1 is uniformly
convergent to a function ξm+1,∗ ∈ Cm+1. Moreover, Mm+1(1) = Mm(Nm(1)) ≥ Mm(2) ≥
Mm(1) + 1 ≥ m + 1. Hence, we can repeat the process to construct Mm, Nm as claimed. It is
also clear that the limit functions satisfy the consistency condition

m ≤ m′ ⇒ ξm,∗
t = ξm′,∗

t , ∀ t ∈ [0, m].
Then, the function ξ∗

t := ξm,∗
t when t ∈ [0, m], is a well-defined and is in C. Notice that by

construction, {Mm′(n) : n ∈ N} ⊂ {Mm(n) : n ∈ N}, for every m ≤ m′.
Finally, for n ∈ N, set K(n) := Mn(n). Then, (K(n))n≥m ⊂ (Mm(n′))n′∈N for every m ∈ N,

i.e., K after the index m is a subsequence of Mm. Therefore,

lim
n→∞ ξ

K(n)
t = lim

n→∞ ξ
Mm(n)
t = ξm,∗

t = ξ∗
t , ∀ t ∈ [0, m].

Moreover, this convergence is uniform. Hence, as n tends to infinity the sequence of functions
ξK(n) converge to ξ∗ uniformly on every [0, m]. Set ℓm(t, x) := ℓξK(m) , ℓ∗ := ℓξ∗ , vm :=
vξK(m),m, and v∗ := vξ∗ . Note that vξ∗ is also equal to v∞,ξ∗ . Then, by Lemma A.2, vm, vm

x , ℓm
converge locally uniformly to v∗, v∗

x , and respectively ℓ∗. As before, let Xm be given by (9.2)
with vm

x , and X∗ be the solution of (9.2) with v∗
x . Then, Xm is the optimal state process for vm

and X∗ for v∗. Also, for every t ≥ 0, Xm
t converges to X∗

t almost surely. As ξm is a fixed point
of T (·; Tm, µ0), we have

κ E[cos(X∗
t ), sin(X∗

t )] = lim
m→∞ κ E[cos(Xm

t ), sin(Xm
t )] = lim

n→∞ ξm
t = ξ∗

t .

Hence, ξ is a fixed point of the map κT (·; µ0). By Lemma 9.1, the probability flow (L(X∗
t ))t≥0

is a solution of the Kuramoto mean field game starting from the distribution µ0.

B. A comparison result

We provide the proof of the comparison result for (8.5) which essentially follows from
standard techniques. The fact that the forcing term in the equation vanishes at the boundary
does not allow us to find an immediate reference in the literature.
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Lemma B.1 (Comparison lemma). Suppose that continuous functions w and u are a viscosity
sub and respectively super-solution of (8.5), and satisfy the boundary conditions:

w(0) = u(0) = w(2π) = u(2π) = 0.

Then, w ≤ u on [0, 2π].

Proof Towards a counter-position, we assume that max[0,2π][w − u] =: c1 > 0. For small
constants δ, ϵ > 0, set

7δ,ϵ(x, y) := (1 − δ)w(x) − u(y) − 1
2ϵ

|x − y|2, x, y ∈ [0, 2π].

Choose x∗
δ,ϵ , y∗

δ,ϵ ∈ [0, 2π] satisfying max[0,2π] 7δ,ϵ = 7δ,ϵ(x∗
δ,ϵ , y∗

δ,ϵ). Followings are
elementary consequences.

1. Clearly, we have 7δ,ϵ(x∗
δ,ϵ , y∗

δ,ϵ) ≤ ∥w∥∞ + ∥u∥∞. Also, using that 7δ,ϵ(x∗
δ,ϵ , x∗

δ,ϵ) +
7δ,ϵ(y∗

δ,ϵ , y∗
δ,ϵ) ≤ 27δ,ϵ(x∗

δ,ϵ , y∗
δ,ϵ), we have:

|x∗
δ,ϵ − y∗

δ,ϵ |2 ≤ 2ϵ(∥w∥∞ + ∥u∥∞).

2. Let x∗
δ , y∗

δ be any limit point of x∗
δ,ϵ , y∗

δ,ϵ as ϵ ↓ 0. By the above step, x∗
δ = y∗

δ .
3. By definitions (1 − δ)w(x) − u(x) = 7δ,ϵ(x, x) ≤ 7δ,ϵ(x∗

δ,ϵ , y∗
δ,ϵ) ≤ w(x∗

δ,ϵ) − u(y∗
δ,ϵ) for

any x. We use a limit argument to conclude that (1 − δ)w(x) − u(x) ≤ w(x∗
δ ) − u(y∗

δ ).
4. Let x∗ be any limit point of x∗

δ as δ ↓ 0. Then, for any x,

w(x) − u(x) = lim
δ↓0

(1 − δ)w(x) − u(x) ≤ lim inf
δ↓0

(1 − δ)w(x∗
δ ) − u(x∗

δ )

= ŵ(x∗) − u(x∗).

Thus, w(x∗) − u(x∗) = max[0,2π][w − u] =: c1 > 0.
5. Since w, u are continuous and (w − u)(0) = (w − u)(2π) = 0, there exists ϵ0, a ∈ (0, π/2)

such that for every δ, ϵ ∈ (0, ϵ0],
x∗
δ,ϵ , y∗

δ,ϵ ∈ (a, 2π − a), ⇒ sin2(x∗
δ,ϵ/2), sin2(y∗

δ,ϵ/2) ≥ sin2(a/2). (B.1)

We now proceed as in the usual comparison proof in the theory of viscosity solutions which
we provide for completeness. We first observe that x ∈ [0, 2π] #→ 7δ,ϵ(·, y∗

δ,ϵ) is maximized
at x∗

δ,ϵ . Hence,

x∗
δ,ϵ ∈ argmax[0,2π] [w − 1

(1 − δ)
ϕ], where ϕ(x) := 1

2ϵ
|x − y∗

δ,ϵ |2.

Since w is a viscosity subsolution of (8.5), the following inequality holds,

1
2(1 − δ)2 |pδ,ϵ |2 ≤ 2 sin2(x∗

δ,ϵ/2), where pδ,ϵ = ∇ϕ(x∗
δ,ϵ) =

x∗
δ,ϵ − y∗

δ,ϵ
ϵ

. (B.2)

Proceeding almost exactly as above and using the fact that u is a viscosity supersolution,
we arrive at the following inequality,

1
2

|pδ,ϵ |2 ≥ 2 sin2(y∗
δ,ϵ/2) ≥ 2 sin2(a/2) > 0, (B.3)
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where the final inequality follows from (B.1). We now subtract the above inequality from
(B.2). The result is the following,

1
2
(pδ,ϵ)

2((1 − δ)−2 − 1) ≤ 2[sin2(x∗
δ,ϵ/2) − sin2(y∗

δ,ϵ/2)].

We let ϵ ↓ 0 while keeping δ fixed. Then by Step 2, |x∗
δ,ϵ − y∗

δ,ϵ | converges to zero. Hence,

lim sup
ϵ↓0

1
2
(pδ,ϵ)

2 ≤ 0.

This is contradiction with (B.3).
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