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Equation and Order parameter

Kuramoto considered a population of N coupled phase oscillators θkt having natural frequencies ωk

distributed with a given density, and whose dynamics are governed by

d

dt
θkt = ωk +

κ

N

N∑
j=1

sin(θjt − θkt ), k = 1, . . . ,N.

The following complex order parameter simplifies the equation :

rt e
i ψt :=

1

N

N∑
j=1

e i θ
j
t . ⇒ rt sin(ψt − θkt ) =

1

N

N∑
j=1

sin(θjt − θkt ).

Hence, the equation has the form :

d

dt
θkt = ωk + κ rt sin(ψt − θkt ). k = 1, . . . ,N.
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Synchronization and incoherence

Quoting : From Kuramoto to Crawford : exploring the onset of synchronization in populations of

coupled oscillators by S. H. Strogatz (Pysica D, 2000).

d

dt
θkt = ωk + κ rt sin(ψt − θkt ). k = 1, . . . ,N.

In this form, the mean-field character of the model becomes obvious. Each oscillator is interacting only

through the mean-field quantities rt and ψt . Specifically, the phase θkt is pulled toward the mean phase

ψt , rather than toward the phase of any individual oscillator. Moreover, the effective strength of the

coupling is proportional to the coherence rt . This proportionality sets up a positive feedback loop

between coupling and coherence : as the population becomes more coherent, rt grows and so the

effective coupling κ rt increases, which tends to recruit even more oscillators into the synchronized pack.
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Critical κ

There exists a critical threshold κ̂c (depending on the distribution of ωi s) such that :

I For all κ < κ̂c , the oscillators behave as if they are uncoupled. The phases become uniformly

distributed and the coherence rt decays like 1/
√
N.

I For all κ > κ̂c , the incoherent state becomes unstable and rt grows to an eventual level r∞ < 1. In

the partially synchronized state, most oscillators co-rotate with the average phase ψt .

I As κ ↑ ∞, synchronization increases and r∞ gets closer to 1.

A good review of these results can be found in the 2000 paper of S. H. Strogatz and also in,

The Kuramoto model : A simple paradigm for synchronization phenomena

by Acebrón, Bonilla, Pérez, Ritort, Spigler (Review of modern physics, 2005).
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Empirical Measure and Continuum limit

Given the phase θk , the empirical measure µN
t is defined by,

µN
t =

1

N

N∑
j=1

δ{θjt}
⇒ 1

N

N∑
j=1

sin(θjt − θkt ) =

∫
sin(y − θkt )µN

t (dy).

If we add a common Brownian motion Bt , the equation becomes,

dθkt = ωk dt + κ

∫
sin(y − θkt )µN

t (dy)dt + σdBt , k = 1, . . . ,N.

As N tends to infinity, if all oscillators are identical, one expects µN
t to converge to the law of the

representative oscillator Xt . And we expect Xt to satisfy the following McKean-Vlasov equation,

dXt = ω dt + κ

∫
sin(y − Xt)µt(dy)dt + σdBt ,

where µt = Law(Xt), and ω is drawn from the common law of ωk ’s.
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Applications

Kuramoto was motivated by the phenomenon of collective synchronization as studied by Winfree.

Biological examples include :

I Networks of pacemaker cells in the heart : Peskin (1975), Michaels, Matyas, Jalife (1987) ;

I Circadian pacemaker cells in the suprachiasmatic nucleus of the brain : Liu, Weaver, Strogatz,

Reppert (1997) ;

I Metabolic synchrony in yeast cell suspensions : Aldridge, Pye (1976) ;

I Congregations of synchronously flashing fireflies : Buck (1988).

There are also many examples in physics and engineering including

I Arrays of lasers : Yu et. al (1995) ;

I Microwave oscillator ; York, Compton (1991) ;

I Josephson junctions in superconducting : Wiesenfeld, Colet, Strogatz (1998).
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Optimization versus dynamics

I We treat the system of oscillators as a particle system.

I Instead of positing the dynamics of the particles, we let the individual particles determine

endogenously their behaviors by minimizing a cost functional and hopefully, settling in a Nash

equilibrium.

I Once the search for equilibrium is recast in this way, equilibria are given by solutions of nonlinear

forward-backward systems.

I They are characterized by a backward Hamilton-Jacobi-Bellman (HJB) equation coupled to a

forward Fokker-Planck-Kolmogorov (FPK) equation, and in the probabilistic approach, by

forward-backward stochastic differential equations.

Jeux à champ moyen, Lasry and Lions, 2006, 2007

Large population stochastic dynamic games, Huang, Malhamé, Caines, 2006.
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Finite Model

I There are N many oscillators.

I θkt is the phase of the k-th oscillator for k ∈ {1, . . . ,N}, and set θt = (θkt )k=1,...,N .

I Each follow

dθkt = αk
t dt + σdBk

t , (before it was dXt = κ

∫
sin(y − Xt)µt(dy)dt + σdBt),

where ωk ’s are set to zero, Bk
t are independent Brownian motions and the adapted

processes α := (αk
t )t≥0 are the controls exerted by the individual oscillators.

I Controls are chosen in order to simultaneously minimize their costs given by

α 7→ Jk(α) := E
∫ ∞
0

e−βt [κ L(θkt ,θt) + 1
2
(αk

t )2] dt.

I We look for a Nash equilibrium.

I L(θkt ,θt) is the interaction cost that is specified in the next slight.

I Constant κ ≥ 0 models the strength of the interactions between the oscillators.
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Interaction term

Recall that Kuramoto equation is

d

dt
θkt = ωk + κ

∫
sin(y − θkt )µN

t (dy)

We set ωk = 0. Then, the trigonometric identity 2 sin2(x/2) = 1− cos(x), implies that,∫
sin(y − x)µN

t (dy) = − d

dx

∫
[1− cos(y − x)]µN

t (dy) = − 2
d

dx

∫
sin2((y − x)/2)µN

t (dy).

So formally the Kuramoto equation is the gradient flow of the ‘energy’

L(θkt ,θt) := 2

∫
sin2((θkt − y)/2) µN

t (dy).

Synchronization of coupled oscillators is a game, by Yin, Mehta, Meyn, Shanbhag, IEEE (2011).
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Formal considerations

Recall that

I L(θkt ,θt) := 2
∫

sin2((θkt − y)/2) µN
t (dy), and dθkt = αk

t dt + σdBk
t .

I The problem is to minimize α 7→ Jk(α) := E
∫∞
0

e−βt [κ L(θkt ,θt) + 1
2
(αk

t )2] dt.

So as N tends to infinity :

I θkt ’s become statically more similar and the ‘representative’ oscillator Xt follows dXt = αt + σdBt .

I µN
t converges to the law of the representative oscillator Xt .

I Then, L(θkt ,θt) converges to L(Xt , µt) = 2
∫

sin2((Xt − y)/2) µt(dy), where µt = Law(Xt).

I The problem is to minimize α 7→ J(α) := E
∫∞
0

e−βt [κ L(Xt , µt) + 1
2
(αt)

2] dt, where

dXt = αtdt + σdBt and µt = Law(Xt).
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Mean Field Limit

As µN
t should converge to the law of the representative oscillator Xt , the mean field limit of the Nash

equilibrium problem with initial distribution µ is summarized as follows,

1. Start with a deterministic flow of probability measures µ = (µt)t≥0 with µ0 = µ.

2. Find the optimal control α∗,µ = (α∗,µt )t≥0 minimizing,

α = (αt)t≥0 7→ J(α ; µ) := E
∫ ∞
0

e−βt [κ L(Xα
t , µt) + 1

2
(αt)

2] dt,

where dXα
t = αtdt + σdBt , Law(X0) = µ0, and L(x , µ) := 2

∫ π
−π sin2((x − y)/2) µ(dy).

3. Find the fixed point µt = Law(Xα∗,µ
t ).
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Solutions of the KMFG

I We say that a flow of probability measures µ = (µt)t≥0 is a solution of the KMFG, if it solves the

fixed-point problem described above.

I We say that a probability measure µ is a stationary solution of the KMFG, if µt ≡ µ is a solution.

The following is a simple but useful fact follows from the symmetry of the problem.

For a probability measure µ and z ∈ R, translated measure µ(· ; z) is given by,

µ(B ; z) = µ({y : y + z ∈ B}).

If a probability measure µ is a stationary solution of the KMFG,

then all translated measures µ(· ; z) are also solutions.
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Interaction Term

We first note that for a given probability measure µ,

L(x , µ) = 2

∫ π

−π
sin2((x − y)/2) µ(dy)

=

∫ π

−π
[1− cos(x − y)] µ(dy)

= 1−
∫ π

−π
[cos(x) cos(y) + sin(x) sin(y)] µ(dy)

= 1−µ(cos)cos(x)−µ(sin)sin(x),

where

µ(cos) =

∫ π

−π
cos(y) µ(dy), µ(sin) =

∫ π

−π
sin(y) µ(dy).
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Incoherent State

Let U be the uniform measure on the circle. Then,

L(x ,U) = 1− U(cos) cos(x)− U(sin) sin(x) ≡ 1.

Then, the control problem corresponding to the stationary flow U is

minimize α = (αt)t≥0 7→ J(α ; U) := E
∫ ∞
0

e−βt [κ+ 1
2
(αt)

2] dt.

Cleary the optimal solution is α∗ ≡ 0, and the optimal state is dX ∗t = 0 dt + σdBt . Hence,

X ∗t = X ∗0 + σBt and as Law(X ∗0 ) = U, we have Law(X ∗t ) = U as well. Hence,

The uniform measure U is a stationary solution of the KMFG for every parameter.
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Reformulation

The influence of the given flow of probability measures µ = (µt)t≥0 on the control problem is through

L(·, µt). The algebraic calculation before indicates only t ∈ [0,∞) 7→ κ(µt(cos) , µt(sin)) =: (at , bt) is

relevant. Hence, we look for a fixed point of the map

µ 7→ (at , bt) 7→ X ∗,µ 7→ µ∗ 7→ κ(E[cos(X ∗,µt )],E[sin(X ∗,µt )]),

where X ∗t is the optimal process with running cost `(x) = −κ(at cos(x) + bt sin(x)).

Theorem

Probability flow µ = (µt)t≥0 is a solution of the Kuramoto mean field game if and only if

µt(cos) = E[cos(X ∗,µt )], and µt(sin) = E[sin(X ∗,µt )], ∀t ≥ 0.
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Incoherence : sub-critical

Critical interaction parameter is κc := βσ2 + σ4/2.

Theorem (Sub-critical interaction : incoherence)

For κ < κc , there exist a positive constant ρ > 0 depending on β, σ, κ such that for any µ0 satisfying

d(µ0 − U) ≤ ρ, there exists a solution µ = (µt)t≥0 of the Kuramoto mean field game with interaction

parameter κ with µ0 = ν and µt converges in law to the uniform distribution as t tends to infinity.

Hence, the uniform measure is locally stable.

Proof constructs a fixed point of the map

(at , bt) 7→ X ∗,µ 7→ κ(E[cos(X ∗,µt )],E[sin(X ∗,µt )]),

so that (at , bt) converges to zero exponentially, and the distance d(µ0 − U) above is given by the

action of µ0 − U on five trigonometric functions.
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Illustration : sub-critical

We numerically compute the solutions of the Kuramoto mean field game with β = 1
2
, σ = 1 with

critical value κc = 1. We consider κ = 0.8 < κc with initial condition v(dx) = Ce− sin(x)dx . Below

solution illustrates the convergence of the solution to the uniform distribution.
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Illustration : supercritical

Again β = 1
2
, σ = 1 with critical value κc = 1. Now we consider κ = 2 > κc with initial distribution

that has two clusters around π/2 and 3π/2. As seen below two clusters quickly merge and the solution

converges towards a non-uniform invariant probability measure.
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Synchronization : super-critical

Theorem (Super-critical interaction : synchronization)

For κ > κc , there exists a non-trivial stationary solutions of the KMFG.

Proof. Suppose µ is a stationary solution. As all translations of µ are again a solution, by translating

we may assume that µ(sin) = 0 and set γ := µ(cos).

So we consider the control problem with the cost function κ− γ cos(x). Let µγ be the corresponding

stationary measure of the optimal state process.

Set Fκ(γ) :=
∫

cos(y) µγ(dy). Then, there is a solution if and only if κ = Fκ(γ).

We compute that F ′(0) = κ/κc . In particular, F ′(0) > 1 when κ > κc .

As Fκ(γ) ≤ κ, this implies the existence a fixed-point.

It is important that the critical value κc is same in both proofs.
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Full synchronization

Lemma (Strong interaction : Full synchronization)

Let µn be a sequence of non-trivial stationary measures of the Kuramoto mean-field game with

interaction parameters κn tending to infinity. Then, there exists a sequence zn such that the translated

stationary measures µn(· ; zn) converge in law to the Dirac measure δ{0}.

Proof. We use viscosity solutions to study the dynamic programming equation :

βvγ(x)− σ2

2
vγxx(x) +

1

2
(vγx (x))2 = −γ cos(x).

Suppose γ ↑ ∞ and set wγ :=
√
γ [vγ + γ/β. Then, wγ solves,

βγw
γ(z)−

σ2
γ

2
wγ

xx(z) +
1

2
(wγ

x (z))2 = 1− cos(z),

with βγ , σγ → 0. The limit Eikonal equation wx(z)2/2 = 1− cos(z) has an explicit solution.
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An Application : Jet Lag Recovery



Circadian rhythm

I Circadian rhythm is the oscillatory behavior of biological processes with a period close to 24 hours.

I Examples of circadian rhythms in animals include sleep/wake patterns, eating schedules, bodily

temperatures, hormone production, and brain activity.

I These oscillations can be entrained to the 24 hour cycle of sunlight exposure.

I Abrupt disruptions, such as when an individual travels across time zones, results in jet lag.

I A region in the brain called Suprachiasmatic Nucleus (SCN) controls circadian rhythms.

I It contains on the order of 10, 000 neuronal oscillator cells,

I Each of these cells has a preferred frequency of slightly longer than 24 hours.
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Original Kuramoto approach

The following modification of the Kuramoto model is proposed for jet lag for SCN oscillators :

d

dt
θkt = ωk + F sin(ωst + p(t)− θkt ) +

κ

N

N∑
j=1

sin(θjt − θkt ), k = 1, . . . ,N,

I ωs = 2π/24 is the frequency of the external drive (which is sunlight),

I F is the strength of the external drive,

I p(t) is a phase shift accounting for the time zone angle at time t.

I p(t) = p is used for an individual that stays in their time zone forever,

I whereas p(t) increases for eastward travel and decreases for westward travel.

Resynchronization of circadian oscillators and the east-west asymmetry of jet-lag,

by Lu, Cardena, Lee, Antonsen, Girvan, Ott, (2016).
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Jet Lag

I Suppose that one is a one time zone corresponding to a shift p1 until time τ and moves to p2.

I Then, the forcing function is given by,

p(t) =

p1 if t ≤ τ,

p2 if t > τ.

I If κ, F , τ are large, the oscillators synchronize around p1 with a period close to 24 hours. Then, at

time τ abrupt disruption occurs and the oscillators gradually shift the phase to p2.

I The paper studies the relaxation time of the transition and numerically finds larger recovery time for

eastward travel.
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Mean Field approach

I The interaction cost, has an extra term :

L(θkt ,θt) = `(θkt , µ
N
t ) + csun(t, p(t), θkt ),

I where the first term is interaction between oscillators

`(θkt , µ
N
t ) = 2

1

N

∑
j 6=i

sin2
(

(θkt − θjt)/2
)

= 2

∫ π

−π
sin2

(
(θkt − θ)/2

)
µN
t (dθ),

the empirical function µN
t is as before.

I the second term is the interaction with the external drive

csun(t, p(t), θkt ) = 2 sin2
(

(ωst + p(t)− θkt )/2
)
,

function p(t), ωs as in the previous model.

Jet Lag Recovery : Synchronization of Circadian Oscillators as a Mean Field Game,

Carmona, Graves, (2020).
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Concluding

I Mean Field formalism have exactly the same solution structure as the dynamical system approach.

I As the uniform solutions are the desynchronized states, our results indicate a bifurcation from

inhorence to self-organization at κc , and then convergence to full synchronization for very large

interaction parameters.

THANK YOU FOR YOUR ATTENTION.

Joint with Rene Carmona and Quentin Cormier of Princeton
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