Synchronization in a Kuramoto Mean Field Game

H. Mete Soner, ORFE, Princeton

joint work with Rene Carmona, Princeton Quentin Cormier, INRIA

Illinois Institute of Technology Applied Math Colloquium November 14, 2022

Dynamical System

Kuramoto 1975

Bifurcation

Mean Field Approach

General Approach

Kuramoto mean field game (KMFG)

Synchronization in Mean Field

An Application : Jet Lag Recovery

DYNAMICAL SYSTEM

Dynamical System

Kuramoto 1975

Bifurcation

Mean Field Approach

General Approach

Kuramoto mean field game (KMFG)

Synchronization in Mean Field

An Application : Jet Lag Recovery

<u>SELF-ENTRAINMENT OF A POPULATION OF</u> <u>COUPLED NON-LINEAR OSCILLATORS</u> Yoshiki Kuramoto Department of Physics, Kyushu University, Fukuoka, Japan

Temporal organization of matter is a widespread phenomenon over a macroscopic world in far from thermodynamic equilibrium. A previous study on chemical instability¹ implies that a simplest nontrivial model for a temporally organized system may be represented by a macroscopic self-sustained oscillator Q obeying the equation of motion

$$\dot{\mathbf{Q}} = (\mathbf{i}_{\omega} + \alpha)\mathbf{Q} - \beta |\mathbf{Q}|^{2}\mathbf{Q} , \qquad (1)$$

$$\alpha, \beta > 0.$$

Consider a population of such oscillators Q_1 , Q_2 ,... Q_N with various frequencies, and introduce interactions between every pair as follows.

$$\begin{split} \hat{\mathbf{Q}}_{\mathrm{S}} &= \left(\mathrm{i}\omega_{\mathrm{S}} + \alpha\right)\mathbf{Q}_{\mathrm{S}} + \sum_{\mathbf{r}\neq\mathbf{S}} \mathbf{v}_{\mathbf{r}\mathrm{S}}\mathbf{Q}_{\mathbf{r}} - \beta \left|\mathbf{Q}_{\mathrm{S}}\right|^{2}\mathbf{Q}_{\mathrm{S}}, \\ \mathbf{r}, \mathbf{s} &= 1, 2, \dots N \end{split}$$

$$(2)$$

We found that it is possible to construct from (2) a soluble model for a community exhibiting mutual synchronization or self-entrainment above a certain threshold value of the coupling strength. Such a type of phase transition has been considered by Winfree²⁾ without resorting to specialized models but only phenomenologically. Kuramoto considered a population of N coupled phase oscillators θ_t^k having natural frequencies ω^k distributed with a given density, and whose dynamics are governed by

$$rac{\mathrm{d}}{\mathrm{d}t} heta_t^k = \omega^k + rac{\kappa}{N}\sum_{j=1}^N \sin(heta_t^j - heta_t^k), \qquad k = 1, \dots, N.$$

The following complex order parameter simplifies the equation :

$$r_t e^{i \psi_t} := rac{1}{N} \sum_{j=1}^N e^{i \theta_t^j}$$
, \Rightarrow $r_t \sin(\psi_t - \theta_t^k) = rac{1}{N} \sum_{j=1}^N \sin(\theta_t^j - \theta_t^k)$.

Hence, the equation has the form :

$$\frac{\mathrm{d}}{\mathrm{d}t}\theta_t^k = \omega^k + \kappa \, r_t \, \sin(\psi_t - \theta_t^k), \qquad k = 1, \dots, N.$$

Quoting : From Kuramoto to Crawford : exploring the onset of synchronization in populations of coupled oscillators by S. H. Strogatz (Pysica D, 2000).

$$\frac{\mathrm{d}}{\mathrm{d}t}\theta_t^k = \omega^k + \kappa r_t \sin(\psi_t - \theta_t^k), \qquad k = 1, \ldots, N.$$

In this form, the mean-field character of the model becomes obvious. Each oscillator is interacting only through the mean-field quantities r_t and ψ_t . Specifically, the phase θ_t^k is pulled toward the mean phase ψ_t , rather than toward the phase of any individual oscillator. Moreover, the effective strength of the coupling is proportional to the coherence r_t . This proportionality sets up a positive feedback loop between coupling and coherence : as the population becomes more coherent, r_t grows and so the effective coupling κr_t increases, which tends to recruit even more oscillators into the synchronized pack.

Dynamical System

Kuramoto 1975

Bifurcation

Mean Field Approach

General Approach

Kuramoto mean field game (KMFG)

Synchronization in Mean Field

An Application : Jet Lag Recovery

There exists a critical threshold $\hat{\kappa}_c$ (depending on the distribution of ω^i s) such that :

- For all $\kappa < \hat{\kappa}_c$, the oscillators behave as if they are uncoupled. The phases become uniformly distributed and the coherence r_t decays like $1/\sqrt{N}$.
- For all κ > κ̂_c, the incoherent state becomes unstable and r_t grows to an eventual level r_∞ < 1. In the partially synchronized state, most oscillators co-rotate with the average phase ψ_t.
- ▶ As $\kappa \uparrow \infty$, synchronization increases and r_{∞} gets closer to 1.

A good review of these results can be found in the 2000 paper of S. H. Strogatz and also in, The Kuramoto model : A simple paradigm for synchronization phenomena by Acebrón, Bonilla, Pérez, Ritort, Spigler (Review of modern physics, 2005). Given the phase $\theta^k,$ the empirical measure μ^N_t is defined by,

$$\mu_t^N = rac{1}{N} \sum_{j=1}^N \, \delta_{\{ heta_t^j\}} \quad \Rightarrow \quad rac{1}{N} \sum_{j=1}^N \, \sin(heta_t^j - heta_t^k) = \int \, \sin(y - heta_t^k) \, \mu_t^N(\mathrm{d} y).$$

If we add a common Brownian motion B_t , the equation becomes,

$$\mathrm{d} heta_t^k = \omega^k \,\mathrm{d} t + \kappa \int \sin(y - heta_t^k) \,\mu_t^N(\mathrm{d} y) \,\mathrm{d} t + \sigma \mathrm{d} B_t, \qquad k = 1, \dots, N$$

As *N* tends to infinity, if all oscillators are identical, one expects μ_t^N to converge to the law of the representative oscillator X_t . And we expect X_t to satisfy the following McKean-Vlasov equation,

$$\mathrm{d}X_t = \omega\,\mathrm{d}t + \kappa\int\sin(y-X_t)\,\mu_t(\mathrm{d}y)\,\mathrm{d}t + \sigma\mathrm{d}B_t,$$

where $\mu_t = Law(X_t)$, and ω is drawn from the common law of ω^k 's.

Kuramoto was motivated by the phenomenon of collective synchronization as studied by Winfree. Biological examples include :

- Networks of pacemaker cells in the heart : Peskin (1975), Michaels, Matyas, Jalife (1987);
- Circadian pacemaker cells in the suprachiasmatic nucleus of the brain : Liu, Weaver, Strogatz, Reppert (1997);
- ▶ Metabolic synchrony in yeast cell suspensions : Aldridge, Pye (1976);
- ▶ Congregations of synchronously flashing fireflies : Buck (1988).

There are also many examples in physics and engineering including

- Arrays of lasers : Yu et. al (1995);
- Microwave oscillator; York, Compton (1991);
- ▶ Josephson junctions in superconducting : Wiesenfeld, Colet, Strogatz (1998).

Mean Field Approach

Dynamical System

Kuramoto 1975

Bifurcation

Mean Field Approach

General Approach

Kuramoto mean field game (KMFG)

Synchronization in Mean Field

An Application : Jet Lag Recovery

- ▶ We treat the system of oscillators as a particle system.
- Instead of positing the dynamics of the particles, we let the individual particles determine endogenously their behaviors by minimizing a cost functional and hopefully, settling in a Nash equilibrium.
- Once the search for equilibrium is recast in this way, equilibria are given by solutions of nonlinear forward-backward systems.
- ► They are characterized by a backward Hamilton-Jacobi-Bellman (HJB) equation coupled to a forward Fokker-Planck-Kolmogorov (FPK) equation, and in the probabilistic approach, by forward-backward stochastic differential equations.

Jeux à champ moyen, Lasry and Lions, 2006, 2007 Large population stochastic dynamic games, Huang, Malhamé, Caines, 2006.

- ▶ There are *N* many oscillators.
- ▶ θ_t^k is the phase of the *k*-th oscillator for $k \in \{1, ..., N\}$, and set $\theta_t = (\theta_t^k)_{k=1,...,N}$.
- Each follow

$$\mathrm{d} heta_t^k = lpha_t^k \mathrm{d}t + \sigma \mathrm{d}B_t^k, \hspace{0.2cm} (ext{before it was } \mathrm{d}X_t = \kappa \int \sin(y-X_t)\mu_t(\mathrm{d}y)\mathrm{d}t + \sigma \mathrm{d}B_t),$$

where ω^k 's are set to zero, B_t^k are independent Brownian motions and the adapted processes $\boldsymbol{\alpha} := (\alpha_t^k)_{t\geq 0}$ are the controls exerted by the individual oscillators.

- Controls are chosen in order to simultaneously minimize their costs given by

$$oldsymbol{lpha}\mapsto J^k(oldsymbol{lpha}):=\mathbb{E}\int_0^\infty e^{-eta t} \left[\kappa \ L(heta_t^k,oldsymbol{ heta}_t)+rac{1}{2}(lpha_t^k)^2
ight] \mathrm{d}t.$$

- ▶ We look for a Nash equilibrium.
- ▶ $L(\theta_t^k, \theta_t)$ is the interaction cost that is specified in the next slight.
- Constant $\kappa \geq 0$ models the strength of the interactions between the oscillators.

•

Recall that Kuramoto equation is

$$\frac{\mathrm{d}}{\mathrm{d}t} \,\,\theta_t^k = \omega^k \,+ \kappa \int \,\sin(y - \theta_t^k) \,\mu_t^N(\mathrm{d}y)$$

We set $\omega^k = 0$. Then, the trigonometric identity $2\sin^2(x/2) = 1 - \cos(x)$, implies that,

$$\int \sin(y-x)\,\mu_t^N(\mathrm{d} y) = -\frac{\mathrm{d}}{\mathrm{d} x}\,\int \left[1-\cos(y-x)\right]\mu_t^N(\mathrm{d} y) = -2\frac{\mathrm{d}}{\mathrm{d} x}\,\int\,\sin^2((y-x)/2)\,\mu_t^N(\mathrm{d} y).$$

So formally the Kuramoto equation is the gradient flow of the 'energy'

$$L(\theta_t^k, \theta_t) := 2 \int \sin^2((\theta_t^k - y)/2) \ \mu_t^N(\mathrm{d} y).$$

Synchronization of coupled oscillators is a game, by Yin, Mehta, Meyn, Shanbhag, IEEE (2011).

Dynamical System

Kuramoto 1975

Bifurcation

Mean Field Approach

General Approach

Kuramoto mean field game (KMFG)

Synchronization in Mean Field

An Application : Jet Lag Recovery

Recall that

- $L(\theta_t^k, \theta_t) := 2 \int \sin^2((\theta_t^k y)/2) \mu_t^N(\mathrm{d}y)$, and $\mathrm{d}\theta_t^k = \alpha_t^k \mathrm{d}t + \sigma \mathrm{d}B_t^k$.
- ▶ The problem is to minimize $\alpha \mapsto J^k(\alpha) := \mathbb{E} \int_0^\infty e^{-\beta t} \left[\kappa \ L(\theta_t^k, \theta_t) + \frac{1}{2} (\alpha_t^k)^2\right] \mathrm{d}t.$

So as *N* tends to infinity :

- θ_t^k 's become statically more similar and the 'representative' oscillator X_t follows $dX_t = \alpha_t + \sigma dB_t$.
- μ_t^N converges to the law of the representative oscillator X_t .
- ▶ Then, $L(\theta_t^k, \theta_t)$ converges to $L(X_t, \mu_t) = 2 \int \sin^2((X_t y)/2) \mu_t(dy)$, where $\mu_t = Law(X_t)$.
- ▶ The problem is to minimize $\alpha \mapsto J(\alpha) := \mathbb{E} \int_0^\infty e^{-\beta t} \left[\kappa L(X_t, \mu_t) + \frac{1}{2} (\alpha_t)^2\right] dt$, where $dX_t = \alpha_t dt + \sigma dB_t$ and $\mu_t = Law(X_t)$.

As μ_t^N should converge to the law of the representative oscillator X_t , the mean field limit of the Nash equilibrium problem with initial distribution μ is summarized as follows,

- 1. Start with a deterministic flow of probability measures $\mu = (\mu_t)_{t \ge 0}$ with $\mu_0 = \mu$.
- 2. Find the optimal control $\alpha^{*,\mu} = (\alpha_t^{*,\mu})_{t\geq 0}$ minimizing,

$$\boldsymbol{\alpha} = (\alpha_t)_{t\geq 0} \quad \mapsto \quad J(\boldsymbol{\alpha}; \ \boldsymbol{\mu}) := \mathbb{E} \int_0^\infty e^{-\beta t} \left[\kappa \ L(X_t^{\boldsymbol{\alpha}}, \mu_t) + \frac{1}{2} (\alpha_t)^2 \right] \, \mathrm{d}t,$$

where $dX_t^{\alpha} = \alpha_t dt + \sigma dB_t$, $Law(X_0) = \mu_0$, and $L(x, \mu) := 2 \int_{-\pi}^{\pi} \sin^2((x-y)/2) \mu(dy)$.

3. Find the fixed point $\mu_t = Law(X_t^{\alpha^{*,\mu}})$.

- We say that a flow of probability measures µ = (µ_t)_{t≥0} is a solution of the KMFG, if it solves the fixed-point problem described above.
- ▶ We say that a probability measure μ is a stationary solution of the KMFG, if $\mu_t \equiv \mu$ is a solution.

The following is a simple but useful fact follows from the symmetry of the problem.

For a probability measure μ and $z \in \mathbb{R}$, translated measure $\mu(\cdot; z)$ is given by,

$$\mu(B; z) = \mu(\{y : y + z \in B\}).$$

If a probability measure μ is a stationary solution of the KMFG, then all translated measures $\mu(\cdot; z)$ are also solutions. We first note that for a given probability measure μ ,

$$L(x,\mu) = 2 \int_{-\pi}^{\pi} \sin^2((x-y)/2) \ \mu(dy)$$

= $\int_{-\pi}^{\pi} [1 - \cos(x-y)] \ \mu(dy)$
= $1 - \int_{-\pi}^{\pi} [\cos(x)\cos(y) + \sin(x)\sin(y)] \ \mu(dy)$
= $1 - \mu(\cos)\cos(x) - \mu(\sin)\sin(x),$

where

$$\mu(\cos) = \int_{-\pi}^{\pi} \cos(y) \ \mu(\mathrm{d}y), \qquad \mu(\sin) = \int_{-\pi}^{\pi} \sin(y) \ \mu(\mathrm{d}y).$$

Let U be the uniform measure on the circle. Then,

$$L(x, U) = 1 - U(\cos)\cos(x) - U(\sin)\sin(x) \equiv 1.$$

Then, the control problem corresponding to the stationary flow U is

minimize
$$\boldsymbol{\alpha} = (\alpha_t)_{t\geq 0} \mapsto J(\boldsymbol{\alpha}; U) := \mathbb{E} \int_0^\infty e^{-\beta t} \left[\kappa + \frac{1}{2} (\alpha_t)^2\right] \mathrm{d}t.$$

Cleary the optimal solution is $\alpha^* \equiv 0$, and the optimal state is $dX_t^* = 0 dt + \sigma dB_t$. Hence, $X_t^* = X_0^* + \sigma B_t$ and as $Law(X_0^*) = U$, we have $Law(X_t^*) = U$ as well. Hence,

The uniform measure U is a stationary solution of the KMFG for every parameter.

The influence of the given flow of probability measures $\mu = (\mu_t)_{t\geq 0}$ on the control problem is through $L(\cdot, \mu_t)$. The algebraic calculation before indicates only $t \in [0, \infty) \mapsto \kappa(\mu_t(\cos), \mu_t(\sin)) =: (a_t, b_t)$ is relevant. Hence, we look for a fixed point of the map

 $\boldsymbol{\mu} \mapsto (a_t, b_t) \mapsto X^{*, \boldsymbol{\mu}} \mapsto \boldsymbol{\mu}^* \mapsto \kappa(\mathbb{E}[\cos(X_t^{*, \boldsymbol{\mu}})], \mathbb{E}[\sin(X_t^{*, \boldsymbol{\mu}})]),$

where X_t^* is the optimal process with running cost $\ell(x) = -\kappa(a_t \cos(x) + b_t \sin(x))$.

Theorem

Probability flow $\mu = (\mu_t)_{t \ge 0}$ is a solution of the Kuramoto mean field game if and only if

 $\mu_t(\cos) = \mathbb{E}[\cos(X_t^{*,\mu})], \quad and \quad \mu_t(\sin) = \mathbb{E}[\sin(X_t^{*,\mu})], \qquad \forall t \ge 0.$

Dynamical System

Kuramoto 1975

Bifurcation

Mean Field Approach

General Approach

Kuramoto mean field game (KMFG)

Synchronization in Mean Field

An Application : Jet Lag Recovery

Critical interaction parameter is $\kappa_c := \beta \sigma^2 + \sigma^4/2$.

Theorem (Sub-critical interaction : incoherence)

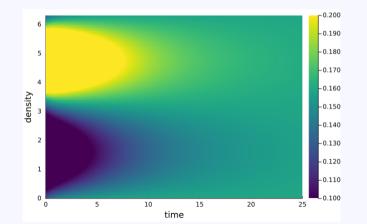
For $\kappa < \kappa_c$, there exist a positive constant $\rho > 0$ depending on β, σ, κ such that for any μ_0 satisfying $d(\mu_0 - U) \le \rho$, there exists a solution $\mu = (\mu_t)_{t \ge 0}$ of the Kuramoto mean field game with interaction parameter κ with $\mu_0 = \nu$ and μ_t converges in law to the uniform distribution as t tends to infinity. Hence, the uniform measure is locally stable.

Proof constructs a fixed point of the map

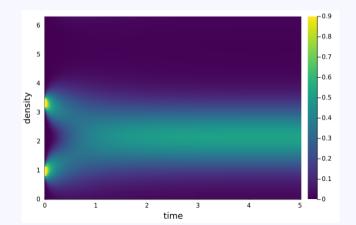
 $(a_t, b_t) \mapsto X^{*,\mu} \mapsto \kappa(\mathbb{E}[\cos(X_t^{*,\mu})], \mathbb{E}[\sin(X_t^{*,\mu})]),$

so that (a_t, b_t) converges to zero exponentially, and the distance $d(\mu_0 - U)$ above is given by the action of $\mu_0 - U$ on five trigonometric functions.

We numerically compute the solutions of the Kuramoto mean field game with $\beta = \frac{1}{2}$, $\sigma = 1$ with critical value $\kappa_c = 1$. We consider $\kappa = 0.8 < \kappa_c$ with initial condition $v(dx) = Ce^{-\sin(x)}dx$. Below solution illustrates the convergence of the solution to the uniform distribution.



Again $\beta = \frac{1}{2}$, $\sigma = 1$ with critical value $\kappa_c = 1$. Now we consider $\kappa = 2 > \kappa_c$ with initial distribution that has two clusters around $\pi/2$ and $3\pi/2$. As seen below two clusters quickly merge and the solution converges towards a non-uniform invariant probability measure.



Theorem (Super-critical interaction : synchronization)

For $\kappa > \kappa_c$, there exists a non-trivial stationary solutions of the KMFG.

Proof. Suppose μ is a stationary solution. As all translations of μ are again a solution, by translating we may assume that $\mu(\sin) = 0$ and set $\gamma := \mu(\cos)$.

So we consider the control problem with the cost function $\kappa - \gamma \cos(x)$. Let μ_{γ} be the corresponding stationary measure of the optimal state process.

Set $F_{\kappa}(\gamma) := \int \cos(y) \ \mu_{\gamma}(dy)$. Then, there is a solution if and only if $\kappa = F_{\kappa}(\gamma)$. We compute that $F'(0) = \kappa/\kappa_c$. In particular, F'(0) > 1 when $\kappa > \kappa_c$. As $F_{\kappa}(\gamma) \le \kappa$, this implies the existence a fixed-point.

It is important that the critical value κ_c is same in both proofs.

Lemma (Strong interaction : Full synchronization)

Let μ_n be a sequence of non-trivial stationary measures of the Kuramoto mean-field game with interaction parameters κ_n tending to infinity. Then, there exists a sequence z_n such that the translated stationary measures $\mu_n(\cdot; z_n)$ converge in law to the Dirac measure $\delta_{\{0\}}$.

Proof. We use viscosity solutions to study the dynamic programming equation :

$$eta v^\gamma(x) - rac{\sigma^2}{2} v^\gamma_{xx}(x) + rac{1}{2} (v^\gamma_x(x))^2 = -\gamma \cos(x).$$

Suppose $\gamma \uparrow \infty$ and set $w^{\gamma} := \sqrt{\gamma} [v^{\gamma} + \gamma/\beta$. Then, w^{γ} solves,

$$eta_\gamma w^\gamma(z) - rac{\sigma_\gamma^2}{2} w^\gamma_{\scriptscriptstyle XX}(z) + rac{1}{2} (w^\gamma_{\scriptscriptstyle X}(z))^2 = 1 - \cos(z),$$

with $\beta_{\gamma}, \sigma_{\gamma} \to 0$. The limit Eikonal equation $w_x(z)^2/2 = 1 - \cos(z)$ has an explicit solution.

AN APPLICATION : JET LAG RECOVERY

- Circadian rhythm is the oscillatory behavior of biological processes with a period close to 24 hours.
- Examples of circadian rhythms in animals include sleep/wake patterns, eating schedules, bodily temperatures, hormone production, and brain activity.
- ▶ These oscillations can be entrained to the 24 hour cycle of sunlight exposure.
- > Abrupt disruptions, such as when an individual travels across time zones, results in jet lag.
- A region in the brain called Suprachiasmatic Nucleus (SCN) controls circadian rhythms.
- ▶ It contains on the order of 10,000 neuronal oscillator cells,
- Each of these cells has a preferred frequency of slightly longer than 24 hours.

The following modification of the Kuramoto model is proposed for jet lag for SCN oscillators :

$$\frac{\mathrm{d}}{\mathrm{d}t}\theta_t^k = \omega^k + F \sin(\omega_s t + p(t) - \theta_t^k) + \frac{\kappa}{N} \sum_{j=1}^N \sin(\theta_t^j - \theta_t^k), \quad k = 1, \dots, N,$$

- $\omega_s = 2\pi/24$ is the frequency of the external drive (which is sunlight),
- F is the strength of the external drive,
- p(t) is a phase shift accounting for the time zone angle at time t.
- p(t) = p is used for an individual that stays in their time zone forever,
- whereas p(t) increases for eastward travel and decreases for westward travel.

Resynchronization of circadian oscillators and the east-west asymmetry of jet-lag, by Lu, Cardena, Lee, Antonsen, Girvan, Ott, (2016).

- Suppose that one is a one time zone corresponding to a shift p_1 until time τ and moves to p_2 .
- ▶ Then, the forcing function is given by,

$$p(t) = egin{cases} p_1 & ext{if } t \leq au, \ p_2 & ext{if } t > au. \end{cases}$$

- ▶ If κ , F, τ are large, the oscillators synchronize around p_1 with a period close to 24 hours. Then, at time τ abrupt disruption occurs and the oscillators gradually shift the phase to p_2 .
- The paper studies the relaxation time of the transition and numerically finds larger recovery time for eastward travel.

▶ The interaction cost, has an extra term :

$$L(\theta_t^k, \boldsymbol{\theta}_t) = \ell(\theta_t^k, \mu_t^N) + c_{sun}(t, p(t), \theta_t^k),$$

where the first term is interaction between oscillators

$$\ell(\theta_t^k, \mu_t^N) = 2\frac{1}{N} \sum_{j \neq i} \sin^2\left((\theta_t^k - \theta_t^j)/2\right) = 2 \int_{-\pi}^{\pi} \sin^2\left((\theta_t^k - \theta)/2\right) \, \mu_t^N(\mathrm{d}\theta),$$

the empirical function μ_t^N is as before.

the second term is the interaction with the external drive

$$c_{sun}(t, p(t), \theta_t^k) = 2\sin^2\left((\omega_s t + p(t) - \theta_t^k)/2\right),$$

function p(t), ω_s as in the previous model.

Jet Lag Recovery : Synchronization of Circadian Oscillators as a Mean Field Game, Carmona, Graves, (2020).

- > Mean Field formalism have exactly the same solution structure as the dynamical system approach.
- As the uniform solutions are the desynchronized states, our results indicate a bifurcation from inhorence to self-organization at κ_c , and then convergence to full synchronization for very large interaction parameters.

THANK YOU FOR YOUR ATTENTION.

Joint with Rene Carmona and Quentin Cormier of Princeton Synchronization in a Kuramoto Mean Field Game Critical interaction value in the Kuramoto Mean Field Game

- > Mean Field formalism have exactly the same solution structure as the dynamical system approach.
- As the uniform solutions are the desynchronized states, our results indicate a bifurcation from inhorence to self-organization at κ_c , and then convergence to full synchronization for very large interaction parameters.

THANK YOU FOR YOUR ATTENTION.

Joint with Rene Carmona and Quentin Cormier of Princeton Synchronization in a Kuramoto Mean Field Game Critical interaction value in the Kuramoto Mean Field Game