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Context

Recent years have seen the development of generic and efficient algorithms for solving stochastic

optimal control and stopping problems. Common structures are :

I Formulated as empirical risk minimization problems (distinct type of modeling from typical RL).

I Convergence is understood to hold in idealized settings.

I Implementations typically postulate a market model from which the training data is simulated.

I The methodology allows for completely data driven approaches, provided sufficient data availability.

I The black box nature of neural networks can make the results hard to interpret.

In this study : We impose structure (e.g., parametrized stopping boundary). So that we improve

interpretability, while simultaneously improving training properties.
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Problem



Problem

I Fix a time horizon T > 0, a probability space (Ω,Q), and a filtration F = (Ft)t∈[0,T ].

I T ⊂ [0,T ] is a finite set of time point at which stopping is allowed.

I Let ϑ = ϑ(T ) is the set of F−stopping times taking values in T .

I The state process solves

dXt = µ(t,Xt)dt + σ(t,Xt) dWt ,

where W is the Brownian motion.

I For a given reward function ϕ, the problem is

to maximize v(x , t; τ) := EQ[ϕ(τ,Xτ ) | Xt = x ], overall τ ∈ ϑ.
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Stopping region

Define the stopping region as St := {x ∈ X : ϕ(t, x) = supτ v(t, x ; τ)}, and set

La := {φ : X → R : continuous and |φ(x)| ≤ C [1 + |x |a] for some C > 0}.

Assumption (Growth and continuity)

There exists a > 0, such that for every t ∈ T , ϕ(t, ·) ∈ La. Moreover, for every φ ∈ La, t < t̄ ∈ T ,

E[φ(Xt̄) | Xt = x ] ∈ La, x ∈ X .

Proposition (Regularity)

Under the growth and continuity assumption, for each t ∈ T , the value function

v(t, ·) := supτ v(t, ·, τ) ∈ La, and the stopping region St is a relatively closed subset of X .
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Stopping boundary

Set

T = {t0, t1, . . . , tn−1,T}, T ◦ := T \ {T} = {t0, t1, . . . , tn−1}.

Assumption (Existence of a stopping boundary)

There exist measurable functions

α : X → R+, Ξ : X → Ξ(X ) ⊂ X , f ∗ : T ◦ × Ξ(X )→ [0,∞],

and η ∈ {−1,+1}, so that the map x ∈ X 7→ (α(x),Ξ(x)) ∈ R+ × Ξ(X ) is a homeomorphism, and

St =
{
x ∈ X : η

(
f ∗(t,Ξ(x))− α(x)

)
≤ 0
}
, ∀ t ∈ T ◦.

We prove that it holds for general types of option problems.
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Stopping boundary examples

St =
{
x ∈ X : η

(
f ∗(t,Ξ(x))− α(x)

)
≤ 0
}
, ∀ t ∈ T ◦.

Example (American put option)

With Markovian dynamics in one dimension, X = R+, α(x) = x, Ξ ≡ 0, and η = −1. Thus, the

stopping region is the hypo-graph of some stopping boundary f ∗.

Example (American max-call option)

With two stocks and strike K : ϕ(t, x) = (max{x1, x2} − K)+ for x = (x1, x2) ∈ X .

With Markovian dynamics, the state space is X = R2
+.

There exists a stopping boundary f ∗ such that the triplet (α,Ξ, f ∗) with

α(x) = max{x1, x2}, Ξ(x) =
x

α(x)
, η = 1,

satisfies the assumption.
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Image from The Valuation of American Options on Multiple Assets, by Broadie, M, and Detemple, J,

published in Mathematical Finance, 7/3,241–286, 1997.
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Parameterizing the stopping boundary. WHY?

Instead of parameterizing the stopping rule directly, we parameterize the stopping boundary. Why ?

I Interpretability : The stopping boundary gives us an actual rule about which we can reason.

A {0, 1} output for an evaluated point is not as informative.

I Topological guarantee : With other methods there is no guarantee that the stopping region is

connected even in 1-D. The stopping boundary approach can make sure that the resulting stopping

rule has the desired topological properties.

I Computational : The boundary structure constrains the solution relative to learning stopping times,

which makes it “easier” by reducing the hypothesis space.

I Extensions : to other free boundary problems is possible but we believe these option problems are

good benchmark problems.
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General Approach

All control problems can be formulated as

to maximize v(u) := E [`(u, ξ)] ,

where ξ is the increments of a stochastic process and u ∈ C is the feedback control or action.

Weinan E, Jiequn Han, and Arnulf Jentzen proposed an algorithm based on empirical risk minimization

Deep learning approximation for stochastic control problems, Han & E, W., NIPS, 2016.

Solving high-dimensional partial differential equations using deep learning, Han, Jentzen & E, W.,

Proceedings of the National Academy of Sciences, 115/34, 8505–8510, 2018.

For hedging problems, similar algorithm developed in

Deep hedging, by Bühler, H., Gonon, L., Teichmann, J., and Wood, B., Quantitative Finance, 2019.
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Deep Stopping

For a batch B of sample paths {X 1, . . . ,XB} (simulated or obtained from data), let ÊB be the

empirical expectation, and set

v(τ ;B) = ÊB[ e−rτϕ(τ,Xτ )
∣∣Xt = x

]
,

I Parameterize the stopping decision by θ as a function of the state and construct the corresponding

stopping time τ(θ) ;

I Optimize by stochastic gradient ascent : for n = 0, 1, . . . :

− Generate a batch B,

− Compute the derivative d := ∇θ v(τ(θ);B) ;

− Update θ ← θ + κd .

I Stop if n is sufficiently large and the improvement of the value is ‘small’.

Difficulty : As such, the stopping rule is locally constant (0 or 1), so the gradient is zero.

We resolve this difficulty by using randomized stopping and fuzzy boundaries.
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Benchmark problems

We consider two benchmark problems, based on

Deep optimal stopping, by Becker, S., Cheridito, P. and Jentzen, A., published in

Journal of Machine Learning Research, 19/8,1271–1291, 2019.

Put : ϕ(τ, {Xu}u∈[0,τ ]) = (K − Xτ )+, where r ,K is given ;

Max-Call : For Xu = (X 1
u , . . . ,X

d
u ) ∈ Rd , ϕ(τ, {Xu}u∈[0,τ ]) = (maxi X

i
u − K)+, (with dividends).
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A put option example

I For simplicity, consider d = 1. The stopping time is based on a stopping boundary :

f : [0,T ]→ R+ 7→ τ = inf { u ∈ [0,T ] : Xu ≤ f (u) } .

I We train for the stopping boundary by maximizing the composition :

θ 7→ f (·; θ) (boundary) 7→ τ (stopping time) 7→ v(τ) (reward).

I Difficulties :

1. The map from the stopping boundary to the reward is very flat and difficult to train for.

2. Again, {0, 1}-problem : the derivative ∇θv(τ(θ);B) is zero.

I Our solutions :

1. We use importance sampling to make the boundary relevant for more data points.

2. For the {0, 1}-problem, we relax the problem using a fuzzy boundary : during training we stop with some

probability depending on the distance from the boundary.
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Training progress
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Problem

Another benchmarking example studied by the same group is :

I Let Xt ∈ Rd , with dX
(i)
t = X

(i)
t [rdt + σdW

(i)
t ], where W (i) are independent Brownian motions.

I One may stop at N different time points to receive

ϕ(t,Xt) =
(

max
i

X
(i)
t − K

)+

.

I Following Deep Optimal Stopping, N = 9.

I Nunmerically, we have obtained similar precision as in the Deep Optimal Stopping, but with lower

computational resources, and topological guarantees.
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Max-call option
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Image from The Valuation of American Options on Multiple Assets, by Broadie, M, and Detemple, J,

published in Mathematical Finance, 7/3,241–286, 1997.
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Training challenge

I The problem cannot be solved by directly parameterizing the ‘control’ τ .

I For any stopping decision χθ taking values in {0, 1} ≡ {continue, stop}, ∇θχθ = 0.

As a consequence, for τ(θ) obtained from χθ, ∇θτ = 0

∇θv(τ(θ);B) ∼ v ′(τ(θ);B)∇θτ(θ) = 0.

Gradient ascent does not make progress.

I Consider the relaxed version :

Let u : T → [0, 1] be a non-decreasing function representing the cumulative probability of stopping :

e.g., us = 0.6 for s ∈ [0,T ] means that we have stopped with 60% probability by time s.

I The stopping event is independent of the stock price and we set

v(u) := E

[
N∑

k=1

ϕ(tk ,Xtk ) (u(tk)− u(tk−1))

]
.

I Then, the gradient ascent works, and a maximum value is obtained with precision.
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Fuzzy region

I Let F be the set of all measurable functions f : T ◦ × Ξ(X )→ [0,∞].

I For f ∈ F, define the distance to the boundary by,

d(t,Xt ; f ) := η (f (u,Ξ(Xu))− α(Xu)) .

I In the original problem, once a boundary f is chosen, we stop the process only when d(t,Xt ; f ) ≤ 0.

I As training is not possible with this sharp “stop-or-continue” rule, we introduce the fuzzy boundaries.

I Namely, we fix a tuning parameter ε > 0, and at time t ∈ T ◦, define

Bε
t (f ) := {x ∈ X : |d(t, x ; f )| < ε}

be the fuzzy region.
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Fuzzy region
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Fuzzy Stopping

I If the state is not in Bε
t (f ), we continue or stop, as before, with probability one.

I If we are in the fuzzy region, we stop with probability pt(Xt , f ), where

pt(x , f ) :=

(
ε− d(t, x , f )

2ε

)+

∧ 1, t ∈ T ◦, f ∈ F, x ∈ X .

I Precisely, pt(Xt , f ) is the probability of stopping at time t ∈ T , conditioned on the event that the

process is not stopped prior to t.

I The relaxed control problem is to maximize E[Rε(X , f )] over all f ∈ F, where

Rε(X , f ) :=
∑
t∈T

pt(Xt , f ) bt(X , f ) ϕ(t,Xt),

and bt(X , f ) is the probability of not stopping strictly before time t.

I bt(X , f ) is obtained as the solution of,

bt+1(X , f ) = bt(X , f )(1− pt(Xt , f )), t ∈ T ◦, with b0(X , f ) = 1.

I As limε↓0 Rε(X , f ) = ϕ(τf ,Xτf ), this problem approximates the original one.
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Pseudo Code

1. Initialize θ ∈ Θ.

2. Simulate independent state trajectories, {X (1), . . . ,X (B)}, where B is the batch size.

3. Compute the empirical reward function :

Rε(θ) :=
1

B

B∑
i=1

Rε(X (i), g(·; θ)).

4. Optimize and update by stochastic gradient ascent with the learning rate process ζ :

θ ← θ + ζ∇θRε(θ).

5. Stop after M number of iterations.

6. Compute the initial price given by the training network, using J many Monte-Carlo simulations with

a sharp boundary.
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Network Architecture and Parameters

1. All our numerical experiments have been carried out with Tensorflow 2.7 on a 2021 Macbook pro

with 64GB unified memory and Apple M1 Max chip. The code is implemented in Python and run on

CPU (10-core) only.

2. We use only one deep neural network that takes both the time and the state vector as input.

3. The single feedforward neural network that we employ consists of 2 hidden layers with leaky rectified

linear unit (Leaky ReLU) activation function. Each layer has 20 + d many nodes

4. We set the number of stochastic gradient iterations to M = 3, 000 with a fixed simulation batch size

of B = 512.

5. The learning rate process ζ is taken from the Adam optimizer.

6. The fuzzy region width ε is chosen to be the strike K times the standard deviation of the increments

of α(X ). While the strike K adjusts to the scale of the payoff, the second term reflects the typical

variation of the process α(X ) between exercise dates.

7. After the training is completed, the initial price is computed using the sharp boundary and

J = 222 = 4, 194, 304 many Monte Carlo simulations.
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Network time dependence

We do not use one network per time point but one network that takes time as input as well..

This comes with some benefits :

I It appears to avoid the issue of training degradation with more time points.

I Excessive overfitting at time t is less likely, because part of that overfitting would affect other time

points s 6= t, which would be unfavorable.

I We can change the time discretization during training.

This potentially lets us get closer to American than Bermudan.
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The Free Boundary, Results : one-dimensional Put

Put : ϕ(τ, {Su}u∈[0,τ ]) = (K − Sτ )+, where r ,K is given
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Figure 1: Almost American option in Black-Scholes model with n = 250.
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The Free Boundary, Results : two-dimensional Max-call
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Figure 2: Stopping Boundaries with s0 = 90, K = 100, σi = 0.2, r = 0.05, δi = 0.1.
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The Free Boundary, Results : two-dimensional Max-call

50 100 150 200
s1

50

100

150

200

s2

t = 0.0

50 100 150 200
s1

50

100

150

200
t = 1.0

50 100 150 200
s1

50

100

150

200
t = 2.0

50 100 150 200
s1

50

100

150

200
t = 3.0

American max call with maturity T = 3.0

Stop Continue

Figure 3: Stopping Boundaries with s0 = 100, K = 100, σi = 0.2, r = 0.05, δi = 0.1.
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The Free Boundary, Results : higher dimensions

Max-call option with s0 = 100

d Average Price Highest Price Runtime Price in Becker et. al. Confidence Intervals

2 13.883 (0.009) 13.898 (0.008) 29.1 13.901 [13.892, 13.934]

5 26.130 (0.010) 26.151 (0.009) 31.8 26.147 [26.115, 26.164]

10 38.336 (0.015) 38.355 (0.011) 33.1 38.272 [38.300, 38.367]

20 51.728 (0.018) 51.753 (0.011) 36.0 51.572 [51.549, 51.803]

50 69.860 (0.012) 69.881 (0.011) 43.5 69.572 [69.560, 69.945]

Table 1: Max Option on d ∈ {5, 10, 20, 50} symmetric assets. The second column is the average of ten

experiments with its standard deviation in brackets. The third column is the highest price among the realizations

and its standard deviation in brackets. The fourth column is the average runtime (in seconds) per experiment

for the training phase.
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The Free Boundary, Results : higher dimensions

I We ran experiments for the Max-Call options up to 500 dimensions.

I This is done on a personal computer (no GPU !)

I We could results as good or better than the ones obtained in Becker, Cheridito & Jentzen.

I Naive methods however, ran into problems and gave wrong results. For instance, a straightforward

approach to a Put option in one-dimension, resulted in zero free boundary and a Call with non-trivial

boundary.

I Large number of simulations were used. So a model for simulations is needed.
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Some related papers

There are many recent papers using the recent computational techniques. Here is a partial list.

I Statistical learning for probability-constrained stochastic optimal control, Balata, Ludkovski,

Maheshwari & Palczewski.

I Asset Pricing with General Transaction Costs : Theory and Numerics, Gonon, Muhle-Karbe & Shi.

I Deep learning for discrete-time hedging in incomplete markets, Fecamp, Mikael & Warin.

I Machine learning for semi linear PDEs, Chan-Wai-Nam, Mikael & Warin.

I Learning a functional control for high-frequency finance, Leal, Laurière & Lehalle.

I Deep neural networks algorithms for stochastic control problems on finite horizon, part I :

convergence analysis, part 2 : Numerical applications, Huré, Pham, Bachouch & Langrené.

I A very related active area is data augmentation or data-driven models.

I Network architecture, random features is also actively studied.
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Concluding

I Deep empirical risk minimization is an effective and a flexible tool.

I It can handle details of the markets as well as complicated and general dynamics with ease.

I One has to be careful with the complexity of the networks and the size of the training data.

I Optimization step is the least understood part.

THANK YOU FOR YOUR ATTENTION.

Max Reppen of Boston University, and HMS

Deep empirical risk minimization in finance : looking into future

Max Reppen of Boston University, Valentin Tissot-Daguette of Princeton and HMS

Deep stochastic optimization in finance

Neural Optimal Stopping Boundary.
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