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Abstract. An optimal control problem in the space of probability measures and the viscosity
solutions of the corresponding dynamic programming equations defined using the intrinsic linear
derivative are studied. The value function is shown to be Lipschitz continuous with respect to a
smooth Fourier--Wasserstein metric. A comparison result between the Lipschitz viscosity sub- and
supersolutions of the dynamic programming equation is proved using this metric, characterizing the
value function as the unique Lipschitz viscosity solution.
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1. Introduction. McKean--Vlasov optimal control is a part of the overarching
program of Lasry and Lions [24, 25, 26], as articulated by Lions through his College
de France lectures [27] and independently initiated by Huang, Malham\'e, and Caines
[22]. We refer the reader to the classic book of Carmona and Delarue [8] and to the
lecture notes of Cardaliaguet [6] for detailed information and more references.

The main feature of the McKean--Vlasov-type optimization is the dependence of
its evolution and cost not only on the position of the state but also on its probability
distribution, making the set of probability measures its state space. Thus, the dynamic
programming approach results in nonlinear partial differential equations set in the
space of probability measures. Without common noise, they are first-order Hamilton--
Jacobi--Bellman equations, and the Hamiltonian is defined only when the derivative
of the value function is twice differentiable. In fact, this type of unboundedness is
almost always the case for optimal control problems set in infinite-dimensional spaces
[19] and is the main new technical difficulty.

These dynamic programming equations are analogous to the coupled Hamilton--
Jacobi and Fokker--Planck--Kolmogorov systems that characterize the solutions of the
mean-field games for which deep regularity results are proved in [7] under some struc-
tural conditions. However, in general, the dynamic programming equations for the
McKean--Vlasov optimal control problems are not expected to admit classical solu-
tions, as shown in subsection 4.1 below, and a weak formulation is needed.

Because the maximum principle is still the salient feature in these settings as
well, the viscosity solutions of Crandall et al. [15, 16, 17, 20] are clearly the appro-
priate choice. However, due to the unboundedness of the Hamiltonian, the original
definition must be modified. In fact, such modifications of viscosity solutions in
infinite-dimensional spaces have already been studied extensively, and the book [19]
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904 H. METE SONER AND QINXIN YAN

provides an exhaustive account of these results. Still, it is believed that more can
be achieved in the context of McKean--Vlasov due to the special structure of the set
of probability measures. Indeed, an approach developed by Lions lifts the problems
from the Wasserstein space to a regular \BbbL 2 space and then exploits the Hilbert struc-
ture to obtain new comparison results. This procedure also delivers the novel Lions
derivative, which has many useful properties, and we refer to [8] for its definition
and more information. This method is further developed in several papers, including
[1, 3, 12, 29, 30]. The choice of the appropriate notion of a derivative is also explored
in a recent paper [21], which then utilizes the deep connections to geometry to prove
uniqueness results for Hamiltonians that are bounded in the sense discussed above.

Our main goals are to develop a viscosity theory directly on the space of proba-
bility measures using the linear derivative, provide a comparison result, and obtain a
characterization of the value function as the unique viscosity solution in a certain class
of functions. A natural approach toward this goal is to project the problem onto finite-
dimensional spaces to leverage the already developed theory on these structures. A
second-order problem studied in [14] provides a clear example of this approach because
its projections exactly solve the projected finite-dimensional equations. However, in
general, these projections are only approximate solutions, and [13] uses the Ekeland
variational principle together with Gaussian-smoothed Wasserstein metrics as gauge
functions to control the approximation errors. A different technical tool is developed
in [4], and [21] studies the pure projection problem. Other approaches include the
path-dependent equations used in [34], gradient flows in [11], convergence analysis in
[2], and an optimal stopping problem in [32, 33]. A recent paper [10] exploits the
semiconvexity and also provides an extensive survey.

We, on the other hand, employ the classical viscosity technique of doubling the
variables as done in [5] in lieu of projection. The central difficulty of this approach
is to appropriately replace the ``distance-square"" term | x  - y| 2 used in the finite-
dimensional comparison proofs with the square of a metric on the space of measures.
Thus, the crucial ingredient of our method is a novel smooth metric \rho \ast defined by a
Fourier-based modification of the Wasserstein metrics, which is, in fact, the norm of
the dual of a classical Sobolev space. In addition to several properties of \rho \ast proved
in section 5, our other main results are a comparison between Lipschitz continuous
subsolutions and viscosity supersolutions, Theorem 4.1, and the Lipschitz continuity
of the value function with respect to a weaker metric, Theorem 4.2. Although the
Lipschitz property of the value function is rather elementary for the Wasserstein
metrics, it requires detailed analysis for the Fourier-based ones. Indeed, a technical
estimate, Proposition 7.1, on the dependence of the solutions of the McKean--Vlasov
stochastic differential equation on the initial distribution is needed for this property.

As our approach contains several new steps, we study the simplest problem that
allows us to showcase its details and power concisely. In particular, to ease the
notation, we omit the dependence of all functions on the time variable, which can
be added directly. Additionally, dynamics with jumps can be included as done in
[5]. The compact structure of the torus is clearly a simplifying feature as well. We
leave the extension of our method to future studies, including [31]. However, our
main structural assumption on the regularity of the feedback controls is a strong one,
and further studies are needed to remove this restrictive condition. One possible
direction is to consider problems with more structure. Indeed, in our recent paper
[31], we exploit the separability of the cost function and the dynamics and the uniform
ellipticity of the infinitesimal generator of the underlying diffusion process to obtain
a comparison result under natural assumptions.
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MCKEAN--VLASOV CONTROL ON A TORUS 905

The paper is organized as follow. General structure and notations are given in
section 2; in section 3, we define the problem and state the assumptions. The main
results are stated in section 4. We construct a family of Fourier--Wasserstein metrics
in section 5. The comparison result is proved in section 6 and the Lipschitz property
in section 7. The standard results of dynamic programming and the viscosity property
are proved in section 8 and, respectively, in section 9.

2. Notations. In this section, we summarize the notations and known results
used in the following. We denote the dimension of the ambient space by d and the
finite horizon by T > 0. \BbbZ d is the set of all d-tuples of integers. \BbbT d =\BbbR d/(2\pi \BbbZ )d is the
d-dimensional torus with the metric given by | x - y| \BbbT d := infk\in \BbbZ d | x - y - 2k\pi | . We use
a filtered probability space (\Omega ,\BbbF = (\scrF t)0\leq t\leq T ,\BbbP ) that supports Brownian motions.
We assume that the initial filtration \scrF 0 is rich enough so that, for any probability
measure on \BbbT d, there exists a random variable on \Omega whose distribution is equal to
this measure.

For a metric space (E, \^d), \scrM (E) is the set of all Radon measures on E, and \scrP (E)
denotes the set of all probability measures on E. Let \BbbL 0(E) be the set of all E-valued
random variables. For X \in \BbbL 0(E), \scrL (X)\in \scrP (E) is the law of X.

We denote the set of all continuous real-valued functions on E by \scrC (E) and the
bounded ones by \scrC b(E)\subset \scrC (E). We write \scrC (E, \^d) when the dependence on the metric
is relevant and \scrC (E \mapsto \rightarrow Y ) if the range Y is not the real numbers. For a positive integer
n, \scrC n(E) is the set of all n-times continuously differentiable, real-valued functions with
the usual norm \| \cdot \| \scrC n given by the sum of supremum norms of each derivative of order
at most n.

We endow\scrM (E) with the weak* topology \sigma (\scrP (E),\scrC b(E)) and write \mu n\rightharpoonup \mu when
limn\rightarrow \infty \mu n(f) = \mu (f) for every f \in \scrC b(E). Using the standard (linear) derivative on
the convex set \scrP (E), we say that \phi \in \scrC (\scrP (E)) is continuously differentiable if there
exists a function \partial \mu \phi \in \scrC (\scrP (E) \mapsto \rightarrow \scrC (E))) satisfying

\phi (\nu ) = \phi (\mu ) +

\int 1

0

\int 
E

\partial \mu \phi (\mu + \tau (\nu  - \mu ))(x) (\nu  - \mu )(dx)d\tau \forall \mu ,\nu \in \scrP (E).

Clearly, \partial \mu \varphi (\mu ) has many representatives. However, when \partial \mu \varphi (\mu ) is twice differen-
tiable, the Hamiltonian H(\mu ,\partial \mu \varphi (\mu )) of the dynamic programming equation (3.3)
below is independent of this choice.

We set \scrO := (0, T )\times \scrP (\BbbT d). For \psi \in \scrC (\scrO ) and (t, \mu ) \in \scrO , \partial t\psi (t, \mu ) denotes the
time derivative evaluated at (t, \mu ), and \partial \mu \psi (t, \mu )\in \scrC (\BbbT d) denotes the derivative in the
\mu -variable again evaluated at (t, \mu ). \BbbL 2(\BbbT d) is the set of measurable functions on \BbbT d

that are square integrable with respect to the Lebesgue measure, with the following
orthonormal Fourier basis:

ek(x) := (2\pi ) - 
d
2 eik\cdot x, x\in \BbbT d, k \in \BbbZ d,

where i=
\surd 
 - 1 and z\ast is the complex conjugate of z. In particular, for any \gamma \in \BbbL 2(\BbbT d),

\gamma =
\sum 
k\in \BbbZ d

Fk(\gamma )ek, where Fk(\gamma ) :=

\int 
\BbbT d

\gamma (x)e\ast k(x) dx, k \in \BbbZ d.

The following metrics on \scrP (\BbbT d) are given by their dual representations:

\rho \lambda (\mu ,\nu ) := sup\{ (\mu  - \nu )(\psi ) : \psi \in \BbbH \lambda (\BbbT d), \| \psi \| \lambda \leq 1\} , \lambda \geq 1,\widehat \rho n(\mu ,\nu ) := sup\{ (\mu  - \nu )(\psi ) : \psi \in \scrC n(\BbbT d), \| \psi \| \scrC n \leq 1\} , n= 1,2, . . . ,
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906 H. METE SONER AND QINXIN YAN

where, in view of the Kantorovich duality, \widehat \rho 1 is the Wasserstein-one distance and, for
\lambda \geq 1,

\BbbH \lambda (\BbbT d) := \{ f \in \BbbL 2(\BbbT d) : \| f\| \lambda <\infty \} , \| f\| \lambda :=

\Biggl( \sum 
k\in \BbbZ d

(1 + | k| 2)\lambda | Fk(f)| 2
\Biggr) 1

2

.

A classical Fourier representation of \rho \lambda is derived in Corollary 5.2.
It is well known that \BbbH \lambda is the classical Sobolev space with fractional derivatives.

Indeed, for any integer n \geq 1, \scrC n(\BbbT d) \subset \BbbH n(\BbbT d) =Wn,2(\BbbT d) and \widehat \rho n \leq cn\rho n for some
constant cn. Moreover, by the embedding results, \BbbH \lambda (\BbbT d) \subset \scrC n(\BbbT d) if \lambda > n+ d

2 . In
particular, we set

(2.1) n\ast (d) = n\ast := 3 +

\biggl\lfloor 
d

2

\biggr\rfloor 
, \scrC \ast := \scrC n\ast (\BbbT d), \rho \ast := \rho n\ast , \widehat \rho \ast := \widehat \rho n\ast ,

where \lfloor a\rfloor is the integer part of a real number a. Then, \BbbH n\ast (\BbbT d)\subset \scrC 2(\BbbT d).

3. McKean--Vlasov control. In this section, we define the McKean--Vlasov
optimal control problem, and for a general introduction, we refer the reader to Chapter
6 in [8]. Formally, starting from t \in [0, T ], the goal is to choose feedback controls
(\alpha u(\cdot ))u\in [t,T ] so as to minimize\int T

t

\BbbE [\ell (Xu,\scrL (Xu), \alpha u(Xu))] du+\varphi (\scrL (XT )),

where \ell is the running cost; \varphi is the terminal cost; b, \sigma are given functions; and, with
a Brownian motion B, dXu = b(Xu,\scrL (Xu), \alpha u(Xu))du+ \sigma (Xu,\scrL (Xu), \alpha u(Xu))dBu.

We continue by defining this problem properly.

3.1. Controlled processes. Suppose that A is a closed Euclidean space, let the
control set \scrC a be a subset of \scrC (\BbbT d \rightarrow A) containing all constant functions, and let the
admissible controls\scrA be the set of (deterministic) measurable functions \bfitalpha : [0, T ] \mapsto \rightarrow \scrC a.
We denote the value of any \bfitalpha \in \scrA at time u \in [0, T ] by \alpha u \in \scrC a. The given functions
are the drift vector b = (b1, . . . , bd) \in \BbbR d; the d\times d\prime volatility matrix \sigma = (\sigma ij) with
i = 1, . . . , d, j = 1, . . . , d\prime ; and the costs \ell ,\varphi . We continue by stating our standing
regularity assumptions on these functions:

bi, \sigma ij , \ell :\BbbT d \times \scrP (\BbbT d)\times A \mapsto \rightarrow \BbbR , \varphi :\scrP (\BbbT d) \mapsto \rightarrow \BbbR .

Recall \scrC \ast , \rho \ast , \widehat \rho \ast of (2.1), and, for \alpha \in \scrC a, x\in \BbbT and \mu \in \scrP (\BbbT d), set

b\alpha (x,\mu ) := b(x,\mu ,\alpha (x)), \sigma \alpha (x,\mu ) := \sigma (x,\mu ,\alpha (x)), \ell \alpha (x,\mu ) := \ell (x,\mu ,\alpha (x)).

Assumption 3.1 (regularity). There exists c < \infty such that, for all \alpha \in \scrC a and
\mu \in \scrP (\BbbT d),

\| b\alpha (\cdot , \mu )\| \scrC \ast + \| \sigma \alpha (\cdot , \mu )\| \scrC \ast + \| \ell \alpha (\cdot , \mu )\| \scrC \ast \leq c,

and, for h= b, \sigma , \ell ,\varphi ,

| h(x,\mu , a) - h(x, \nu , a)| \leq c \widehat \rho \ast (\mu ,\nu ) \forall x\in \BbbT d, \mu , \nu \in \scrP (\BbbT d), a\in A.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MCKEAN--VLASOV CONTROL ON A TORUS 907

Under this regularity condition, for any \bfitalpha \in \scrA ; t\in [0, T ]; and \scrF t-measurable, \BbbT d-
valued random variable \xi with \mu =\scrL (\xi ), there is a unique \BbbF -adapted solution Xt,\mu ,\bfitalpha 

s

of the following McKean--Vlasov stochastic differential equation,

(3.1)

Xt,\mu ,\bfitalpha 
s = \xi +

\int s

t

b\alpha u(Xt,\mu ,\bfitalpha 
u ,\scrL t,\mu ,\bfitalpha 

u )du+

\int s

t

\sigma \alpha u(Xt,\mu ,\bfitalpha 
u ,\scrL t,\mu ,\bfitalpha 

u )dBu, s\in [t, T ],

where \scrL t,\mu ,\bfitalpha 
u =\scrL (Xt,\mu ,\bfitalpha 

u ), and B is a d\prime -dimensional Brownian motion. Note that any
function on the torus \BbbT d can be extended to a 2\pi -periodic function on \BbbR d. Therefore,
we solve the above equation by considering these extensions of b, \sigma and solving the
equation first on \BbbR d and then mapping it to \BbbT d.

The solution Xt,\mu ,\bfitalpha 
u depends on the choice of the initial condition \xi and the

Brownian increments (Bu  - Bt)u\in [t,T ]. However, because these Brownian increments
are independent of \scrF t and we consider feedback controls, the flow (\scrL t,\mu ,\bfitalpha 

u )u\in [t,T ] de-
pends only on the law \mu =\scrL (\xi ) of the initial condition and not on \xi itself.

Clearly, the existence and uniqueness of solutions of (3.1) can be obtained under
weaker assumptions. On the other hand, the stronger condition with n\ast derivatives
is needed for the comparison and the Lipschitz continuity results.

Remark 3.2. We emphasize that assumption 3.1 puts implicit regularity restric-
tions of the control set \scrC a, as further discussed in Remark 3.3 below. It should
be seen as a structural assumption rather than a technical regularity restriction.
Indeed, one way of verifying it is to impose a regularity condition that the func-
tions b(x,\mu , \cdot ), \sigma (x,\mu , \cdot ), and \ell (x,\mu , \cdot ) are all in \scrC \ast and a structural assumption that
\scrC a \subset \{ \alpha \in C\ast : \| \alpha \| \ast \leq ca\} for some constant ca.

3.2. Problem. Starting from (t, \mu ) \in \scrO , the pay-off of a control process \bfitalpha \in \scrA 
is given by

J(t, \mu ,\bfitalpha ) :=

\int T

t

\BbbE [\ell \alpha u(Xt,\mu ,\bfitalpha 
u ,\scrL t,\mu ,\bfitalpha 

u )] du+\varphi (\scrL t,\mu ,\bfitalpha 
T ), \bfitalpha \in \scrA , (t, \mu )\in \scrO .

Since \BbbE [\ell \alpha u(Xt,\mu ,\bfitalpha 
u ,\scrL t,\mu ,\bfitalpha 

u )] = \scrL t,\mu ,\bfitalpha 
u (\ell (\cdot ,\scrL t,\mu ,\bfitalpha 

u , \alpha u(\cdot ))), J(t, \mu ,\bfitalpha ) is a function of
\mu = \scrL (\xi ) independent of the choice of the initial random variable \xi . Although this
property, called law-invariance, holds directly in our setting, in general structures, it
is quite subtle. We refer to Proposition 2.4 of [18], and Theorem 3.5 in [12] for its
general proof and to section 6.5 and Definition 6.27 of [8] for a discussion.

Then, the McKean--Vlasov optimal control problem is to minimize the pay-off
functional J over \bfitalpha \in \scrA , and the value function is given by

v(t, \mu ) := inf
\bfitalpha \in \scrA 

J(t, \mu ,\bfitalpha ), (t, \mu )\in \scrO .

Remark 3.3. Suppose that \scrC a = \{ \alpha \in \scrC \ast (\BbbT d \rightarrow A) : \| \alpha \| \scrC \ast \leq c0\} for some constant
c0 \geq 0. Consider the class of functions of the form h(x,\mu (f), a) for some f \in \scrC \ast and
h :\BbbT d\times \BbbR \times A\rightarrow \BbbR satisfying \| h(\cdot , y, \cdot )\| \scrC \ast +\| h(x, \cdot , a)\| 1,\infty \leq c1 for every x\in \BbbT d, y \in \BbbR ,
and a \in A for some c1 \geq 0. Then, h\alpha (x,\mu ) = h(x,\mu (f), \alpha (x)), and \| h\alpha (\cdot , \mu )\| \scrC \ast is less
than a constant ca depending on c0, c1, and n\ast . Also, for every x\in \BbbT d,

| h(x,\mu (f), \alpha (x)) - h(x, \nu (f), \alpha (x))| \leq c1| (\mu  - \nu )(f)| \leq c1\| f\| \scrC \ast \widehat \rho \ast (\mu ,\nu )\leq c1c0\widehat \rho \ast (\mu ,\nu ).
Hence, this class of functions satisfies the regularity assumption. More gen-

erally, under the appropriate assumptions, functions h(x,\mu (f1), . . . , \mu (fm), a) with

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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908 H. METE SONER AND QINXIN YAN

f1, . . . , fm \in \scrC \ast (\BbbT ) and h : \BbbT d \times \BbbR m \times A \rightarrow \BbbR also satisfy the regularity assump-
tion with the above control set \scrC a. We emphasize that, even when the coefficients
depend on \mu only through \mu (f1), . . . , \mu (fm) of the measure \mu , the value function in
general is still infinite-dimensional.

The assumptions made above hold in a large class of examples studied in the
mean-field games. In particular, for the Kuramoto problem studied in [9], for some
constants \kappa ,\sigma > 0,

\ell (x,\mu , a) =
1

2
a2 + \kappa [1 - \mu (cos) cos(c) - \mu (sin) sin(x)], b(x,\mu , a) = a, \sigma (a) = \sigma .

3.3. Dynamic programming principle. We next state the dynamic program-
ming principle, which is central to the viscosity approach to optimal control. A general
proof in a different setting is given in [18]. However, the deterministic structure allows
for a simpler proof that we provide in section 8.

Theorem 3.4 (dynamic programming). For every \mu \in \scrP (\BbbT d) and 0\leq t\leq \tau \leq T ,

(3.2) v(t, \mu ) = inf
\bfitalpha \in \scrA 

\int \tau 

t

\BbbE [\ell \alpha u(Xt,\mu ,\bfitalpha 
u ,\scrL t,\mu ,\bfitalpha 

u )] du+ v(\tau ,\scrL t,\mu ,\bfitalpha 
\tau ).

It is well known that the dynamic programming can be used directly to show that
the value function is a viscosity solution of the dynamic programming equation

(3.3)  - \partial tv(t, \mu ) =H(\mu ,\partial \mu v(t, \mu )), t\in [0, T ), \mu \in \scrP (\BbbT d),

where, for \gamma \in \scrC 2(\BbbT d), \mu \in \scrP (\BbbT d), x\in \BbbT d, and \alpha \in \scrC a,

H(\mu ,\gamma ) := inf
\alpha \in \scrC a

\bigl\{ 
\mu (\ell \alpha (\cdot , \mu ) +\scrM \alpha ,\mu [\gamma ](\cdot ))

\bigr\} 
,

\scrM \alpha ,\mu [\gamma ](x) := b\alpha (x,\mu ) \cdot \partial x\gamma (x) +
d\sum 

i,j=1

d\prime \sum 
l=1

\sigma \alpha 
il(x,\mu )\sigma 

\alpha 
jl(x,\mu )\partial xixj

\gamma (x).

The value function also trivially satisfies the following terminal condition:

(3.4) v(T,\mu ) =\varphi (\mu ) \forall \mu \in \scrP (\BbbT d).

Because the value function is not necessarily differentiable, a weak formulation
is needed, and we use the notion of viscosity solutions. The definition that we use
is exactly the classical one in which the auxiliary test functions are continuously
differentiable functions on \scrO = [0, T ] \times \scrP (\BbbT d), with the linear derivative in \scrP (\BbbT d)
recalled in section 2. We continue by specifying the auxiliary functions used in the
definition of viscosity solutions.

Definition 3.5. We say that \psi \in \scrC (\scrO ) is a test function if \psi is continuously
differentiable with \partial \mu \psi (t, \mu ) \in \scrC 2(\BbbT d) for every (t, \mu ) \in \scrO and the map (t, \mu ) \in \scrO \mapsto \rightarrow 
H(\mu ,\partial \mu \psi (t, \mu )) is continuous. We denote the set of all test functions by \scrC s(\scrO ).

Definition 3.6. A continuous function u \in \scrC (\scrO ) is a viscosity subsolution of
(3.3) if every \psi \in \scrC s(\scrO ), (t0, \mu 0)\in [0, T )\times \scrP (\BbbT d) satisfying (u - \psi )(t0, \mu 0) =max\scrO (u - 
\psi ) also satisfies

 - \partial t\psi (t0, \mu 0)\leq H(\mu 0, \partial \mu \psi (t0, \mu 0)).
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MCKEAN--VLASOV CONTROL ON A TORUS 909

A continuous function w \in \scrC (\scrO ) is a viscosity supersolution of (3.3) if every
\psi \in \scrC s(\scrO ), (t0, \mu 0) \in [0, T ) \times \scrP (\BbbT d) satisfying (w  - \psi )(t0, \mu 0) = min\scrO (w  - \psi ) also
satisfies

 - \partial t\psi (t0, \mu 0)\geq H(\mu 0, \partial \mu \psi (t0, \mu 0)).

Finally, v \in \scrC (\scrO ) is a viscosity solution of (3.3) if it is both a sub- and a super-
solution.

4. Main results. Our main result is the characterization of the value function
as the unique continuous viscosity solution of the dynamic programming equation
(3.3) and the terminal condition (3.4).

Recall the metrics \rho \ast , \widehat \rho \ast of (2.1).

Theorem 4.1 (comparison). Suppose that the regularity assumption 3.1 holds,
u \in \scrC (\scrO ) is a viscosity subsolution of (3.3) and (3.4), and w \in \scrC (\scrO ) is a viscosity
supersolution of (3.3) and (3.4). If, further, u or w is Lipschitz continuous in the
\mu -variable with respect to the metric \rho \ast , then u\leq v on \scrO .

The above comparison result is proved in section 6.

Theorem 4.2 (continuity). Under the regularity assumption 3.1, there exists a
constant Lv > 0 depending only on the horizon T and the constant ca of assumption 3.1
so that

(4.1) | v(t, \mu ) - v(s, \nu )| \leq Lv

\Bigl[ \widehat \rho \ast (\mu ,\nu ) + | t - s| 12
\Bigr] 

\forall \mu ,\nu \in \scrP (\BbbT d), t, s\in [0, T ].

This continuity result, proved in section 7, also implies Lipschitz continuity with re-
spect to \rho \ast since \widehat \rho \ast \leq c\ast \rho \ast for some constant c\ast . The following result follows directly
from the standard viscosity theory [20], and its proof is given in section 9.

Theorem 4.3 (viscosity property). Under the regularity assumption 3.1, the
value function is a viscosity solution of (3.3) in \scrO satisfying the terminal condition
(3.4).

In particular, any continuous viscosity subsolution is less than or equal to the
value function v, and any continuous viscosity supersolution is greater than or equal
to v.

Remark 4.4. In the comparison result, we could use any metric \rho \lambda with \lambda > 2+ d
2 .

However, our proof for Lipschitz continuity requires us to employ the smaller metric\widehat \rho m and only for integer values of m. This combination of the results dictates the
global choice \lambda = n\ast .

4.1. An example. In this subsection, we provide a simple example to illustrate
the notation and also the need for viscosity solutions. We take T = 1, d= 1, A= \BbbR ,
b(x,\mu , a) = a, \sigma \equiv 1, \varphi \equiv 0, and

\ell (\mu ,a) :=
1

2
a2 +L(m(\mu )), where m(\mu ) :=

\int 
\BbbT 
x \mu (dx)

and L : [ - \pi ,\pi ] \rightarrow \BbbR is a given Lipschitz function. Next, we show that the value
function of the above problem is independent of the control set \scrC a and is given by

v(t, \mu ) =w(t,m(\mu )), (t, \mu )\in \scrO ,
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910 H. METE SONER AND QINXIN YAN

where

w(t, y) := inf
\^\bfitalpha \in \widehat \scrA \^J(t, y, \^\bfitalpha ) := inf

\^\bfitalpha \in \widehat \scrA 
\int 1

t

\biggl[ 
1

2
(\^\alpha u)

2 +L(Y t,y,\^\bfitalpha 
u )

\biggr] 
du, (t, y)\in [0,1]\times \BbbT 

and \widehat \scrA is the set of all measurable maps \^\bfitalpha : [0,1] \mapsto \rightarrow \BbbT ; and Y t,y,\^\bfitalpha 
u = y+

\int u

t
\^\alpha sds. It is

well known that w is the unique viscosity solution of the Eikonal equation [20],

(4.2)  - \partial tw(t, y) = - 1

2
(\partial yw(t, y))

2 +L(y), y \in \BbbT ,

and w(1, \cdot )\equiv 0. Since w is not always differentiable, we conclude that v is not either,
and therefore, a weak theory is needed. On the other hand, when w is differentiable,
we have

\partial \mu v(t, \mu )(x) = \partial yw(t,m(\mu ))x \Rightarrow \partial x(\partial \mu v(t, \mu )(x)) = \partial yw(t,m(\mu )).

Hence, by Jensen's inequality,

H(\mu ,\partial \mu v(t, \mu )) = inf
\alpha \in \scrC a

\int 
\BbbT 

\biggl( 
1

2
\alpha (x)2 + \alpha (x)\partial yw(t,m(\mu ))

\biggr) 
\mu (dx) +L(m(\mu ))

\geq inf
\alpha \in \scrC a

\Biggl\{ 
1

2

\biggl( \int 
\BbbT 
\alpha (x)\mu (dx)

\biggr) 2

+

\biggl( \int 
\BbbT 
\alpha (x)\mu (dx)

\biggr) 
\partial yw(t,m(\mu ))

\Biggr\} 
+L(m(\mu ))

= inf
a\in \BbbR 

\biggl\{ 
1

2
a2 + a\partial yw(t,m(\mu ))

\biggr\} 
+L(m(\mu ))

= - 1

2
(\partial yw(t,m(\mu )))2 +L(m(\mu )).

Because constant functions \alpha \equiv a are always in \scrC a, the opposite inequality also holds.
Therefore,

H(\mu ,\partial \mu v(t, \mu )) = - 1

2
(\partial yw(t,m(\mu ))2 +L(m(\mu ))

for every \scrC a. Since \partial tv(t, \mu ) = \partial tw(t,m(\mu )), the Eikonal equation (4.2) implies that
when w is differentiable, v is a classical solution of the dynamic programming equation
(3.3).

5. Fourier--Wasserstein metrics. In this section, we study the properties of
the norms and the metric \rho \lambda defined in section 2. Similar metrics are also defined in
[28] using a dual representation with Sobolev functions.

Recall that z\ast is the complex conjugate of z and the orthonormal basis \{ ek\} k\in \BbbZ d ;
the Fourier coefficients Fk(f) are defined in section 2. For \mu \in \scrM (\BbbT d), k \in \BbbZ d, we also
set Fk(\mu ) := \mu (e\ast k). Because \BbbT d is compact, Fk(\mu ) is finite for every k and F0(\mu ) = 1
for all \mu \in \scrP (\BbbT d).

For \lambda \geq 1, we define a norm on \scrM (\BbbT d) dual to \| \cdot \| \lambda by

| \eta | \lambda := sup\{ \eta (\psi ) : \psi \in \BbbH \lambda (\BbbT d), \| \psi \| \lambda \leq 1\} , \eta \in \scrM (\BbbT d)

so that \rho \lambda (\mu ,\nu ) = | \mu  - \nu | \lambda .
Lemma 5.1. For \lambda > d

2 , \eta \in \scrM (\BbbT d), | \eta | \lambda <\infty , and the following dual representa-
tion holds:

(5.1) | \eta | \lambda =

\Biggl( \sum 
k\in \BbbZ d

(1 + | k| 2) - \lambda | Fk(\eta )| 2
\Biggr) 1

2

.
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MCKEAN--VLASOV CONTROL ON A TORUS 911

Proof. We first note as 2\lambda > d, c\lambda :=
\sum 

k\in \BbbZ d(1 + | k| 2) - \lambda < \infty . Let d(\eta ) be the
expression in the right-hand side of (5.1) and TV (\eta ) be the total variation of the
measure \eta . Then, | Fk(\eta )| \leq TV (\eta ), and therefore, d(\eta )\leq 

\sum 
k\in \BbbZ d(1+ | k| 2) - \lambda TV (\eta ) =

c\lambda TV (\eta ).
For \psi \in \scrC (\BbbT d), the Fourier representation \psi =

\sum 
k\in \BbbZ d Fk(\psi )ek implies that

\eta (\psi ) =
\sum 
k\in \BbbZ d

Fk(\psi )\eta (ek) =
\sum 
k\in \BbbZ d

Fk(\psi )F
\ast 
k (\eta )

(5.2)

=
\sum 
k\in \BbbZ d

[(1 + | k| 2)\lambda 
2 Fk(\psi )] [(1 + | k| 2) - \lambda 

2 F \ast 
k (\eta )]

\leq 

\Biggl( \sum 
k\in \BbbZ d

(1 + | k| 2)\lambda | Fk(\psi )| 2
\Biggr) 1

2
\Biggl( \sum 

k\in \BbbZ d

(1 + | k| 2) - \lambda | F \ast 
k (\eta )| 2

\Biggr) 1
2

= \| \psi \| \lambda d(\eta ).

In view of the definition of | \cdot | \lambda , | \eta | \lambda \leq d(\eta ) for any \eta \in \scrM (\BbbT d).
To prove the opposite inequality, fix \eta \in \scrM (\BbbT d), and define a function \~\psi by

\~\psi (x) :=
\sum 
k\in \BbbZ d

(1 + | k| 2) - \lambda Fk(\eta )ek(x), \Rightarrow Fk( \~\psi ) = (1 + | k| 2) - \lambda Fk(\eta ), k \in \BbbZ d.

Since c\lambda <\infty , \~\psi is well defined. Moreover,

\| \~\psi \| 2\lambda =
\sum 
k\in \BbbZ d

(1 + | k| 2)\lambda | Fk( \~\psi )| 2 =
\sum 
k\in \BbbZ d

(1 + | k| 2) - \lambda | Fk(\eta )| 2 = d2(\eta )<\infty .

Hence, \~\psi \in \BbbH \lambda (\BbbT d), and, by (5.2),

\eta ( \~\psi ) =
\sum 
k\in \BbbZ d

Fk( \~\psi )F
\ast 
k (\eta ) =

\sum 
k\in \BbbZ d

(1 + | k| 2) - \lambda | Fk(\eta )| 2 = d2(\eta ) = \| \~\psi \| \lambda d(\eta ).

Because \eta ( \~\psi ) \leq | \eta | \lambda \| \~\psi \| \lambda by the definition of | \cdot | \lambda , we have d(\eta )\| \~\psi \| \lambda = \eta ( \~\psi ) \leq 
| \eta | \lambda \| \~\psi \| \lambda .

An immediate corollary is the following.

Corollary 5.2. For any \lambda > d
2 , \rho \lambda is a metric on \scrP (\BbbT d) with a dual represen-

tation

\rho \lambda (\mu ,\nu ) =max\{ (\mu  - \nu )(\psi ) : \| \psi \| \lambda \leq 1\} =

\Biggl( \sum 
k\in \BbbZ d

(1 + | k| 2) - \lambda | Fk(\mu  - \nu )| 2
\Biggr) 1

2

.

Proof. The dual representation follows directly from the previous lemma. Suppose
that \rho \lambda (\mu ,\nu ) = 0; then Fk(\mu ) = Fk(\nu ) for every k \in \BbbZ d. Because \mu ,\nu have the same
Fourier series, we conclude that \mu = \nu . The fact that \rho \lambda is a metric now follows from
the dual representation.

The following provides a connection between the two metrics that we consider.
Also, with m= 1, it implies that the classical Wasserstein-one metric \widehat \rho 1 is dominated
by \rho 1.

Lemma 5.3. For any integer m \geq 1, there exists cm,d > 0 such that \widehat \rho m(\mu ,\nu ) \leq 
cm,d \rho m(\mu ,\nu ) for every \mu ,\nu \in \scrP (\BbbT d).
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912 H. METE SONER AND QINXIN YAN

Proof. Fix the m\geq 1, and let Dm\psi be the mth order derivatives of \psi \in \scrC m(\BbbT d).
Then, since | k| 2m| Fk(\psi )| 2 = | Fk(D

m\psi )| 2,\sum 
k\in \BbbZ d

| k| 2m| Fk(\psi )| 2 =
\sum 
k\in \BbbZ d

| Fk(D
m\psi )| 2 = \| \BbbD m\psi \| 2\BbbL 2(\BbbT d) \leq dm (2\pi )d\| \psi \| 2\scrC m(\BbbT d).

Because (1 + | k| 2)m \leq 2m(1 + | k| 2m), for any k \in \BbbZ d, \psi \in \scrC m(\BbbT d),

\| \psi \| 2m \leq 2m
\sum 
k\in \BbbZ d

| Fk(\psi )| 2 + 2m
\sum 
k\in \BbbZ d

| k| 2m| Fk(\psi )| 2 \leq c2m,d\| \psi \| 2\scrC m(\BbbT d),

where c2m,d = 2m[1 + dm(2\pi )d]. Hence,

\widehat \rho m(\mu ,\nu ) = sup\{ (\mu  - \nu )(\psi ) : \| \psi \| \scrC m(\BbbT d) \leq 1\} 
\leq sup\{ (\mu  - \nu )(\psi ) : \psi \in \scrC m(\BbbT d), \| \psi \| m \leq cm,d\} 
\leq sup\{ (\mu  - \nu )(\psi ) : \psi \in \BbbH m(\BbbT d), \| \psi \| m \leq cm,d\} = cm,d\rho m(\mu ,\nu ).

Our next result is on the differentiability of \rho \lambda . Recall the test functions \scrC s(\scrO )
of Definition 3.5, n\ast (d) of (2.1), and the basis ek of section 2.

Lemma 5.4. Fix \lambda > d
2 and \nu \in \scrP (\BbbT d), and set h(\mu ) := 1

2\rho 
2
\lambda (\mu ,\nu ). Then,

\partial \mu h(\mu )(x) =
\sum 
k\in \BbbZ d

(1 + | k| 2) - \lambda Fk(\mu  - \nu )e\ast k(x), x\in \BbbT d,

and \| \partial \mu h(\mu )\| \lambda = \rho \lambda (\mu ,\nu ). Moreover, if \lambda = n\ast (d), then \partial \mu h(\mu )\in \scrC 2(\BbbT d).

Proof. Fix \nu \in \scrP (\BbbT d). For each k \in \BbbZ d, set ak(\mu ) :=
1
2 | Fk(\mu  - \nu )| 2. Then, we

directly calculate that \partial \mu ak(\mu )(\cdot ) = Fk(\mu  - \nu )e\ast k(\cdot ). Then, for any x\in \BbbT d,

\partial \mu h(\mu )(x) =
\sum 
k\in \BbbZ d

(1 + | k| 2) - \lambda \partial \mu ak(\mu )(x) =
\sum 
k\in \BbbZ d

(1 + | k| 2) - \lambda Fk(\mu  - \nu )e\ast k(x).

The above formula implies that Fk(\partial \mu h(\mu )) = (1+ | k| 2) - \lambda F \ast 
k (\mu  - \nu ) for every k \in \BbbZ d.

Hence,

\| \partial \mu h(\mu )\| 2\lambda =
\sum 
k\in \BbbZ d

(1 + | k| 2)\lambda | Fk(\partial \mu h(\mu ))| 2 =
\sum 
k\in \BbbZ d

(1 + | k| 2) - \lambda | Fk(\mu  - \nu )| 2 = \rho 2\lambda (\mu ,\nu ).

In view of the Sobolev embedding of \BbbH n\ast (\BbbT d) into \scrC 2(\BbbT d), \partial \mu h(\mu )\in \scrC 2(\BbbT d).

6. Comparison. In this section, we prove Theorem 4.1 in several steps. Recall
the test functions \scrC s(\scrO ) of Definition 3.5 and n\ast , \rho \ast of (2.1). Then, 2(n\ast  - 2)\geq d+1,
and consequently,

(6.1) c(d) :=
\sum 
k\in \BbbZ d

(1 + | k| 2)2 - n\ast <\infty .

Step 1 (set-up). Let u,w be as in the statement of the theorem. Toward a
contraposition, suppose that sup\scrO (u  - w) > 0. We fix a sufficiently small \delta > 0
satisfying

l := max
(t,\mu )\in \scrO 

\{ (u - w)(t, \mu ) - \delta (T  - t)\} > 0.
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MCKEAN--VLASOV CONTROL ON A TORUS 913

Set \=u(t, \mu ) := u(t, \mu ) - \delta (T  - t). Then, \=u is a continuous viscosity subsolution of

(6.2)  - \partial t\=u(t, \mu ) =H(\mu ,\partial \mu \=u(t, \mu )) - \delta .

Step 2 (doubling the variables). For \epsilon > 0, set

\Phi \epsilon (t, \mu , s, \nu ) := \=u(t, \mu ) - w(s, \nu ) - 1

2\epsilon 

\bigl( 
\rho 2\ast (\mu ,\nu ) + (t - s)2

\bigr) 
.

Because \scrO is compact and \=u,w are continuous, there exists (t\epsilon , s\epsilon , \mu \epsilon , \nu \epsilon ) \in \scrO \times \scrO 
satisfying

\Phi \epsilon (t\epsilon , \mu \epsilon , s\epsilon , \nu \epsilon ) = max
\scrO \times \scrO 

\Phi \epsilon \geq l > 0.

Set M :=max \=u, m :=minw, and \zeta \epsilon := \rho 2\ast (\mu \epsilon , \nu \epsilon ) + (t\epsilon  - s\epsilon )
2 so that

(6.3) 0\leq \zeta \epsilon \leq 2\epsilon (M +m - l).

Step 3 (letting \epsilon to zero). Since\scrO is compact, there is a subsequence \{ (t\epsilon , \mu \epsilon , s\epsilon , \nu \epsilon )\} 
\subset \scrO \times \scrO , denoted by \epsilon again, and (t\ast , \mu \ast , s\ast , \nu \ast )\in \scrO \times \scrO such that

\mu \epsilon \rightharpoonup \mu \ast , \nu \epsilon \rightharpoonup \nu \ast , t\epsilon \rightarrow t\ast , s\epsilon \rightarrow s\ast as \epsilon \downarrow 0.

By (6.3), it is clear that t\ast = s\ast and \rho \ast (\mu 
\ast , \nu \ast ) = 0. Then, by Lemma 5.3, \mu \ast = \nu \ast .

If t\ast were to be equal to T , by the terminal condition (3.4), we would have

0< l\leq lim inf
\epsilon \downarrow 0

\Phi \epsilon (t\epsilon , \mu \epsilon , s\epsilon , \nu \epsilon )\leq lim
\epsilon \downarrow 0

[\=u(t\epsilon , \mu \epsilon ) - w(s\epsilon , \nu \epsilon )] = \=u(T,\mu \ast ) - w(T,\mu \ast )\leq 0.

Hence, t\ast <T and t\epsilon , s\epsilon <T for all sufficiently small \epsilon > 0.
Step 4 (distance estimate). Without loss of generality, suppose that w is Lipschitz.

Indeed, if instead, u were to be Lipschitz, the argument below with obvious changes
would also yield the estimate (6.4) below, and this estimate is the only place where
the Lipschitz assumption is used. Then,

| w(t, \mu ) - w(t, \nu )| \leq 1

2
Lw \rho \ast (\mu ,\nu ), \mu , \nu \in \scrP (\BbbT d), t\in [0, T ],

and, for each \epsilon > 0,

\=u(t\epsilon , \mu \epsilon ) - w(s\epsilon , \nu \epsilon ) - 
1

2\epsilon 
\zeta \epsilon =\Phi \epsilon (t\epsilon , \mu \epsilon , s\epsilon , \nu \epsilon )\geq \Phi \epsilon (t\epsilon , \mu \epsilon , s\epsilon , \mu \epsilon )

= \=u(t\epsilon , \mu \epsilon ) - w(s\epsilon , \mu \epsilon ) - 
1

2\epsilon 
(t\epsilon  - s\epsilon )

2.

Therefore, \rho 2\ast (\mu \epsilon , \nu \epsilon ) = \zeta \epsilon  - (t\epsilon  - s\epsilon )
2 \leq 2\epsilon [w(s\epsilon , \mu \epsilon )  - w(s\epsilon , \nu \epsilon )] \leq 2\epsilon Lw \rho \ast (\mu \epsilon , \nu \epsilon ).

Hence,

(6.4) \rho \ast (\mu \epsilon , \nu \epsilon )\leq 2\epsilon Lw \forall \epsilon > 0.

Step 5 (viscosity property). Set

\psi \epsilon (t, \mu ) :=
1

2\epsilon 
[\rho 2\ast (\mu ,\nu \epsilon ) + (t - s\epsilon )

2], \phi \epsilon (s, \nu ) := - 1

2\epsilon 
[\rho 2\ast (\mu \epsilon , \nu ) + (t\epsilon  - s)2].
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914 H. METE SONER AND QINXIN YAN

By Lemma 5.4, both \partial \mu \psi \epsilon (t, \mu ), \partial \mu \phi \epsilon (s, \nu ) \in \scrC 2(\BbbT d). Moreover, by the regularity
assumption 3.1, maps (t, \mu ) \mapsto \rightarrow H(\mu ,\partial \mu \psi \epsilon (t, \mu )) and (t, \nu ) \mapsto \rightarrow H(\nu , \partial \mu \phi \epsilon (t, \nu )) are con-
tinuous. Hence, \psi \epsilon and \phi \epsilon are smooth test functions. Set

\kappa \epsilon (x) := \partial \mu \psi \epsilon (t\epsilon , \mu \epsilon )(x) = \partial \mu \phi \epsilon (s\epsilon , \nu \epsilon )(x) =
1

\epsilon 

\sum 
k\in \BbbZ d

Fk(\mu \epsilon  - \nu \epsilon )

(1 + | k| 2)n\ast 
e\ast k(x), x\in \BbbT d.

Clearly, \=u(t, \mu ) - \psi \epsilon (t, \mu ) is maximized at t\epsilon , \mu \epsilon . Since t\epsilon <T , \psi \epsilon \in \scrC s(\scrO ) and \=u is
a viscosity subsolution of (6.2), then

 - t\epsilon  - s\epsilon 
\epsilon 

\leq H(\mu \epsilon , \kappa \epsilon ) - \delta .

By the viscosity property of w, a similar argument implies that

 - t\epsilon  - s\epsilon 
\epsilon 

\geq H(\nu \epsilon , \kappa \epsilon ).

We subtract the above inequalities to arrive at

(6.5) 0< \delta \leq H(\mu \epsilon , \kappa \epsilon ) - H(\nu \epsilon , \kappa \epsilon ).

Step 6 (estimation). Since H(\mu ,\kappa \epsilon ) = inf\alpha \in \scrC a \{ \mu (\ell \alpha (\cdot , \mu ) +\scrM \alpha ,\mu [\kappa \epsilon ](\cdot ))\} ,

| H(\mu \epsilon , \kappa \epsilon ) - H(\nu \epsilon , \kappa \epsilon )| \leq sup
\alpha \in \scrC a

\scrT \alpha 
\epsilon + sup

\alpha \in \scrC a

\scrI \alpha 
\epsilon + sup

\alpha \in \scrC a

\scrJ \alpha 
\epsilon ,

where

\scrT \alpha 
\epsilon := | \mu \epsilon (\ell 

\alpha (\cdot , \mu \epsilon )) - \nu \epsilon (\ell 
\alpha (\cdot , \nu \epsilon ))| ,

\scrI \alpha 
\epsilon := | (\mu \epsilon  - \nu \epsilon )(\scrM \alpha ,\mu \epsilon [\kappa \epsilon ](\cdot ))| ,

\scrJ \alpha 
\epsilon := | \nu \epsilon (\scrM \alpha ,\mu \epsilon [\kappa \epsilon ](\cdot ) - \scrM \alpha ,\nu \epsilon [\kappa \epsilon ](\cdot ))| .

Step 7 (estimating \scrT \alpha 
\epsilon ). By the regularity assumption 3.1 and the estimate (6.4),

| \mu \epsilon (\ell 
\alpha (\cdot , \mu \epsilon )) - \nu \epsilon (\ell 

\alpha (\cdot , \nu \epsilon ))| \leq | (\mu \epsilon  - \nu \epsilon )(\ell 
\alpha (\cdot , \mu \epsilon ))| + | \nu \epsilon (\ell \alpha (\cdot , \mu \epsilon ) - \ell \alpha (\cdot , \nu \epsilon ))| 

\leq \rho \ast (\mu \epsilon , \nu \epsilon )\| \ell \alpha (\cdot , \mu \epsilon )\| \scrC \ast + sup
x\in \BbbT d

| \ell \alpha (x,\mu \epsilon ) - \ell \alpha (x, \nu \epsilon )| 

\leq 2ca \rho \ast (\mu \epsilon , \nu \epsilon )\leq 2caLw \epsilon .

Hence, we have lim\epsilon \downarrow 0 sup\alpha \in \scrC a
\scrT \alpha 
\epsilon = 0.

Step 8 (estimating \scrI \alpha 
\epsilon ). For x\in \BbbT d, \mu \in \scrP (\BbbT d), \alpha \in \scrC a, and k \in \BbbZ d, set

\beta \alpha 
k (x,\mu ) :=\scrM \alpha ,\mu [e\ast k](x) = [ik \cdot b\alpha (x,\mu ) - a\alpha k (x,\mu )]e

\ast 
k(x),

where, for x\in \BbbT d, \mu \in \scrP (\BbbT d), \alpha \in \scrC a, k \in \BbbZ d,

(6.6) a\alpha k (x,\mu ) :=
1

2

d\sum 
i,j=1

d\prime \sum 
l=1

\sigma il(x,\mu ,\alpha (x))\sigma jl(x,\mu ,\alpha (x))kikj .

Then,

\scrM \alpha ,\mu \epsilon [\kappa \epsilon ](x) =
1

\epsilon 

\sum 
k\in \BbbZ d

1

(1 + | k| 2)n\ast 
Fk(\mu \epsilon  - \nu \epsilon ) \beta 

\alpha 
k (x,\mu \epsilon ).
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MCKEAN--VLASOV CONTROL ON A TORUS 915

This, in turn, implies that

\scrI \alpha 
\epsilon \leq 1

\epsilon 

\sum 
k\in \BbbZ d

1

(1 + | k| 2)n\ast 
| Fk(\mu \epsilon  - \nu \epsilon )| | (\mu \epsilon  - \nu \epsilon )(\beta 

\alpha 
k (\cdot , \mu \epsilon ))| 

\leq 1

\epsilon 

\Biggl( \sum 
k\in \BbbZ d

| Fk(\mu \epsilon  - \nu \epsilon )| 2

(1 + | k| 2)n\ast 

\Biggr) 1
2
\Biggl( \sum 

k\in \BbbZ d

((\mu \epsilon  - \nu \epsilon )(\beta 
\alpha 
k (\cdot , \mu \epsilon )))

2

(1 + | k| 2)n\ast 

\Biggr) 1
2

\leq \rho \ast (\mu \epsilon , \nu \epsilon )

\epsilon 

\Biggl( \sum 
k\in \BbbZ d

(1 + | k| 2)2 - n\ast \beta 2
k,\epsilon 

\Biggr) 1
2

,

where

\beta k,\epsilon := (1 + | k| 2) - 1 sup
\alpha \in \scrC a

| (\mu \epsilon  - \nu \epsilon )(\beta 
\alpha 
k (\cdot , \mu \epsilon ))| k \in \BbbZ .

Again, by assumption 3.1, | \beta k,\epsilon | \leq ca + c2a and \beta \alpha 
k,\epsilon is Lipschitz continuous with

a Lipschitz constant ck uniformly in \alpha . Hence, by the Kantorovich duality, \beta k,\epsilon \leq 
ck\widehat \rho 1(\mu \epsilon , \nu \epsilon ). As \mu \epsilon  - \nu \epsilon converges weakly to 0, we conclude that \beta k,\epsilon also converges
to 0 for every k \in \BbbZ . Also, c(d) =

\sum \infty 
k=1(1 + | k| 2)2 - n\ast is finite by (6.1), and we have

argued that | \beta k,\epsilon | is uniformly bounded. Hence, we may use dominated convergence
to conclude that the sequence

\sum \infty 
k=1(1 + | k| 2)2 - n\ast \beta 2

k,\epsilon converges to 0 as \epsilon \downarrow 0. Then,
by (6.4),

lim
\epsilon \downarrow 0

sup
\alpha \in \scrC a

\scrI \alpha 
\epsilon \leq lim

\epsilon \downarrow 0
Lw

\Biggl( \infty \sum 
k=1

(1 + | k| 2)2 - n\ast \beta 2
k,\epsilon 

\Biggr) 1
2

= 0.

Step 9 (estimating \scrJ \alpha 
\epsilon ). The definition of \scrJ \alpha 

\epsilon implies that

\scrJ \alpha 
\epsilon \leq sup

x\in \BbbT d

\{ | \scrM \alpha ,\mu \epsilon [\kappa \epsilon ](x) - \scrM \alpha ,\nu \epsilon [\kappa \epsilon ](x)| \} .

Let a\alpha k be as in (6.6), and, for \alpha \in \scrC a, x\in \BbbT d, k \in \BbbZ d, set

\gamma \alpha k,\epsilon (x) :=\scrM \alpha ,\mu \epsilon [e\ast k](x) - \scrM \alpha ,\nu \epsilon [e\ast k](x)

= ik \cdot [b\alpha (x,\mu \epsilon ) - b\alpha (x, \nu \epsilon )]e
\ast 
k(x) + [a\alpha k (x, \nu \epsilon ) - a\alpha k (x,\mu \epsilon )]e

\ast 
k(x).

By the regularity assumption 3.1, there exists c2 such that

sup
x\in \BbbT d

| \gamma \alpha k,\epsilon (x)| \leq c2(1 + | k| 2)\widehat \rho \ast (\mu \epsilon , \nu \epsilon ) \forall \alpha \in \scrC a, k \in \BbbZ d.

Hence, for every \bfitalpha \in \scrA ,

\scrJ \alpha 
\epsilon \leq 1

\epsilon 

\sum 
k\in \BbbZ d

| Fk(\mu \epsilon  - \nu \epsilon )| 
(1 + | k| 2)n\ast 

sup
x\in \BbbT d

| \gamma \alpha k,\epsilon (x)| 

\leq c2
\epsilon 

\Biggl( \sum 
k\in \BbbZ d

| Fk(\mu \epsilon  - \nu \epsilon )| 2

(1 + | k| 2)n\ast 

\Biggr) 1
2
\Biggl( \sum 

k\in \BbbZ d

(1 + | k| 2)2 - n\ast 

\Biggr) 1
2 \widehat \rho \ast (\mu \epsilon , \nu \epsilon )

\leq c2Lw c(d) \widehat \rho \ast (\mu \epsilon , \nu \epsilon ) =: \^c \widehat \rho \ast (\mu \epsilon , \nu \epsilon ),

where c(d) is as in (6.1). Therefore, lim\epsilon \downarrow 0 sup\alpha \in \scrC a
\scrJ \alpha 
\epsilon \leq \^c lim\epsilon \downarrow 0 \widehat \rho \ast (\mu \epsilon , \nu \epsilon ) = 0.

Step 10 (conclusion). By (6.5) and the above steps, 0 < \delta \leq lim\epsilon \downarrow 0 [H(\mu \epsilon , \kappa \epsilon ) - 
H(\nu \epsilon , \kappa \epsilon )]\leq 0. This clear contradiction implies that max\scrO (u - w)\leq 0.
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916 H. METE SONER AND QINXIN YAN

7. Lipschitz continuity. In this section, we prove Theorem 4.2.

7.1. Regularity in space. We first prove the continuous dependence of the
solutions of the McKean--Vlasov stochastic differential equation (3.1) on its initial
data.

Proposition 7.1. Suppose that the regularity assumption 3.1 holds. Then, there
exists \^c > 0 depending on T and the constant ca of assumption 3.1 such that

\widehat \rho \ast (\scrL t,\mu ,\bfitalpha 
u ,\scrL t,\nu ,\bfitalpha 

u )\leq \^c \widehat \rho \ast (\mu ,\nu ) \forall 0\leq t\leq u\leq T, \mu , \nu \in \scrP (\BbbT d), \bfitalpha \in \scrA .

Proof. We complete the proof in several steps.
Step 1 (setting). We fix t\in [0, T ], \mu ,\nu \in \scrP (\BbbT d), and \bfitalpha \in \scrA and set

Yu :=Xt,\mu ,\bfitalpha 
u , \mu u :=\scrL t,\mu ,\bfitalpha 

u , Zu :=Xt,\nu ,\bfitalpha 
u , \nu u :=\scrL t,\nu ,\bfitalpha 

u , u\in [t, T ].

By the definition of \widehat \rho \ast , we need to prove the following estimate for every u\in [t, T ]:

(\mu u  - \nu u)(\psi )\leq \^c \widehat \rho \ast (\mu ,\nu )\| \psi \| \scrC \ast \forall \psi \in \scrC \ast .

Step 2 (stochastic differential equations). For x \in \BbbT d, let Y x,Zx be the solutions
of the stochastic differential equations

Y x
u = x+

\int u

t

[b\alpha s(Y x
s , \mu s)ds+ \sigma \alpha s(Y x

s , \mu s)dBs] ,

Zx
u = x+

\int u

t

[b\alpha s(Zx
s , \nu s)ds+ \sigma \alpha s(Zx

s , \nu s)dBs] .

Set L\mu 
u(x) :=\BbbE [\psi (Y x

u )] and L\nu 
u(x) :=\BbbE [\psi (Zx

u)]. Then, by conditioning, we have

\mu u(\psi ) =\BbbE [\psi (Yu)] = \mu (L\mu 
u), \nu u(\psi ) =\BbbE [\psi (Zu)] = \nu (L\nu 

u).

Therefore,

(\mu u  - \nu u)(\psi ) = (\mu  - \nu )(L\mu 
u) + \nu (L\mu 

u  - L\nu 
u) =: \scrI u(\psi ) +\scrJ u(\psi ).

Step 3 (\scrI u estimate). By the regularity assumption 3.1, there exists a constant
\^c1 satisfying

\| b\alpha u(\cdot , \mu u)\| \scrC \ast + \| \sigma \alpha u(\cdot , \mu u)\| \scrC \ast \leq \^c1 \forall u\in [t, T ].

Hence, the map x\in \BbbT d \rightarrow Y x
u is n\ast -times differentiable [23]. Therefore, L\mu 

u \in \scrC \ast . From
the chain rule, there exists a constant \^c2 > 0 depending only on ca of assumption 3.1,
satisfying

\| L\mu 
u\| \scrC \ast \leq \^c2 \| \psi \| \scrC \ast \forall u\in [t, T ], \mu \in \scrP (\BbbT d).

This implies that

\scrI u(\psi ) = (\mu  - \nu )(L\mu 
u)\leq \^c2 \widehat \rho \ast (\mu ,\nu )\| \psi \| \scrC \ast .

Step 4 (\scrJ u estimate). By definitions, \scrJ \leq supx | L\mu 
u(x) - L\nu 

u(x)| and

| L\mu 
u  - L\nu 

u| \leq \BbbE [| \psi (Y x
u ) - \psi (Zx

u)| ]\leq \BbbE [| Y x
u  - Zx

u | ]\| \psi \| 1 \leq (\BbbE [(Y x
s  - Zx

s )
2])

1
2 \| \psi \| \ast .
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MCKEAN--VLASOV CONTROL ON A TORUS 917

For x\in \BbbT d and setting m2
s(x) :=\BbbE [(Y x

s  - Zx
s )

2], we directly estimate that

m2
u(x)\leq 2T

\int u

t

\BbbE [(b\alpha s(Y x
s , \mu s) - b\alpha s(Zx

s , \nu s))
2]ds+2

\int u

t

\BbbE [| \sigma \alpha s(Y x
s , \mu s) - \sigma \alpha s(Zx

s , \nu s)| 2]ds.

By the regularity assumption 3.1,

| b\alpha s(Y x
s , \mu s) - b\alpha s(Zx

s , \nu s)| \leq ca [| Y x
s  - Zx

s | + \widehat \rho \ast (\mu s, \nu s)] .

The same estimate also holds for | \sigma \alpha s(Y x
s , \mu s) - \sigma \alpha s(Zx

s , \nu s)| . Hence, there exists a con-
stant \^c3 > 0, independent of x, satisfying m2

u \leq \^c3
\int u

t
[m2

s + \widehat \rho \ast (\mu s, \nu s)
2]ds for every u\in 

[t, T ]. By Gr\"onwall's inequality, there exists \^c4 > 0 satisfyingm2
u \leq \^c24

\int u

t
\widehat \rho \ast (\mu s, \nu s)

2ds.
Hence,

\scrJ u \leq (\BbbE [(Y x
s  - Zx

s )
2])

1
2 \| \psi \| \ast \leq \^c4

\biggl( \int u

t

\widehat \rho \ast (\mu s, \nu s)
2 ds

\biggr) 1
2

\| \psi \| \scrC \ast \forall u\in [t, T ].

Step 5 (conclusion). By the previous steps,

(\mu u  - \nu u)(\psi )\leq 

\Biggl( 
\^c2 \widehat \rho \ast (\mu ,\nu ) + \^c4

\biggl( \int u

t

\widehat \rho \ast (\mu s, \nu s)
2 ds

\biggr) 1
2

\Biggr) 
\| \psi \| \scrC \ast \forall \psi \in \scrC \ast .

Since the above holds for every \psi \in \scrC \ast , the definition of \widehat \rho \ast implies that

\widehat \rho \ast (\mu u, \nu u)\leq \^c2 \widehat \rho \ast (\mu ,\nu ) + \^c4

\biggl( \int u

t

\widehat \rho \ast (\mu s, \nu s)
2 ds

\biggr) 1
2

\forall u\in [t, T ].

Hence,

\widehat \rho \ast (\mu u, \nu u)
2 \leq 2\^c22 \widehat \rho \ast (\mu ,\nu )2 + 2\^c24

\int u

t

\widehat \rho \ast (\mu s, \nu s)
2ds \forall u\in [t, T ].

Again, by Gr\"onwall, \widehat \rho \ast (\mu u, \nu u)
2 \leq \^c2 \widehat \rho \ast (\mu ,\nu )2 for some \^c > 0 for all u\in [t, T ].

The following is an immediate consequence of the above estimate.

Lemma 7.2. Under the regularity assumption 3.1, there exists L1 > 0 such that

| J(t, \mu ,\bfitalpha ) - J(t, \nu ,\bfitalpha )| \leq L1 \widehat \rho \ast (\mu ,\nu ) \forall \bfitalpha \in \scrA , \mu , \nu \in \scrP (\BbbT d), t\in [0, T ].

Consequently,

| v(t, \mu ) - v(t, \nu )| \leq L1 \widehat \rho \ast (\mu ,\nu ) \forall \mu ,\nu \in \scrP (\BbbT d), t\in [0, T ].

Proof. We fix \bfitalpha \in \scrA , \mu ,\nu \in \scrP (\BbbT d), and t\in [0, T ] and use the same notation as in
Proposition 7.1. For u\in [t, T ], the regularity assumption 3.1 implies that

| \BbbE [\ell \alpha u(Yu, \mu u) - \ell \alpha u(Zu, \nu u)]| 
\leq | \BbbE [\ell \alpha u(Yu, \mu u) - \ell \alpha u(Zu, \mu u)]| + | \BbbE [\ell \alpha u(Zu, \mu u) - \ell \alpha u(Zu, \nu u)]| 
\leq | (\mu u  - \nu u)(\ell 

\alpha u(\cdot , \mu u))| + ca \widehat \rho \ast (\mu u, \nu u)

\leq \widehat \rho \ast (\mu u, \nu u)\| \ell \alpha u(\cdot , \mu u)\| \scrC \ast + ca \widehat \rho \ast (\mu u, \nu u)

\leq 2ca \widehat \rho \ast (\mu u, \nu u)\leq 2ca \^c \widehat \rho \ast (\mu ,\nu ).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/0

2/
24

 to
 1

40
.1

80
.2

40
.6

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



918 H. METE SONER AND QINXIN YAN

We now directly estimate using the above to obtain the following inequalities:

| J(t, \mu ,\bfitalpha ) - J(t, \nu ,\bfitalpha )| \leq 
\int T

t

| \BbbE [\ell \alpha u(Yu, \mu u) - \ell \alpha u(Zu, \nu u)]| du + | \BbbE [\varphi (\mu T ) - \varphi (\nu T )]| 

\leq 2ca \^c (T  - t) \widehat \rho \ast (\mu ,\nu ) + ca \widehat \rho \ast (\mu T , \nu T )

\leq ca \^c (2(T  - t) + 1)\widehat \rho \ast (\mu ,\nu ).
Because | v(t, \mu ) - v(t, \nu )| \leq sup\bfitalpha \in \scrA | J(t, \mu ,\bfitalpha ) - J(t, \nu ,\bfitalpha )| , the proof of the lemma is
complete.

7.2. Time regularity.
Proposition 7.3. Suppose that the regularity assumption 3.1 holds. Then, there

exists L2 > 0 depending on T and the constant ca in assumption 3.1 such that

| v(t, \mu ) - v(\tau ,\mu )| \leq L2 | t - \tau | 12 \forall t, \tau \in [0, T ], \mu \in \scrP (\BbbT d).

Proof. Fix 0 \leq t \leq \tau \leq T , \mu \in \scrP (\BbbT d), and \bfitalpha \in \scrA , and set h := \tau  - t. With an
arbitrary constant a\ast \in A, we define

\~\alpha u(\cdot ) :=

\Biggl\{ 
\alpha u+h(\cdot ) if u\in [t, T  - h],

a\ast if u\in [T  - h,T ].

It is clear that \~\bfitalpha \in \scrA . Set

\~\mu u :=\scrL t,\mu ,\~\bfitalpha 
u , u\in [t, T ], and \mu u :=\scrL \tau ,\mu ,\bfitalpha 

u , u\in [\tau ,T ].

Then, \~\mu u = \mu u+h for every u\in [t, T  - h]. In particular,

\BbbE [\ell \~\alpha u(Xt,\mu ,\~\bfitalpha 
u )] =\BbbE [\ell \alpha u(X\tau ,\mu ,\bfitalpha 

u+h )] \forall u\in [t, T  - h].

Since \mu T = \~\mu T - h =\scrL (Xt,\mu ,\~\bfitalpha 
T - h ) and \~\mu T =\scrL (Xt,\mu ,\~\bfitalpha 

T ),

\widehat \rho 1(\~\mu T , \mu T )\leq \BbbE [| Xt,\mu ,\~\bfitalpha 
T  - Xt,\mu ,\~\bfitalpha 

T - h | ]\leq 
\Bigl( 
\BbbE [(Xt,\mu ,\~\bfitalpha 

T  - Xt,\mu ,\~\bfitalpha 
T - h )2]

\Bigr) 1
2

.

Because b, \sigma are bounded by ca, there is \~c1 > 0 satisfying \widehat \rho 1(\~\mu T , \mu T ) \leq \~c1
\surd 
h.

Therefore,

| \varphi (\~\mu T ) - \varphi (\mu T )| \leq ca\widehat \rho \ast (\~\mu T , \mu T )\leq ca\widehat \rho 1(\~\mu T , \mu T )\leq \~c1 ca
\surd 
h.

The above estimates imply that, for any \bfitalpha \in \scrA ,

v(t, \mu ) - J(\tau ,\mu ,\bfitalpha )\leq J(t, \mu , \~\bfitalpha ) - J(\tau ,\mu ,\bfitalpha )

=

\int T

T - h

\BbbE [\ell \~\alpha u(Xt,\mu ,\~\bfitalpha 
u )] du+\varphi (\~\mu T ) - \varphi (\mu T )\leq cah+ \~c1 ca

\surd 
h.

Hence,

v(t, \mu ) - v(\tau ,\mu ) = sup
\bfitalpha \in \scrA 

(v(t, \mu ) - J(t, \mu ,\bfitalpha ))\leq cah+ \~c1 ca
\surd 
h.

We prove the opposite inequality by using the control

\^\alpha u(\cdot ) :=

\Biggl\{ 
\alpha u - h(\cdot ) if u\in [h,T ],

a\ast if u\in [0, h].
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MCKEAN--VLASOV CONTROL ON A TORUS 919

Again, \^\bfitalpha \in \scrA , and we set

\^\mu u :=\scrL \tau ,\mu ,\^\bfitalpha 
u , u\in [\tau ,T ], and \mu u :=\scrL t,\mu ,\bfitalpha 

u , u\in [t, T ].

Then, \^\mu u = \mu u - h for every u \in [\tau ,T ] and \^\mu T = \mu T - h. Following the above steps
mutatis mutandis, we obtain the following inequality for any \bfitalpha \in \scrA :

v(\tau ,\mu ) - J(t, \mu ,\alpha )\leq J(\tau ,\mu , \^\bfitalpha ) - J(t, \mu ,\alpha )

= - 
\int \tau 

t

\BbbE [\ell \~\alpha u(Xt,\mu ,\bfitalpha 
u )] du+\varphi (\^\mu t) - \varphi (\mu T )\leq cah+ \~c1 ca

\surd 
h.

Hence,

v(\tau ,\mu ) - v(t, \mu ) = sup
\bfitalpha \in \scrA 

(v(\tau ,\mu ) - J(t, \mu ,\bfitalpha ))\leq cah+ \~c1 ca
\surd 
h.

8. Dynamic programming. In this section, we prove Theorem 3.4. For a
general result but in a different setting, we refer the reader to [18].

Proof of Theorem 3.4. We fix (t, \mu )\in \scrO , \tau \in [t, T ] and set

Q(\bfitalpha ) :=

\int \tau 

t

\BbbE [\ell \alpha s(Xt,\mu ,\bfitalpha 
s ,\scrL t,\mu ,\bfitalpha 

s )]ds+ v(\tau ,\scrL t,\mu ,\bfitalpha 
\tau ), \bfitalpha \in \scrA .

Then, the dynamic programming principle can be stated as v(t, \mu ) = inf\bfitalpha \in \scrA Q(\bfitalpha ).
Recall that v(t, \mu ) = inf\bfitalpha \in \scrA J(t, \mu ,\bfitalpha ). For any \bfitalpha \in \scrA and s \in [\tau ,T ], the Markov

property implies that Xt,\mu ,\bfitalpha 
s =X

\tau ,\scrL t,\mu ,\bfitalpha 
\tau ,\bfitalpha 

s , and consequently, \scrL t,\mu ,\bfitalpha 
s =\scrL \tau ,\scrL t,\mu ,\bfitalpha 

\tau ,\bfitalpha 
s [8].

Hence,\int T

\tau 

\BbbE [\ell \alpha s(Xt,\mu ,\bfitalpha 
s ,\scrL t,\mu ,\bfitalpha 

s )] ds+\varphi (\scrL t,\mu ,\bfitalpha 
T )

=

\int T

\tau 

\BbbE [\ell \alpha s(X
\tau ,\scrL t,\mu ,\bfitalpha 

\tau ,\bfitalpha 
s ,\scrL \tau ,\scrL t,\mu ,\bfitalpha 

\tau ,\bfitalpha 
s )] ds+\varphi (\scrL \tau ,\scrL t,\mu ,\bfitalpha 

\tau ,\bfitalpha 
T )

= J(\tau ,\scrL \tau ,\scrL t,\mu ,\bfitalpha 
\tau ,\bfitalpha 

\tau ,\bfitalpha )\geq v(\tau ,\scrL \tau ,\scrL t,\mu ,\bfitalpha 
\tau ,\bfitalpha 

\tau ).

This implies that

J(t, \mu ,\bfitalpha ) =

\int \tau 

t

\BbbE [\ell \alpha s(Xt,\mu ,\bfitalpha 
s ,\scrL t,\mu ,\bfitalpha 

s )] ds+

\Biggl( \int T

\tau 

\BbbE [\ell \alpha s(Xt,\mu ,\bfitalpha 
s ,\scrL t,\mu ,\bfitalpha 

s ))] ds+\varphi (\scrL t,\mu ,\bfitalpha 
T )

\Biggr) 

\geq 
\int \tau 

t

\BbbE [\ell \alpha s(Xt,\mu ,\bfitalpha 
s ,\scrL t,\mu ,\bfitalpha 

s ))] ds+ v(\tau ,\scrL \tau ,\scrL t,\mu ,\bfitalpha 
\tau ,\bfitalpha 

\tau ) =Q(\bfitalpha ).

Therefore, v(t, \mu ) = inf\bfitalpha \in \scrA J(t, \mu ,\bfitalpha )\geq inf\bfitalpha \in \scrA Q(\bfitalpha ).
To prove the opposite inequality, we fix \epsilon > 0 and choose controls \~\bfitalpha \in \scrA satisfying

Q(\~\bfitalpha )\leq inf\bfitalpha \in \scrA Q(\bfitalpha ) + \epsilon 
2 and \widehat \bfitalpha \in \scrA satisfying

J(\tau ,\scrL t,\mu ,\~\bfitalpha 
\tau , \widehat \bfitalpha )\leq v(\tau ,\scrL t,\mu ,\~\bfitalpha 

\tau ) +
\epsilon 

2
.
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920 H. METE SONER AND QINXIN YAN

Set \bfitalpha \ast 
u := \~\bfitalpha u \chi [t,\tau ](u) + \widehat \bfitalpha u \chi [\tau ,T ](u). Then,

v(t, \mu )\leq J(t, \mu ,\bfitalpha \ast ) =

\int T

t

\ell \~\bfitalpha s(Xt,\mu ,\~\bfitalpha 
s ,\scrL t,\mu ,\~\bfitalpha 

s ) ds+ J(\tau ,\scrL t,\mu ,\~\bfitalpha 
\tau , \widehat \bfitalpha )

\leq 
\int T

t

\ell \~\bfitalpha s(Xt,\mu ,\~\bfitalpha 
s ,\scrL t,\mu ,\~\bfitalpha 

s ) ds+ v(\tau ,\scrL t,\mu ,\~\bfitalpha 
\tau ) +

\epsilon 

2
=Q(\~\bfitalpha ) +

\epsilon 

2

\leq inf
\bfitalpha \in \scrA 

Q(\bfitalpha ) + \epsilon .

9. Viscosity property. In this section, we prove the viscosity property of the
value function. Although the below proof follows the standard one very closely, we
provide it for completeness.

The following version of It\^o's formula along flows of measures follows from Propo-
sition 5.102 of [8]. Recall that Xt,\mu ,\bfitalpha is the solution of (3.1), \scrL t,\mu ,\bfitalpha 

u =\scrL (Xt,\mu ,\bfitalpha 
u ), and

the operator \scrM a,\mu is defined in subsection 3.3.

Lemma 9.1. For every \psi \in \scrC s(\BbbT d), (t, \mu )\in \scrO , u\in [t, T ], and \bfitalpha \in \scrA ,

\psi (u,\scrL t,\mu ,\bfitalpha 
u ) =\psi (t, \mu )+

\int u

t

\Bigl( 
\partial t\psi (s,\scrL t,\mu ,\bfitalpha 

s ) +\BbbE [\scrM \alpha s,\scrL t,\mu ,\bfitalpha 
s [\partial \mu \psi (s,\scrL t,\mu ,\bfitalpha 

s )](Xt,\mu ,\bfitalpha 
s )]

\Bigr) 
ds.

9.1. Subsolution. Suppose that, for (t0, \mu 0) \in [0, T )\times \scrP (\BbbT d) and test function
\psi \in \scrC s(\scrO ),

0 = (v - \psi )(t0, \mu 0) =max
\scrO 

(v - \psi ).

For \alpha \in \scrC a, set

k\alpha (t, x,\mu ) := \ell (x,\mu ,\alpha (x)) +\scrM \alpha ,\mu [\partial \mu \psi (t, \mu )])](x), t\in [0, T ], x\in \BbbT d, \mu \in \scrP (\BbbT d).

Because H(\mu 0, \partial \mu \psi (t0, \mu 0)) = inf\alpha \in \scrC a
\mu 0(k

\alpha (t0, \cdot , \mu 0)), for any \epsilon > 0, there is \alpha \ast \in \scrC a
satisfying

\mu 0(k
\alpha \ast 
(t0, \cdot , \mu 0))\leq H(\mu 0, \partial \mu \psi (t0, \mu 0)) + \epsilon .

Set \bfitalpha \ast \equiv \alpha \ast , and let X\ast 
u := Xt0,\mu 0,\bfitalpha 

\ast 

u and \mu \ast 
u := \scrL t0,\mu 0,\bfitalpha 

\ast 

u for u \in [t0, T ]. Since
v \leq \psi , the dynamic programming principle Theorem 3.4 with \tau = t0 + h\leq T implies
that

v(t0, \mu 0)\leq 
\int t0+h

t0

\BbbE [\ell (X\ast 
s , \mu 

\ast 
s, \alpha 

\ast (X\ast 
s )]ds+\psi (t0 + h,\mu \ast 

t0+h).

By Lemma 9.1,

\psi (t0 + h,\mu \ast 
t0+h) =\psi (t0, \mu 0) +

\int t0+h

t0

\Bigl( 
\partial t\psi (s,\mu 

\ast 
s) +\BbbE [\scrM \alpha \ast ,\mu \ast 

s [\partial \mu \psi (s,\mu 
\ast 
s)](X

\ast 
s )]
\Bigr) 
ds.

Since \psi (t0, \mu 0) = v(t0, \mu 0), the above inequalities imply that

(9.1) 0\leq 1

h

\int t0+h

t0

\Bigl( 
\partial t\psi (s,\mu 

\ast 
s) +\BbbE [k\alpha 

\ast 
(s,X\ast 

s , \mu 
\ast 
s)]
\Bigr) 
ds.

We now let h tend to zero to arrive at the following inequality:

 - \partial t\psi (t0, \mu 0)\leq \BbbE [k\alpha 
\ast 
(t0,Xt0 , \mu t0)] = \mu 0(k

\alpha \ast 
(t0, \cdot , \mu 0))\leq H(\mu 0, \partial \mu \psi (t0, \mu 0)) + \epsilon .
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MCKEAN--VLASOV CONTROL ON A TORUS 921

9.2. Supersolution. Suppose that, for (t0, \mu 0)\in [0, T )\times \scrP (\BbbT d) and a test func-
tion \psi \in \scrC s(\scrO ),

0 = (v - \psi )(t0, \mu 0) =min
\scrO 

(v - \psi ).

We may assume that the minimum is strict. Toward a counterposition, suppose that

 - \partial t\psi (t0, \mu 0)<H(\mu 0, \partial \mu \psi (t0, \mu 0)) = inf
\alpha \in \scrC a

\{ \mu 0(k
\alpha , \cdot , \mu 0))\} ,

where k\alpha is as in the previous subsection. By Definition 3.5 of test functions \scrC s(\scrO ),
the map (t, \mu ) \in \scrO \mapsto \rightarrow H(\mu ,\partial \mu \psi (t, \mu )) is continuous. Therefore, there exist \delta > 0 and
a neighborhood \scrB \subseteq \scrO of (t0, \mu 0) such that

 - \partial t\psi (t, \mu ) + \delta \leq H(\mu ,\partial \mu \psi (t, \mu )) = inf
\alpha \in \scrC a

\{ \mu (k\alpha (t, \cdot , \mu ))\} \forall (t, \mu )\in \scrB .

For \bfitalpha \in \scrA , set X\bfitalpha 
s := Xt0,\mu 0,\bfitalpha 

s , \mu \bfitalpha 
s := \scrL t0,\mu 0,\bfitalpha 

s , and consider the (deterministic)
time

\tau \bfitalpha := inf\{ s\in [t0, T ] : (s,\mu 
\bfitalpha 
s ) /\in \scrB \} 

so that, for every s\in [t0, \tau 
\bfitalpha ), (s,\mu \bfitalpha 

s )\in \scrB , and consequently,

\mu \bfitalpha 
s (k

\alpha s(s, \cdot , \mu \bfitalpha 
s ))\geq H(\mu \bfitalpha 

s , \partial \mu \psi (s,\mu 
\bfitalpha 
s ))\geq  - \partial t\psi (s,\mu \bfitalpha 

s ) + \delta .

Because \BbbE [k\alpha s(s,X\bfitalpha 
s , \mu 

\bfitalpha 
s )] = \mu \bfitalpha 

s (k
\alpha s(s, \cdot , \mu \bfitalpha 

s )),\int \tau \bfitalpha 

t0

(\BbbE [k\alpha s(X\bfitalpha 
s , \mu 

\bfitalpha 
s )] + \partial t\psi (s,\mu 

\bfitalpha 
s ) ) ds\geq \delta (\tau \bfitalpha  - t0).

Then, by Lemma 9.1, we obtain the following inequality:

\psi (\tau \bfitalpha , \mu \bfitalpha 
\tau \bfitalpha ) =\psi (t0, \mu 0) +

\int \tau \bfitalpha 

t0

(\partial t\psi (s,\mu 
\bfitalpha 
s ) +\BbbE [\scrM \alpha s,\mu 

\bfitalpha 
s [\partial \mu \psi (s,\mu 

\bfitalpha 
s )](X

\bfitalpha 
s ) ])ds

=\psi (t0, \mu 0) +

\int \tau \bfitalpha 

t0

(\partial t\psi (s,\mu 
\bfitalpha 
s ) +\BbbE [k\alpha s(s,X\bfitalpha 

s , \mu 
\bfitalpha 
s )] - \BbbE [\ell \alpha s(X\bfitalpha 

s , \mu 
\bfitalpha 
s )]) ds

\geq \psi (t0, \mu 0) - 
\int \tau \bfitalpha 

t0

\BbbE [\ell \alpha s(X\bfitalpha 
s , \mu 

\bfitalpha 
s )] ds+ \delta (\tau \bfitalpha  - t0).

Since v\geq \psi and \psi (t0, \mu 0) = v(t0, \mu 0), the above implies that

v(t0, \mu 0)\leq 
\int \tau \bfitalpha 

t0

\BbbE [\ell \alpha s(X\bfitalpha 
s , \mu 

\bfitalpha 
s )] ds+ v(\tau \bfitalpha , \mu \bfitalpha 

\tau \bfitalpha ) - g(\bfitalpha ) \forall \bfitalpha \in \scrA ,

where g(\bfitalpha ) := \delta (\tau \bfitalpha  - t0) + (v(\tau \bfitalpha , \mu \bfitalpha 
\tau \bfitalpha ) - \psi (\tau \bfitalpha , \mu \bfitalpha 

\tau \bfitalpha )). We now claim that

\delta 0 := inf
\bfitalpha \in \scrA 

g(\bfitalpha )> 0.

Indeed, since v \geq \psi , if \tau \bfitalpha = T , then g(\bfitalpha )\geq \delta (T  - t0). On the other hand, if \tau \bfitalpha < T ,
then (\tau \bfitalpha , \mu \bfitalpha 

\tau \bfitalpha ) \in \partial \scrB . Because \scrB is compact and (t0, \mu 0) /\in \partial \scrB is the strict minimizer
of v - \psi , we have

(v - \psi )(\tau \bfitalpha , \mu \bfitalpha 
\tau \bfitalpha )\geq inf

(t,\mu )\in \partial \scrB 
(v - \psi )(t, \mu )> 0.
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922 H. METE SONER AND QINXIN YAN

Hence, \delta 0 > 0, and the above inequalities imply that, for every \bfitalpha \in \scrA ,

v(t0, \mu 0)\leq 
\int \tau \bfitalpha 

t0

\BbbE [\ell \alpha s(X\bfitalpha 
s , \mu 

\bfitalpha 
s )]ds+ v(\tau \bfitalpha , \mu \bfitalpha 

\tau \bfitalpha ) - \delta 0.

This contradiction to dynamic programming implies that  - \psi t(t0, \mu 0) \geq H(\mu 0, \partial \mu \psi 
(t0, \mu 0)).
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