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Abstract. An optimal control problem in the space of probability measures and the viscosity
solutions of the corresponding dynamic programming equations defined using the intrinsic linear
derivative are studied. The value function is shown to be Lipschitz continuous with respect to a
smooth Fourier—Wasserstein metric. A comparison result between the Lipschitz viscosity sub- and
supersolutions of the dynamic programming equation is proved using this metric, characterizing the
value function as the unique Lipschitz viscosity solution.
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1. Introduction. McKean—Vlasov optimal control is a part of the overarching
program of Lasry and Lions [24, 25, 26], as articulated by Lions through his College
de France lectures [27] and independently initiated by Huang, Malhamé, and Caines
[22]. We refer the reader to the classic book of Carmona and Delarue [8] and to the
lecture notes of Cardaliaguet [6] for detailed information and more references.

The main feature of the McKean—Vlasov-type optimization is the dependence of
its evolution and cost not only on the position of the state but also on its probability
distribution, making the set of probability measures its state space. Thus, the dynamic
programming approach results in nonlinear partial differential equations set in the
space of probability measures. Without common noise, they are first-order Hamilton—
Jacobi-Bellman equations, and the Hamiltonian is defined only when the derivative
of the value function is twice differentiable. In fact, this type of unboundedness is
almost always the case for optimal control problems set in infinite-dimensional spaces
[19] and is the main new technical difficulty.

These dynamic programming equations are analogous to the coupled Hamilton—
Jacobi and Fokker—Planck—Kolmogorov systems that characterize the solutions of the
mean-field games for which deep regularity results are proved in [7] under some struc-
tural conditions. However, in general, the dynamic programming equations for the
McKean—Vlasov optimal control problems are not expected to admit classical solu-
tions, as shown in subsection 4.1 below, and a weak formulation is needed.

Because the maximum principle is still the salient feature in these settings as
well, the viscosity solutions of Crandall et al. [15, 16, 17, 20] are clearly the appro-
priate choice. However, due to the unboundedness of the Hamiltonian, the original
definition must be modified. In fact, such modifications of viscosity solutions in
infinite-dimensional spaces have already been studied extensively, and the book [19]
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904 H. METE SONER AND QINXIN YAN

provides an exhaustive account of these results. Still, it is believed that more can
be achieved in the context of McKean—Vlasov due to the special structure of the set
of probability measures. Indeed, an approach developed by Lions lifts the problems
from the Wasserstein space to a regular .? space and then exploits the Hilbert struc-
ture to obtain new comparison results. This procedure also delivers the novel Lions
derivative, which has many useful properties, and we refer to [8] for its definition
and more information. This method is further developed in several papers, including
[1, 3, 12, 29, 30]. The choice of the appropriate notion of a derivative is also explored
in a recent paper [21], which then utilizes the deep connections to geometry to prove
uniqueness results for Hamiltonians that are bounded in the sense discussed above.

Our main goals are to develop a viscosity theory directly on the space of proba-
bility measures using the linear derivative, provide a comparison result, and obtain a
characterization of the value function as the unique viscosity solution in a certain class
of functions. A natural approach toward this goal is to project the problem onto finite-
dimensional spaces to leverage the already developed theory on these structures. A
second-order problem studied in [14] provides a clear example of this approach because
its projections exactly solve the projected finite-dimensional equations. However, in
general, these projections are only approximate solutions, and [13] uses the Ekeland
variational principle together with Gaussian-smoothed Wasserstein metrics as gauge
functions to control the approximation errors. A different technical tool is developed
in [4], and [21] studies the pure projection problem. Other approaches include the
path-dependent equations used in [34], gradient flows in [11], convergence analysis in
[2], and an optimal stopping problem in [32, 33]. A recent paper [10] exploits the
semiconvexity and also provides an extensive survey.

We, on the other hand, employ the classical viscosity technique of doubling the
variables as done in [5] in lieu of projection. The central difficulty of this approach
is to appropriately replace the “distance-square” term |r — y|? used in the finite-
dimensional comparison proofs with the square of a metric on the space of measures.
Thus, the crucial ingredient of our method is a novel smooth metric p, defined by a
Fourier-based modification of the Wasserstein metrics, which is, in fact, the norm of
the dual of a classical Sobolev space. In addition to several properties of p, proved
in section 5, our other main results are a comparison between Lipschitz continuous
subsolutions and viscosity supersolutions, Theorem 4.1, and the Lipschitz continuity
of the value function with respect to a weaker metric, Theorem 4.2. Although the
Lipschitz property of the value function is rather elementary for the Wasserstein
metrics, it requires detailed analysis for the Fourier-based ones. Indeed, a technical
estimate, Proposition 7.1, on the dependence of the solutions of the McKean—Vlasov
stochastic differential equation on the initial distribution is needed for this property.

As our approach contains several new steps, we study the simplest problem that
allows us to showcase its details and power concisely. In particular, to ease the
notation, we omit the dependence of all functions on the time variable, which can
be added directly. Additionally, dynamics with jumps can be included as done in
[6]. The compact structure of the torus is clearly a simplifying feature as well. We
leave the extension of our method to future studies, including [31]. However, our
main structural assumption on the regularity of the feedback controls is a strong one,
and further studies are needed to remove this restrictive condition. One possible
direction is to consider problems with more structure. Indeed, in our recent paper
[31], we exploit the separability of the cost function and the dynamics and the uniform
ellipticity of the infinitesimal generator of the underlying diffusion process to obtain
a comparison result under natural assumptions.
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The paper is organized as follow. General structure and notations are given in
section 2; in section 3, we define the problem and state the assumptions. The main
results are stated in section 4. We construct a family of Fourier—Wasserstein metrics
in section 5. The comparison result is proved in section 6 and the Lipschitz property
in section 7. The standard results of dynamic programming and the viscosity property
are proved in section 8 and, respectively, in section 9.

2. Notations. In this section, we summarize the notations and known results
used in the following. We denote the dimension of the ambient space by d and the
finite horizon by T > 0. Z is the set of all d-tuples of integers. T¢ =R%/(277Z)? is the
d-dimensional torus with the metric given by |z —y|pa :=infycpa |2 —y— 2k7|. We use
a filtered probability space (,F = (F)o<i<r,P) that supports Brownian motions.
We assume that the initial filtration Fy is rich enough so that, for any probability
measure on T¢, there exists a random variable on € whose distribution is equal to
this measure.

For a metric space (E,d), M(E) is the set of all Radon measures on E, and P(E)
denotes the set of all probability measures on E. Let L°(E) be the set of all E-valued
random variables. For X € L°(E), £(X) € P(E) is the law of X.

We denote the set of all continuous real-valued functions on E by C(E) and the
bounded ones by C,(E) C C(E). We write C(E,d) when the dependence on the metric
is relevant and C(E +— Y') if the range Y is not the real numbers. For a positive integer
n, C"(E) is the set of all n-times continuously differentiable, real-valued functions with
the usual norm ||-||¢» given by the sum of supremum norms of each derivative of order
at most n.

We endow M (E) with the weak* topology o(P(E),Cy(E)) and write i, — p when
limy, o0 pn (f) = p(f) for every f € Cp(E). Using the standard (linear) derivative on
the convex set P(E), we say that ¢ € C(P(FE)) is continuously differentiable if there
exists a function d,¢ € C(P(E)+— C(E))) satistying

¢(V)=¢(M)+/O /E3u¢(M+T(V—M))(fE)(V—u)(dw)dT Vi, v eP(E).

Clearly, 0,¢(1t) has many representatives. However, when 9,¢(u) is twice differen-
tiable, the Hamiltonian H (u,0,¢(n)) of the dynamic programming equation (3.3)
below is independent of this choice.

We set O := (0,T) x P(T?). For ¢ € C(O) and (t,u) € O, d)(t, ) denotes the
time derivative evaluated at (t,p), and 8,9 (t, 1) € C(T?) denotes the derivative in the
p-variable again evaluated at (t,p). L2(T?) is the set of measurable functions on T¢
that are square integrable with respect to the Lebesgue measure, with the following
orthonormal Fourier basis:

§ gikw zeT?, kezd,

)

erp(z):=(2m)~
where i = /=1 and z* is the complex conjugate of z. In particular, for any v € L2(T9),
v= Z Fy(v)ex, where Fy(v) ::/ y(z)ep(x) dz, kezl
kezd E

The following metrics on P(T?) are given by their dual representations:

pa(p,v) ==sup{(u—v)(¥) + Y €HAN(TY), lp]a <1},  A>1,
Bu(p,v) ==sup{(n—v)(¥) : Y €C™(TY), [Y]e» <1},  n=12,...,
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where, in view of the Kantorovich duality, p; is the Wasserstein-one distance and, for
A>1,

HA(T?) == {f €L*(T): [ fx <00}, Ifla= ( PONEENLDE IFk(f)|2> :

kezad

A classical Fourier representation of py is derived in Corollary 5.2.

It is well known that H) is the classical Sobolev space with fractional derivatives.
Indeed, for any integer n > 1, C"(T%) C H,,(T¢) = W™2(T%) and p,, < c,p, for some
constant c,. Moreover, by the embedding results, H)(T¢) € C*(T9) if A >n+ 4. In
particular, we set

d - ~
(2.1) n*<d>=n*:=3+{2J, CoimC(TY),  puimpu.s Boim o,

where |a] is the integer part of a real number a. Then, H,, (T%) C C?(T%).

3. McKean—Vlasov control. In this section, we define the McKean—Viasov
optimal control problem, and for a general introduction, we refer the reader to Chapter
6 in [8]. Formally, starting from ¢ € [0,7], the goal is to choose feedback controls
(au(-))uee,r] 50 as to minimize

T
/t E[0(X,, £(X.), 0(X,))] du+ o(£(Xr)),

where / is the running cost; ¢ is the terminal cost; b, are given functions; and, with
a Brownian motion B, dX, =b(X,, L(Xy), oy (Xy))du + 0(Xy, L(X4), 00 (Xy))dBy.
We continue by defining this problem properly.

3.1. Controlled processes. Suppose that A is a closed Euclidean space, let the
control set C, be a subset of C(T? — A) containing all constant functions, and let the
admissible controls A be the set of (deterministic) measurable functions e : [0, T] — C,.
We denote the value of any a € A at time u € [0,T] by «,, € C,. The given functions
are the drift vector b = (by,...,bg) € R? the d x d’ volatility matrix o = (0;;) with
i=1,...,d, j =1,...,d"; and the costs £,. We continue by stating our standing
regularity assumptions on these functions:

bi,0ij, T x P(TY) x AR,  :P(TY)—R.
Recall Cy, ps, px of (2.1), and, for a € C,, x € T and p € P(T9), set
b (z, ) := bz, py ), o%(x,pn) =0z, u,a(x)), “(x,p):=0x,p ax)).

Assumption 3.1 (regularity). There exists ¢ < oo such that, for all a € C, and
peP(TY),

16%C, 1)

c. Ho®Comlle. +16%C mlle. e,
and, for h="0,0,¢, @,

h(z,pa) = h(z,v.0)| ¢ pulpy) Vo eT’, uveP(T?, ac A
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Under this regularity condition, for any a € A; ¢ € [0,T]; and F;-measurable, T9-
valued random variable £ with u= £(£), there is a unique F-adapted solution X%+
of the following McKean—Vlasov stochastic differential equation,

(3.1)
xpre =gy [Lpe e gyt [ om (Ko L) dB,, se T,
t t

where L4 = L(X5#) and B is a d’-dimensional Brownian motion. Note that any
function on the torus T¢ can be extended to a 2m-periodic function on R%. Therefore,
we solve the above equation by considering these extensions of b,0 and solving the
equation first on R? and then mapping it to T¢.

The solution X%* depends on the choice of the initial condition & and the
Brownian increments (B, — Bt)ucjt, 7). However, because these Brownian increments
are independent of F; and we consider feedback controls, the flow (Ef;“"")ue[t’T] de-
pends only on the law u= L(£) of the initial condition and not on £ itself.

Clearly, the existence and uniqueness of solutions of (3.1) can be obtained under
weaker assumptions. On the other hand, the stronger condition with n, derivatives
is needed for the comparison and the Lipschitz continuity results.

Remark 3.2. We emphasize that assumption 3.1 puts implicit regularity restric-
tions of the control set C,, as further discussed in Remark 3.3 below. It should
be seen as a structural assumption rather than a technical regularity restriction.
Indeed, one way of verifying it is to impose a regularity condition that the func-
tions b(x, ), o(x,u, ), and £(z,p,-) are all in C, and a structural assumption that
Co C{aeCy:||all« < e} for some constant c,.

3.2. Problem. Starting from (¢, 1) € O, the pay-off of a control process a € A
is given by

T
J(t, ) == / B[ (XLme Lhmey du+ o(L55%),  ac A, (t,p) e 0.
t

Since E[(vu (XL, LLme)] = Llme(p(. LUme q,(-)), J(t,pu,a) is a function of
= L(&) independent of the choice of the initial random variable £. Although this
property, called law-invariance, holds directly in our setting, in general structures, it
is quite subtle. We refer to Proposition 2.4 of [18], and Theorem 3.5 in [12] for its
general proof and to section 6.5 and Definition 6.27 of [8] for a discussion.

Then, the McKean—Vlasov optimal control problem is to minimize the pay-off
functional J over a € A, and the value function is given by

;= inf .
vt p)i= Inf J(tpa),  (tp) €O

Remark 3.3. Suppose that C, = {a € C,(T? = A): |alle, < co} for some constant
¢p > 0. Consider the class of functions of the form h(x,u(f),a) for some f € C, and
h:T¢xRx A — R satisfying [|h(-,y,")|lc, +[|h(z, -, a)|1,00 <c1 for every z € T, y €R,
and a € A for some ¢; > 0. Then, h*(x, u) = h(z, u(f),a(x)), and ||h*(-, u)||c, is less
than a constant ¢, depending on ¢y, c1, and n,. Also, for every x € T?,

(1 f), (@) = he,v(f),a(@)| < el — )] < el flle. P (1) < ereopupn, ).

Hence, this class of functions satisfies the regularity assumption. More gen-
erally, under the appropriate assumptions, functions h(z,u(f1),...,u(fm),a) with
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fis--sfm € Cu(T) and h : T¢ x R™ x A — R also satisfy the regularity assump-
tion with the above control set C,. We emphasize that, even when the coefficients
depend on p only through u(f1),...,u(fm) of the measure p, the value function in
general is still infinite-dimensional.

The assumptions made above hold in a large class of examples studied in the
mean-field games. In particular, for the Kuramoto problem studied in [9], for some
constants k,0 > 0,

Uz, p,a) = %aQ + k[l — p(cos) cos(c) — p(sin) sin(z)], b(z,p,a)=a, o(a)=o.

3.3. Dynamic programming principle. We next state the dynamic program-
ming principle, which is central to the viscosity approach to optimal control. A general
proof in a different setting is given in [18]. However, the deterministic structure allows
for a simpler proof that we provide in section 8.

THEOREM 3.4 (dynamic programming). For every € P(T9) and 0<t<71<T,

(3.2) v(t, 1) = iré& / E[6* (XD LL1)] du+ v(T, LL1).
o t

It is well known that the dynamic programming can be used directly to show that
the value function is a viscosity solution of the dynamic programming equation

(3.3) —0Op(t, ) = H(p, 0v(t, 1)), t€[0,T), peP(T),
where, for v € C2(T?), u € P(T?), 2 € T¢, and a € C,,

H(p,7):= inf { (5 (, ) + M [3]() },
P

d
MO (@) =6 (2, 1) - Ouy (@) + D Y ofi(w, )o@, 1)y, v ().

i,j=11=1

The value function also trivially satisfies the following terminal condition:

(3.4) o(Top)=¢(n) ¥ ueP(T.

Because the value function is not necessarily differentiable, a weak formulation
is needed, and we use the notion of viscosity solutions. The definition that we use
is exactly the classical one in which the auxiliary test functions are continuously
differentiable functions on O = [0,7] x P(T?), with the linear derivative in P(T¢)
recalled in section 2. We continue by specifying the auxiliary functions used in the
definition of viscosity solutions.

DEFINITION 3.5. We say that ¢ € C(O) is a test function if ¢ is continuously
differentiable with 0,1 (t,u) € C2(T¢) for every (t,n) € O and the map (¢, p) €0

H(p,0,(t, 1)) is continuous. We denote the set of all test functions by Cs(O).

DEFINITION 3.6. A continuous function u € C(O) is a viscosity subsolution of
(3.3) if every v € C5(O), (to, o) € [0,T) x P(T?) satisfying (u—1p)(to, po) = maxgg (u—
¥) also satisfies

_at'(/](t(h MO) S H(I'LO, aﬂ/’(toa MO))
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A continuous function w € C(O) is a viscosity supersolution of (3.3) if every
Y € C5(0), (to,po) € [0,T) x P(T) satisfying (w — 1)(to, o) = ming (w — ) also

satisfies

_at'(/](t(h ,LLO) Z H(I'LO, au’(/)(th MO))

Finally, v € C(O) is a viscosity solution of (3.3) if it is both a sub- and a super-
solution.

4. Main results. Our main result is the characterization of the value function
as the unique continuous viscosity solution of the dynamic programming equation
(3.3) and the terminal condition (3.4).

Recall the metrics p., ps of (2.1).

THEOREM 4.1 (comparison). Suppose that the regularity assumption 3.1 holds,

u € C(O) is a wiscosity subsolution of (3.3) and (3.4), and w € C(O) is a viscosity
supersolution of (3.3) and (3.4). If, further, u or w is Lipschitz continuous in the
w-variable with respect to the metric py, then u<v on O.

The above comparison result is proved in section 6.

THEOREM 4.2 (continuity). Under the regularity assumption 3.1, there exists a
constant L, > 0 depending only on the horizon T' and the constant ¢, of assumption 3.1
so that

(A1) Jolt,m) = v(s ) S Ly [pu(ur) + =5} Ypw e P, ts€0,T].

This continuity result, proved in section 7, also implies Lipschitz continuity with re-
spect to py since py < cypx for some constant c,. The following result follows directly
from the standard viscosity theory [20], and its proof is given in section 9.

THEOREM 4.3 (viscosity property). Under the reqularity assumption 3.1, the
value function is a viscosity solution of (3.3) in O satisfying the terminal condition
(3.4).

In particular, any continuous viscosity subsolution is less than or equal to the
value function v, and any continuous viscosity supersolution is greater than or equal
to v.

Remark 4.4. In the comparison result, we could use any metric p) with A > 2+ %.
However, our proof for Lipschitz continuity requires us to employ the smaller metric
Pm and only for integer values of m. This combination of the results dictates the
global choice A =n,.

4.1. An example. In this subsection, we provide a simple example to illustrate
the notation and also the need for viscosity solutions. We take T=1, d=1, A =R,
b(x,p,a)=a,c=1, p=0, and

U p,a):= %aQ + L(m(p)), where m(u):= /Ta: w(dz)

and L : [-m,7] — R is a given Lipschitz function. Next, we show that the value
function of the above problem is independent of the control set C, and is given by

’U(thu) = w(tvm(u))’ (thu) €0,
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where

1

~ 1 .

wit,y) = inf J(t,y,&) = inf / {(du)2+L(Yj’y*°‘) du,  (ty)€[0,1]xT
&cA &acAJt

and A is the set of all measurable maps é&:[0,1]— T; and Y,V =y + ftu Ggds. It is
well known that w is the unique viscosity solution of the Eikonal equation [20],

(12) 0l y) =5 Ow(ty) + L), yeT,

and w(1,-) =0. Since w is not always differentiable, we conclude that v is not either,
and therefore, a weak theory is needed. On the other hand, when w is differentiable,
we have

Ouv(t, p)(x) = Oyw(t,m(p))z = 9:(0uv(t, p)(x)) = Iyw(t, m(u)).
Hence, by Jensen’s inequality,

H(u 0,0t = jnf [ (Ga(e + a@dyuttmi) ) uldo) + L)

Zaigga{; ( / a(x)u(dx)>2+< / a(w)u(dx)) ayw<t,m<u>>}+L<m<m>

1
— int {5+ ad,u(tmG0) | + Lm)
1
= =5 @yw(t,m(p))* + L(m(p)).
Because constant functions o = a are always in C,, the opposite inequality also holds.
Therefore,

H (1, Q0(t,1)) = 5 (@ (t,m(0)” + Lm (1))

for every C,. Since dyu(t, ) = dyw(t,m(u)), the Eikonal equation (4.2) implies that
when w is differentiable, v is a classical solution of the dynamic programming equation
(3.3).

5. Fourier—Wasserstein metrics. In this section, we study the properties of
the norms and the metric p) defined in section 2. Similar metrics are also defined in
[28] using a dual representation with Sobolev functions.

Recall that z* is the complex conjugate of z and the orthonormal basis {ex}reczq;
the Fourier coefficients Fy(f) are defined in section 2. For u € M(T%), k € Z¢, we also
set Fj.(u) := p(e}). Because T? is compact, FJ,(u) is finite for every k and Fy(u) =1
for all € P(T?).

For A > 1, we define a norm on M(T%) dual to || - || by

Inlx ==sup{n(¥) : Y eHA(TY), |¥|x<1},  neM(T%)

so that py(u,v) =|u — v|x.

LEMMA 5.1. For A > %, n € M(T9), |n|x < oo, and the following dual representa-
tion holds:

(5.1) nlx = ( >+ |k2)_)\Fk(77)2> :

kezd
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Proof. We first note as 2\ > d, cx := Y ca(1 + |k[*)™ < 0o. Let d(n) be the
expression in the right-hand side of (5.1) and TV (n) be the total variation of the
measure 7. Then, |Fj,(n)] < TV (n), and therefore, d(n) <>, c7a(1+ |k[*) "2 TV (n) =
TV (n).

For 1 € C(T), the Fourier representation 1 = > kezd Fr(¥)er implies that

(5.2)

n() =Y Fu@)nlex) =Y Fu(¥)) F(n)

kezd kezd
= 1+ KAE F@) [+ k)2 F ()
kezd
< < > (1+|k|2))\|Fk(w)|2> ( > (1+Ik2)‘AIF5(n)IQ> = [[®llx d(n).
kezZa kezd

In view of the definition of | - |5, |7|x < d(n) for any n € M(T?). .
To prove the opposite inequality, fix n € M(T?), and define a function v by

G(@) =Y (L+[E) A Fer(n), =  Fu@)=1+]k>) " Fil(n), kez’.
kezd
Since ¢y < o0, z/; is well defined. Moreover,
[BI1% =" A+ kHME@)P =D 1+ k) ()] = d*(n) < oo
kezd kezd

Hence, 9 € H(T%), and, by (5.2),

nW) =Y F(@) Fin) =Y (L+[k[*) > [Fe(n)* = d*(n) = [¢]1x d(n).
kezd kezd

Because n(¥) < |nlall|lx by the definition of | - |y, we have d(n)|[¢|x = n(¥)
LINKEPY

An immediate corollary is the following.

<
O

COROLLARY 5.2. For any \ > g, px is a metric on P(T?) with a dual represen-
tation

1
2
() = maxc{ (i — )(®) ¥l <1} = ( S (1 k) |Fk<u—u>|2> .
kezd
Proof. The dual representation follows directly from the previous lemma. Suppose
that py(u,v) = 0; then Fj(u) = Fi(v) for every k € Z4. Because p,v have the same
Fourier series, we conclude that y=wv. The fact that p) is a metric now follows from
the dual representation. ]

The following provides a connection between the two metrics that we consider.
Also, with m =1, it implies that the classical Wasserstein-one metric p; is dominated
by p1.

LEMMA 5.3. For any integer m > 1, there exists cm,q > 0 such that pp(p,v) <
et pon (1 0) for every u,v € P(T).
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912 H. METE SONER AND QINXIN YAN

Proof. Fix the m >1, and let D™ be the mth order derivatives of ¢ € C™(T%).
Then, since |k|?>™|Fy(1)|? = |Fp(D™)|?,

o RPPIE@)EF =D [E(DT )P = | DY Eegay < 4™ (2m) )G -

kezd kezd
Because (1 + |k|?)™ <2™(1 + |k|*™), for any k € Z%, ¢ € C™(T?),
[l <2 D [Eu@)P +27 Y kP Fu(9)P < ¢, 4

kezd kezd

DlIgm (zay,

where ¢2, ;=2"[1+ d™(27)?). Hence,

Pm(p,v) =sup{(p —v) (%) : [[¢llem ey <1}
<sup{(p—v)(¥) : Y €C™(TY), [|¢[lm < cma}
SSUP{(M*V)(#J) : ¢€Hm(Td)a ”dJHmScm,d}zcm,dpm(,u’v’/)- ]

Our next result is on the differentiability of py. Recall the test functions Cs(O)
of Definition 3.5, n.(d) of (2.1), and the basis e of section 2.

LEMMA 5.4. Fiz A> % and v € P(T?), and set h(p) = 2p3(p,v). Then,

Ouh()(@) =Y A+ k) Fu(n—v)ej(x), zeT?,
kezd

and ||0,h(p)||x = pa(p,v). Moreover, if A=n.(d), then d,h(u) € C*(T?).

Proof. Fix v € P(T?). For each k € Z%, set aj(p) := 4[Fy(u — v)[>. Then, we

directly calculate that d,ay(u)(-) = Fj(1 — v) €}(+). Then, for any x € T,

Ouh(p) (@)=Y (L4 k) duar(p)(@) = Y (L+ k)7 Fi(p —v) ef ().

kezd kezd

The above formula implies that Fj,(9,h(u)) = (1+|k[*) " F} (u — v) for every k € Z<.
Hence,

10,8 (IR = D A+ KM E@uh(w)P = Y (L4 [kF) 7 [Flp = )P = p3 (1, )-

kezd kezd
In view of the Sobolev embedding of H,,, (T%) into C*(T¢), 9,h(n) € C3(T¢). O

6. Comparison. In this section, we prove Theorem 4.1 in several steps. Recall

the test functions Cs(O) of Definition 3.5 and n., p. of (2.1). Then, 2(n, —2) >d+1,
and consequently,

(6.1) o(d) =" (14 [k[*)* ™ < oc.
kezd

Step 1 (set-up). Let w,w be as in the statement of the theorem. Toward a
contraposition, suppose that supg(u —w) > 0. We fix a sufficiently small § > 0
satisfying

l:= max {(u—w)(t,pu)—6(T—1t)}>0.
(t,n)€O
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Set @(t, ) :=u(t,pu) —6(T —t). Then, @ is a continuous viscosity subsolution of
(6.2) —0u(t, p) = H(p, Opult, i) — 0.

Step 2 (doubling the variables). For e > 0, set

Dt py5,0) = (e, 1) — w(s,) — 5 (P20mw) + (0= 5)?).

Because O is compact and %, w are continuous, there exists (tc,sc, fie,ve) € O x O
satisfying

(I)e(tea,ueassaye) :@aﬁq)e >1>0.
Ox0O

Set M :=max i, m:=minw, and (. := p2(fie, V) + (tc — s¢)? so that
(6.3) 0<C <2 (M+m—1).

_ Step 3 (letting € to zero). Since O is compact, there is a subsequence {(te, e, Sc, Ve) }
C O x O, denoted by € again, and (t*, u*,s*,v*) € O x O such that

fhe = Uy VeV, te—tt, s.— ST as €l0.

By (6.3), it is clear that t* = s* and p,(u*,v*) =0. Then, by Lemma 5.3, p* = v*.
If t* were to be equal to T, by the terminal condition (3.4), we would have

0<iI< limﬁ)nf D (L, ey Se,Ve) < lif(r)l [@(te, pte) — w(Se,ve)] =u(T, ") — w(T, p*) <0.

Hence, t* < T and t¢,s. <T for all sufficiently small € > 0.

Step 4 (distance estimate). Without loss of generality, suppose that w is Lipschitz.
Indeed, if instead, u were to be Lipschitz, the argument below with obvious changes
would also yield the estimate (6.4) below, and this estimate is the only place where
the Lipschitz assumption is used. Then,

1
[wt, p) —w(t,v)| < SLuwps(psv),  mve P(T%), t €0, 7],
and, for each ¢ >0,

1
5 Ce = (I)e(teauasmye) > ée(teaueysevue)

ﬂ(tevﬂe) - W(S€7V6) - 26

Therefore, p? (e, ve) = Ce — (te — 56)% < 2€[w(se, pe) — W(Se, V)] < 2€ Loy pu (e, Ve ).
Hence,

(6.4) Ps (e, ve) < 2€ Ly, Ye>0.

Step 5 (viscosity property). Set

1 1

Velts ) o= o (o2 ve) + (=57 dels,v) 1= = - [pi(pe v) + (ke — 9)7).
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914 H. METE SONER AND QINXIN YAN

By Lemma 5.4, both 9,t(t, ), 8,¢e(s,v) € C*(T?). Moreover, by the regularity
assumption 3.1, maps (¢,p) — H(p, 0,0 (t, 1)) and (t,v) — H(v,0,¢(t,v)) are con-
tinuous. Hence, 1 and ¢, are smooth test functions. Set

1 Fy, (:ue - VE) *
He(x) = ;l,we(teaﬂe)(x) = au¢e(£ea Ve)(x) = . Z W ek(m>7 zeT
kezd
Clearly, @(t, 1) — ¥(t, 1) is maximized at ¢, y.. Since t. < T, 1. € Cs(O) and i is
a viscosity subsolution of (6.2), then

te_se

< H(pte, Ke) — 6.
€

By the viscosity property of w, a similar argument implies that

t —_
_bteT Se > H(ve, ke).
€

We subtract the above inequalities to arrive at
(6.5) 0< 6 < H(pe,ke) — H(ve, Ee).
Step 6 (estimation). Since H (u, ke) = infaec, {0 (-, 1) + M*#[k](-)},

|H (pe,ke) — H(e, k)| < sup T + sup I + sup J°,
a€elC, a€lC, aelC,y

where

T = e (0 (5 pe)) — ve (6 (-, ve))
I = (pe — ve) M*F<[ke] ()]
T& = we(M* [k (1) = MB<[Re] ()] -

Step 7 (estimating 7.%). By the regularity assumption 3.1 and the estimate (6.4),

(e (€7 (o5 pre)) = we (6% (-, we) )| < (e = ve) (€7 (s ) 4 e (€7 (- pe) — €7 (5 ve))|
< pa(pte, ve) 167 (- e lle. + ey 0% (2, pre) — £ (, ve) |

< 2¢q ps(phe, Ve) < 2¢q Ly €.

Hence, we have lim, o sup,cc, 7% =0.
Step 8 (estimating Z2). For x € T¢, € P(T9), a €C,, and k € Z¢, set

Bk (@, p) := M eg] () = [ik - b (2, 1) — a (2, pw)]eg (@),

where, for z € T, € P(T?),a € Cy, k € 29,

1A
(66) ag(‘rnu) = 9 Z Z O—il(x’ﬂva(‘r))aﬂ(xauaa(x))kikj'
ij=11=1
Then,
Mk (x) = - > AP Fr(pe —ve) Bi (x, pie)-

kezd
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This, in turn, implies that

1 1
Ieag E Z W ‘Fk(ﬂe_yeﬂ |(M6_Ve)(61?<'7ue))‘

kezd
1 Bl (= (=BG )
< 7”*(“:”6) ( > (IR R ) ;
kezd

where

Bre =1+ k)™ sup (e —ve) (BE (L p))l ke

a€elCq

Again, by assumption 3.1, |Bx.| < ¢, + ¢2 and 51?,6 is Lipschitz continuous with
a Lipschitz constant c; uniformly in a. Hence, by the Kantorovich duality, S <
ckp1 (e, Ve). As pe — v converges weakly to 0, we conclude that S . also converges
to 0 for every k € Z. Also, c(d) => po, (1 + |k|?)*> "= is finite by (6.1), and we have
argued that |f | is uniformly bounded. Hence, we may use dominated convergence
to conclude that the sequence Y 72 (1 + [k[*)>~"= 87 _ converges to 0 as € | 0. Then,
by (6.4),

o] 2
lim sup Z% <lim L L+ k)™ g2, | =o0.
iy s 77 <l L (300
Step 9 (estimating J%). The definition of J¢ implies that
J& < sup {IM™He ke (x) = M*7 [re] ()]}
e
Let a{ be as in (6.6), and, for a € C,, x € T, k € Z4, set
Ve () i= MOF[e](x) — MY [ep](x)

=ik - [0%(, pe) — 0% (w, ve)]eg () + [af (2, ve) — aj (, pe) e ().

By the regularity assumption 3.1, there exists c; such that

sup i (@)] < ea(1+ k*)Pe(pe,ve)  VaeCa, k€L,
z€eT

Hence, for every a € A,

| [Fue— 1)
JE< - —————" sup |yp.(x
c 2 Gt S )

kezd
3 3
C2 ‘Fk(ﬂe_Ve)P 2\2— ~
<= —_— 1+ |k T w (e, Ve
—€<Z o) | 2 R B
kezd kezd

<caly C(d) ﬁ* (/«Ley Ve) =:¢ b\* (Mea V6)7

where ¢(d) is as in (6.1). Therefore, limco sup,ec, J& < élimejo pi(pte, ve) = 0.
Step 10 (conclusion). By (6.5) and the above steps, 0 < ¢ <limejo [H (e, ke) —
H(ve,ke)] <0. This clear contradiction implies that maxgz (u —w) <0.
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916 H. METE SONER AND QINXIN YAN

7. Lipschitz continuity. In this section, we prove Theorem 4.2.

7.1. Regularity in space. We first prove the continuous dependence of the
solutions of the McKean—Vlasov stochastic differential equation (3.1) on its initial
data.

PROPOSITION 7.1. Suppose that the reqularity assumption 3.1 holds. Then, there
exists ¢ >0 depending on T and the constant ¢, of assumption 3.1 such that

Pe(Lbe fhvey <eh (uv) YO0<t<u<T, p,veP(T), ac A

Proof. We complete the proof in several steps.
Step 1 (setting). We fix t € [0,7], pu,v € P(T%), and o € A and set

Y, = Xbme oy, = L0 Zy = X0y, = LIS w€t,T].
By the definition of p,, we need to prove the following estimate for every u € [t,T]:

(b = 1) (V) S Epu(p,v) Ille. VY €Ca.

Step 2 (stochastic differential equations). For x € T4, let Y*, Z% be the solutions
of the stochastic differential equations

Yux:x—i_/ (b (Y, ps)ds + 0% (Y, ps)dBs]

t

zggza,ur/ (% (2, v )ds + 0% (27, v3)dBy]..
t

Set Li(x) :=E[p(Y,})] and LY (z) :==E[(Z%)]. Then, by conditioning, we have

u

() =B (Vo) = p(Ly),  vu(y) =E[Y(Z,)] =v(Ly).

Therefore,

(= vu) () = (= v)(LY) + v(Ly — L) = Zu(¢) + Tu(¥).

Step 3 (Z,, estimate). By the regularity assumption 3.1, there exists a constant
¢ satisfying

[16% (-5 )

Hence, the map = € T¢ — Y,? is n,-times differentiable [23]. Therefore, L* € C,. From
the chain rule, there exists a constant ¢ > 0 depending only on ¢, of assumption 3.1,
satisfying

c. +llo® (opa)lle. <& VYuelt,T).

1L, <ézllvlle.  Yuelt,T],peP(T?).

This implies that

Tu () = (n = v)(L5) < &2 pu(p, v) Y0

Step 4 (J, estimate). By definitions, J< sup, |L¥(xz) — LY (z)| and

Cu-

Lt — Ly <E[(Y) —w(Z0)) SENY = ZE] ] < BIYS = 297 (|4
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For z € T? and setting m?2(z) :=E[(YZ — Z%)2], we directly estimate that
mi(l’)gQT/E[(bas(Yfaus)*bo‘s(vaVs))z}d5+2/EHUQS(vaus)*UO‘S(vaVs)|2]d5-

t t
By the regularity assumption 3.1,
0% (Y, ps) — b (Z7,vs)| < ca [|YS" — Z5| + p(ps, vs)] -
The same estimate also holds for 0% (Y®, us)—o® (Z%,vs)|. Hence, there exists a con-
stant é3 > 0, independent of x, satisfying m2 < ¢3 j;u [m?2 + D (ps,vs)?]ds for every u €

[t,T]. By Gronwall’s inequality, there exists ¢, > 0 satisfying m2 < ¢é3 |, tu D (pts, v5)%ds.
Hence,

Tu < BIYZ — 22Dl < ( / P10, ) ds)2 lole.  VueltT]

Step 5 (conclusion). By the previous steps,

(o — 1) (¥) < (ézﬁ*(,u,l/) + ¢4 (/ Pu(ps, vs)® dS) 2) [¥lle. Vel
t

Since the above holds for every i € C,, the definition of p, implies that

D (s V) < E2 P (p, V) + 64 (/tu D (s, vs)? ds) ’ Yuelt,T).
Hence,
Plnusw)? <2800 428 [ Dl Pds Vuell
¢
Again, by Gronwall, pi (p, v4,)? < é2 pi(p,v)? for some &> 0 for all u € [t,T]. d

The following is an immediate consequence of the above estimate.

LEMMA 7.2. Under the regularity assumption 3.1, there exists L1 >0 such that
|J(t, u, ) — J(t,v, )| < Ly pu(p,v) Vac A, u,veP(T, te(0,T].
Consequently,
o(t, ) —o(t,v)| < Ly pu(p,v) Vv € P(T?), £ €[0,T].

Proof. We fix a € A, u,v € P(T?), and t € [0,T] and use the same notation as in
Proposition 7.1. For u € [t,T], the regularity assumption 3.1 implies that

B[ (Y, pu) = L7 (Zs, v )]
SB[ (Yas ) = 05 (Zus )] + [E[6¥ (Zuas pr) = 7 (L )]
< (pw = va) (€% (-, ) )| + Ca P (B, V)
< s (s V) [[€7% (5 ) [l e, + Ca P (s V)
<264 P (s V) < 2¢4 € P (s 1)
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We now directly estimate using the above to obtain the following inequalities:

T
Tt @) = J(t,v,@)| < / B[ (Yar ) — €7 (Zuyv)]| du + [Elp(pir) — o (vr)]
<260 &(T = 4) pu () + ca P (i v1)
< 0 (2T — 1) + 1) ().

Because |v(t, p) — v(t,v)| <supgeq | (E, @, a) — J(t, v, o), the proof of the lemma is
complete. ]

7.2. Time regularity.
PROPOSITION 7.3. Suppose that the reqularity assumption 3.1 holds. Then, there
exists Lo >0 depending on T' and the constant c, in assumption 3.1 such that

ot p) = v(r,p)| < Laft =72 ¥ t,7€[0,T], peP(T?.

Proof. Fix 0<t<7<T, u€ ’P(']I‘d), and o« € A, and set h := 7 —t. With an
arbitrary constant a, € A, we define

Gl = aysn(r) ifuelt,T — hj,
T ) a if ue [T —h,T).

It is clear that & € A. Set

fi i= L5 w e [t,T)], and gy = LD wer,T).

Then, fi, = iyt for every u € [t,T — h]. In particular,

E[e% (X4 )] =Bl (X[f50) VueltT - hl.

Since jir = ir_1, = LX) and fir = LX),

1
2

P, ) S E[XES - Xp) < (B - X752
Because b,0 are bounded by c¢,, there is ¢ > 0 satisfying pi(ir,ur) < & Vh.
Therefore,
e(fir) = (pr)| < capulfiz, pr) < capr(fir, pr) < é ca V.
The above estimates imply that, for any a € A,
o(t, p) = J(m,p, @) <J(t p, &) = J (70, )

T
:,/? E[e% (XL*%)] du+ o(jir) — o(pr) < cah + &1 cq V.
T—h
Hence,
v(t, ) = v(r, 1) = sup (v(t, ) — J(t, 1, @) < cah + & cq V.
acA

We prove the opposite inequality by using the control

8u() = {auh(.) if we [h, 7],
T a. if w e [0, ).
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Again, & € A, and we set
fi = L0 we [, T], and  p, = LE® welt,T).

Then, [y, = piy—p for every u € [7,T] and jir = pr—_p. Following the above steps
mutatis mutandis, we obtain the following inequality for any « € A:

U(T7 M) - J(t7 Hy Oé) < J(T7 My d) - J(t7 My OZ)
—— [ Bl (X dut () — plur) < ol + 21 V.
t

Hence,

0(7, 1) — 0{t ) = Sup (0(7, 1) — T (b 1, ) < o+ 1 cq Vb 0
acA

8. Dynamic programming. In this section, we prove Theorem 3.4. For a

general result but in a different setting, we refer the reader to [18].
Proof of Theorem 3.4. We fix (t,u) € O, 7 € [t,T] and set

Qla) = / E[e (X0, LEme]ds + o(r, L54%), e A
t

Then, the dynamic programming principle can be stated as v(t,pu) = infaea Q).
Recall that v(t,p) = infaea J(¢t, u, ). For any o € A and s € [r,T], the Markov

t,p, o

t,p,ox
property implies that X = XST’LT " and consequently, LLH® = E;’LT“ " 8].
Hence,

T
[ Bl (e ) ds ()

T t, o t,p,ox t,p,ox
= [ B T LT sl
T
tp,o tip, o
= J(r L7 @) 2o L7,

This implies that

T T
Tt = Ele (xpme, £ ds+< | Bl (xeme o) dsw(c;’“"'))
t T

z / Efeos (X, £hme))] ds + o(r, £757 %) = (o).
t

Therefore, v(t, u) =infoea J (¢, p, @) > infoeq Q).
To prove the opposite inequality, we fix € > 0 and choose controls & € A satisfying
Q(a) <infaeq Q(a) + § and & € A satisfying

Jr L1 8) < ofr, L) 4 &
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Set g, := &y X[t (u) + Q. X[r7(u). Then,

T
vt p) < J(tpa) = / (% (XIS, LERS) ds + J (7, L2, &)
t

T
< [ e L) ds o, L) 4 § = Q@) +
t

< inf Q(a) +e.
- aE.AQ( ) +
9. Viscosity property. In this section, we prove the viscosity property of the
value function. Although the below proof follows the standard one very closely, we
provide it for completeness.
The following version of It6’s formula along flows of measures follows from Propo-

sition 5.102 of [8]. Recall that X** is the solution of (3.1), £L** = L(XL#*), and
the operator M** is defined in subsection 3.3.

LEMMA 9.1. For every ¢ € Cs(T%), (t,u) € O, u€[t,T), and a € A,

0l £57) = 00) [ (G0, L) + B £ 0,05, L4 X)) s,

9.1. Subsolution. Suppose that, for (g, uo) € [0,7') x P(T%) and test function
Y eC,(0),
0= (v—1)(to, o) = m@ax(v — ).

For a € C,, set

K (42, 1) o= U o (@) + MOP0,0( D)), 1€ [0.T], 2 € T pe PTY),
Because H (fi0,0,%(to, o)) = infaee, to(k*(to, -, pto)), for any e > 0, there is a* € C,
satisfying

,U*O(ka* (th ) MO)) é H(;U’Oa 3M/1(t0a :U/O)) +e.

Set a* = ay, and let X := Xloroe" and p* := Llo#o@” for y € [to,T]. Since
v <, the dynamic programming principle Theorem 3.4 with 7 =ty + h < T implies
that

to+h
o(to. o) < / E[0(X? 0 (X2))ds + (to + hu sy 4 ).

to

By Lemma 9.1,

toth * ok
lto ol ) = Vlton ) + [ (0o, + ELMT 0,05, 1))(X)) .

to

Since 9(to, o) = v(to, tto), the above inequalities imply that

to+h N
(9.1) o<t / (Bu(s. ) + Bk (s, X2, 2] ) s

We now let h tend to zero to arrive at the following inequality:

—8yb(to, o) SEE™ (to, Xegs ito)] = o (K (to, - o)) < H (o0, 8,0 (to, p10)) + €.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/02/24 to 140.180.240.6 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

MCKEAN-VLASOV CONTROL ON A TORUS 921

9.2. Supersolution. Suppose that, for (to, 1) € [0,T') x P(T%) and a test func-
tion ¢ € C4(0),

0=(v=9)(to, pio) = min(v — ¢).
We may assume that the minimum is strict. Toward a counterposition, suppose that

=0 (to, po) < H(po, 0,9 (to, po)) = aigcfa {ro (B, - 10))},

where £ is as in the previous subsection. By Definition 3.5 of test functions C,(0),
the map (t,u) € O+ H(p,0,1(t, 1)) is continuous. Therefore, there exist § > 0 and
a neighborhood B C O of (to, io) such that

—0up(t, ) + 0 < H(p 0p(t p)) = Inf {u(k(t,,p)} V(tp) €B.

For a € A, set X& := Xlooroex & .= flosro.@ and consider the (deterministic)
time

7% :=inf{s € [to,T]: (s,us) ¢ B}
so that, for every s € [tg, %), (s,u) € B, and consequently,

Because E[k® (s, X, ug)] = p (k% (s, -, 1)),

[ e )]+ (s, 9) ds > 0% ~ o).
to
Then, by Lemma 9.1, we obtain the following inequality:

a

P(7%, 1Te) = P(to, po) + /tT (Beth (8, &) + ELM* [0, (5, u$)](XE) 1)dls

o

— (o, o) + / (Db 1) + B[k (5, X, 1] — B0 (X, 1®)]) ds

a

> (to, o) — /T E[0% (X, ud)] ds+0(7™ —tp).

to
Since v > and ¥ (to, o) = v(to, to), the above implies that

a

v(to,uo)ﬁ/ E[* (X3 ud)] ds+o(7%,u2) —g(a)  VaecdA,

to

where g(a) :=0(7% —to) + (v(7%, %) — (7, u%)). We now claim that
0o := inf .
0:= inf g(c)>0

Indeed, since v >, if 7* =T, then g(a) > 6(T — tp). On the other hand, if 7* < T,
then (7%, u% ) € 0B. Because B is compact and (to, t0) ¢ OB is the strict minimizer
of v — 1, we have

=D p%) = vl (0= )10 >0,

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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Hence, 6y > 0, and the above inequalities imply that, for every o € A,

o

o(to o) < / E[e (X%, u2)]ds + v(r, 5%) — do.
t

0

This contradiction to dynamic programming implies that —y(to, uo) > H (o, 0ut)
(to, 1o))-
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