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Abstract

This paper outlines, and through stylized examples evaluates a novel and highly effective
computational technique in quantitative finance. Empirical Risk Minimization (ERM) and
neural networks are key to this approach. Powerful open source optimization libraries allow
for efficient implementations of this algorithm making it viable in high-dimensional structures.
The free-boundary problems related to American and Bermudan options showcase both the
power and the potential difficulties that specific applications may face. The impact of the
size of the training data is studied in a simplified Merton type problem. The classical option
hedging problem exemplifies the need of market generators or large number of simulations.
Key words: ERM, Neural Networks, Hedging, American Options.
Mathematics Subject Classification: 91G60, 49N35, 65C05.

1 Introduction
Readily available and effective optimization libraries such as Tensorflow or Pytorch now
make previously intractable regression type of algorithms over hypothesis spaces with large
number of parameters computationally feasible. In the context of stochastic optimal control
and nonlinear parabolic partial differential equations which have such representations, these
exciting advances allow for a highly efficient computational method. This algorithm, which
we call deep empirical risk minimization, proposed by E & Han [21] and E, Jentzen & Han
[22], uses artificial neural networks to approximate the feedback actions which are then
trained by empirical risk minimization. As stochastic optimal control is the unifying umbrella
for almost all hedging, portfolio or risk management problems, and many models in financial
economics, this method is also highly relevant for quantitative finance.

Although artificial neural networks as approximate controls are widely used in optimal
control and reinforcement learning [6], deep empirical risk minimization simulates directly the
system dynamics and does not necessarily use dynamic programming. It aims to construct
optimal actions and values offline by using the assumed dynamics and the rewards structure,
and often uses market generators to simulate large training data sets. This key difference
between reinforcement learning and the proposed algorithm ushers in essential changes to
their implementations and analysis as well.
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Our goal is to outline this demonstrably effective methodology, assess its strengths
and potential shortcomings, and also showcase its power through representative examples
from finance. As verified in its numerous applications, deep empirical risk minimization
is algorithmically quite flexible and handles well a large class of high-dimensional models,
even non-Markovian ones, and adapts to complex structures with ease. To further illustrate
and evaluate these properties, we also study three classical problems of finance with this
approach. Additional examples from nonlinear partial differential equations and stochastic
optimal control are given in the recent survey articles of Fecamp, Mikael & Warin [15] and
Germain, Pham & Warin [19]. They also provide an exhaustive literature review.

Our first class of examples is the American and Bermudan options. The analysis of these
instruments offer many-faceted complex experiments through which one appreciates the
potentials and the challenges. In a series of papers, Becker et al., [4, 5] bring forth a complete
analysis with computable theoretical upper bounds through its known convex dual. They
also obtain inspiring computational results in high dimensional problems such as Bermudan
max-call options with 500 underlyings. Akin to deep empirical risk minimization is the
seminal regression on Monte-Carlo methods that were developed for the American options
by Longstaff & Schwartz [29] and Tsitsiklis & van Roy [38]. Many of their refinements, as
delineated in the recent article of Ludkovski [30], make them not only textbook topics but
also standard industrial tools. Still, the deep empirical risk minimization approach to optimal
stopping has some advantages over them, including its effortless ability to incorporate market
details and frictions, and to operate in high-dimensions as caused by state enlargements
needed for path-dependent claims. An example of the latter is the American options with
rough volatility models as studied by Chevalier at. al. [11]. They require infinite-dimensional
spaces and their numerical analysis is given in Bayer et al. [3]. Other similar examples can
be found in [4, 5].

For interpretability of our results, we base the stopping decisions on a surface separating
the ‘continuation’ and ‘stopping’ regions, and approximate directly this boundary - often
called the free boundary - by an artificial neural network. Similarly for the same reason,
Ciocan & Mĭsic [12] compute the free boundary directly, by using tree based methods. An
additional benefit of this geometric approach to American options is to construct a tool
that can also be effectively used for financial problems with discontinuous decisions such
as regime-switching or transaction costs, as well as non-financial applications. Indeed, the
computation of the free-boundary is an interesting problem independent of applications to
finance. Recently, deep Galerkin method [37] is used to compute the free boundary arising in
the classical Stephan problem of melting ice [39].

Our numerical results, reported in the subsections 4.5 and 4.6 below, show that nat-
ural problem specific modifications enable the general approach to yield excellent results
comparable to the ones achieved in [4, 5]. The free boundaries that we compute for the
two-dimensional max-call options also compare to the results by Broadie & Detemple [8] and
by Detemple [14]. An important step in our approach is to replace the stopping rule given
by the sharp interface by a relaxed stopping rule given by a fuzzy boundary as described in
the subsection 4.4. Further analysis and the results of our free-boundary methodology are
given in our future manuscript [32].

Our second example of classical quadratic hedging [36] is undoubtedly one of the most
compelling benchmark for any computational technique in quantitative finance. Thus, the
evaluation of the deep empirical risk minimization algorithm on this problem, imparts valuable
insights. Readily, Bühler et al., [9, 10] use this approach for multidimensional Heston type
models, delivering convincing evidence for the flexibility and the scope of the algorithm,
particularly in high-dimensions. Huré et al., [25] and Bachouch et al., [2] also obtain equally
remarkable results for the stochastic optimal control using empirical minimization as well
as other hybrid algorithms partially based on dynamic programming. Extensive numerical
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experimentations are also carried out by Fecamp et. al. [15] in an incomplete market that
models the electricity markets containing a non-tradable volume risk [40]. Ruf & Wang [33]
apply this approach to market data of S&P 500 and Euro Stoxx 50 options. In all these
applications, variants of the quadratic hedging error is used as the loss function.

To highlight the essential features, we focus on a simple frictionless market with either
Black & Scholes or Heston dynamics, and consider a vanilla Call option with quadratic loss.
In this setting, we analyze both the pure hedging problem by fixing the price at a level lower
than its known value and also the pricing and hedging problem by training for the price as
well. By the well-known results of Schweizer [35, 36] and Föllmer & Schweizer [18], we know
that the minimizer of the analytical problem in the continuous time is equal to either the
Black & Scholes price or the price obtained by Heston [23] as the discounted expected value
under the risk neutral measure with the chosen market risk of volatility risk. Our numerical
computations verify these results as well.

As the final example, we report the results of an accompanying paper of the first two
authors [31] for a stylized Merton type problem. With simulated data, the numerical results
once again showcase the flexibility and the scope of the algorithm, in this problem as well. We
also observe that in data-poor environments, the artificial neural networks have an amazing
capability to over-learn the data causing poor generalization. This is one of the key results
of [31] which was also observed in [28]. Despite this potential, as demonstrated by our
experiments, continual data simulation can overcome this difficulty swiftly.

In this paper, we only discuss the properties of the algorithms that are variants of the
deep empirical risk minimization. The use of artificial neural networks or statistical machine
learning is of course not limited to this approach. Indeed, starting from [26] and especially
recently, artificial neural networks have been extensively employed in quantitative finance.
In particular, kernel methods are applied to portfolio valuation in [7], and to the density
estimation in [16]. Gonon et. al. [20] use the methodology to study an equilibrium problem
in a market with frictions. For further results and more information, we refer to the recent
survey of Ruff & Wang [34] and the references therein.

The paper is organized as follows. The next section formulates the control problem
abstractly covering many important financial applications. The description of the algorithm
follows. Section 4 is about the American and Bermudan options. The quadratic hedging
problem is the topic of Section 5. Finally, the numerical examples related to the simple
Merton problem are discussed in Section (6).

Acknowledgements. Research of the second and the third authors was partially supported
by the National Science Foundation grant DMS 2106462.

2 Abstract problem
Following the formulation of [31], we start with a Z ⊂ Rd valued stochastic process Z on a
probability space Ω. This process drives the dynamics of the problem, and in all financial
examples that we consider it is the related to the stock returns. For that reason, in the
sequel, we refer to Z as the returns process, although they may be logarithmic returns in
some cases. Investment or hedging decisions are made at N uniformly spaced discrete time
points labeled by k = 0, 1, . . . , N and let

T := {0, 1, . . . , N − 1}, T̂ := {0, 1, . . . , N}.
We use the notation Z = (Z1, . . . , ZN ) and set Z0 = 0. We further let F = (Ft)t=0,...,N be the
filtration generated by the process Z. The F-adapted controlled state process X takes values
in another Euclidean space X and it may include all or some components of the uncontrolled
returns process Z.
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In the financial examples, the state includes the marked-to-market value of the portfolio
and maybe other relevant quantities. In a path-dependent structure, we would be forced to
include not only the current value of the portfolio and the return, but also some past values
as well (theoretically, we need to keep all past values but in practice one stops at a finite
point). In illiquid markets, the portfolio composition is also included into the state and even
the order-book might be considered. We assume that the state is appropriately chosen so
that the relevant decisions are feedback functions of the state alone and we optimize over
feedback decisions or controls. Thus, even if the original problem is low dimensional but
non-Markov, one is forced to expand the state resulting in a high-dimensional problem.

We denote the set of possible actions or decisions by A. While the main decision variable
is the portfolio composition, several other quantities such as the speed of the change of the
portfolio could be included. Then, a feedback decision is a continuous function

π : T × X 7→ A.

We let C be the set of all such functions. Given π ∈ C, the time evolution of the state vector
is then completely described as a function of the returns process Z. Hence, all optimization
problems that we consider have the following form,

minimize v(π) := E [ `(π, Z) ] , over all π ∈ C,

where ` is a nonlinear function. We refer the reader to [31] for a detailed derivation of the
above formulation and several examples. Although the cost function ` could be quite complex
to express analytically, it can be easily evaluated by simply mimicking the dynamics of the
financial market. Hence, computationally they are straight-forward to compute and all details
of the markets can be easily coded into it.

The goal is to compute the optimal feedback decision, π∗, and the optimal value v∗,

π∗ ∈ argminπ∈C v(π), v∗ := inf
π∈C

v(π) = v(π∗).

When the underlying dynamics is Markovian and the cost functional has an additive structure,
the above formulation of optimization over feedback controls is equivalent to the standard
formulation which considers the larger class of all adapted processes, sometimes called
open loop controls [17]. However, even without this equivalence, the minimization over the
smaller class of feedback controls is a consistent and a well-defined problem, and due to their
tractability, feedback controls are widely used. In this manuscript, we implicitly assume that
the problem is well chosen and the goal is to construct the best feedback control.

3 The algorithm
In this section, we describe the deep empirical minimization algorithm proposed by Weinan
E, Jiequn Han, and Arnulf Jentzen in [21, 22].

A batch B := {Z1, . . . , Zm}, with a size of m, is an i.i.d. realization of the returns process
Z, where Zi = (Zi1, . . . , ZiN ) for each i. We set

L(π,B) := 1
m

m∑
i=1

`(π, Zi),

and consider a set of artificial neural networks parametrized by,

N = {Φ(·; θ) : T × X 7→ A : θ ∈ Θ } ⊂ C.
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Instead of searching for a minimizer in C, we look for a computable solution in the smaller
set N . That is, numerically we approximate the following quantities:

θ∗ := θ∗N ∈ argminθ∈Θ v(Φ(·; θ)),
vN := inf

θ∈Θ
v(Φ(·; θ)) = v(Φ(·; θ∗)).

The classical universal approximation result for artificial neural networks [13, 24] imply,
under some natural structural assumptions on the function `, that vN approximates v∗ as the
networks gets larger as proved in [31](Theorem 5). This also implies that the performance of
the trained feedback control Φ(·; θ∗) is almost optimal.

The pseudocode of the algorithm to compute θ∗ and v∗ is the following,
• Initialize θ ∈ Θ;
• Optimize by stochastic gradient descent: for n = 0, 1, . . .:

– Generate a batch B := {Z1, . . . , Zm},
– Compute the derivative d := ∇θ L(Φ(·; θ), B);
– Update θ ← θ − κd.

• Stop if n is sufficiently large and the improvement of the value is ‘small’.
In the above κ is the learning rate and the stochastic gradient step is done through an
optimization library.

The data generation can be done through either an assumed and calibrated model, namely
a market generator, or by random samples from a fixed financial market data when sufficient
and relevant historical data is available. Although these two settings look similar, one may
get quite different results in these two cases, even when the fixed data set is large. One of
our goals is to better understand this dichotomy between these two data regimes and the
size of the data needed for reliable results. Theoretically, when the simulation capability is
not limited and data is continually generated, the above algorithm should yield the desired
minimizer θ∗ and the corresponding optimal feedback decision Φ(·, θ∗). However, with a
fixed data set, the global minimum over N is almost always strictly less than v∗, and the
large enough networks will eventually gravitate towards this undesirable extreme point which
would be over-learning the data as already observed and demonstrated in [31].

4 Exercise boundary of American type options
American and Bermudan options are particularly central to any computational study in
quantitative finance as they pose difficult and deep challenges, and they serve as an important
benchmark for any new numerical approach. Methods successful in this setting often generalize
to other problems as well. Indeed, the seminal regression on Monte-Carlo methods that were
developed for the American options by Longstaff & Schwartz [29] and Tsitsiklis & van Roy
[38] have not only become industry standards in few years, but they have also shed insight into
other problems as well. Together with rich improvements developed over the past decades,
they can now handle many Markovian problem with ease. However, the key feature of these
algorithms is a projection onto a linear subspace, and this space must grow exponentially
with the dimension of the ambient space, making high-dimensional problems out of reach of
this otherwise powerful technique. Examples of such high-dimensional problems are financial
instruments on many underlyings modeled with many parameters, path-dependent options,
or non-Markovian models, all requiring state enlargements and resulting in vast state spaces.
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4.1 Problem
As well known the problem is to decide when to stop and collect the pay-off of a financial
contract. Mathematically, for t ∈ T̂ , let St ∈ Rd+ be the stock value at the t-th trading date
and ϕ : Rd+ 7→ R be the pay-off function. With a given interest rate r > 0, the problem is

maximize v(τ) := E
[
e−rτ ϕ(Sτ )

]
,

over all T̂ -valued stopping times τ . We use the filtration generated by the stock price process
to define the stopping times. It is classical that the expectation is taken under the risk
neutral measure.

We assume that S is Markov and the pay-off is a function of the current stock value.
When it is not, then we need to enlarge the state space. In factor models like Heston or SABR,
factor process is included. In non-Markovian models like the fractional Brownian motion,
past values the stock are added as in [3, 4, 5]. In look-back type options, the minimum or
the maximum of the stock process must be included in the state. We refer to [32] for the
details of these extensions.

We continue by defining the price at all future points. Recall that the filtration F is
generated by the stock price process. Let Ξt be the set of all F-stopping times with values
in {t, . . . , N}. At any t ∈ T̂ , s ∈ Rd+, let v(t, s) be the maximum value or the price of this
option when St = s, i.e.,

v(t, s) := max
τ∈Ξt

E[ e−r(τ−t) ϕ(Sτ ) | St = s ].

Then, v(N, ·) = ϕ and the the stopping region is given by

S := { (t, s) : v(t, s) = ϕ(s) } . (4.1)

Then the optimal stopping time is the first time to enter the region S, i.e., the following
stopping time in Ξt is a maximizer of the above problem:

τ∗ := min{ u ∈ {t, . . . , N} : (u, Su) ∈ S }.

Notice that as v(N, ·) = ϕ, we always have (N,SN ) ∈ S. This implies that τ∗ is well-defined
and is bounded by N .

Clearly, standard call or put options are the main examples. Many other examples that
are also covered in the above abstract setting, including the max-call option discussed below.

Example 4.1 (Max-Call). Let St = (S(1)
t , . . . , S

(d)
t ) ∈ Rd+ be a the stock process of d many

dividend bearing stocks. We model it by a d-dimensional geometric Brownian motion with
constant mean-return rate and a covariance matrix. The pay-off of the max-call is given by,

ϕ(St) =
(

max
i=1,...,d

S
(i)
t −K

)+

,

where the strike K is a given constant. We study this example numerically in subsection
4.6 below. One can also consider max-call options with factor models with an extended
state-space.
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4.2 Relaxed stopping
Quite recently, in a series of papers, Becker et al., [4, 5] use deep empirical risk minimization
in this context. As the control variable is discrete (i.e., at any point in space, the decision is
either ‘stop’ or ‘go’) and as the training or optimization is done through a stochastic gradient
method, one has to relax the problem before applying the general procedure. We continue by
first outlining this relaxation.

In the relaxed version, we consider an adapted control process p = (p0, . . . , pN ) with
values in [0, 1] which is the probability of stopping at that time conditioned on the event that
the process has not stopped before t. Because one has to stop at maturity, we have pN = 1.
Given the process p, let ξpt be the probability of stopping strictly before t. Clearly, ξ0 = 0
and at other times it is defined recursively by,

ξpt+1 = ξpt + pt(1− ξpt ) = pt + (1− pt) ξpt , t ∈ T .

It is immediate that ξpt ∈ [0, 1] and is non-decreasing. Also, if pt = 1, then ξps = 1 for all
s > t. The quantity (1 − ξpt ) is the unused “stopping budget”, and the relaxed stopping
problem is defined by,

maximize vr(p) := E

[
N∑
t=0

pt (1− ξpt ) ert ϕ(St)

]
, (4.2)

over all [0, 1]-valued, adapted processes p. The original problem of stopping is included in
the relaxed one, as for any given stopping time τ , pτt := χ{t=τ} yields ξτt = χ{t>τ} and
consequently, v(τ) = vr(pτ ). It is also known that this relaxation does not change the value.

Becker et al., [4, 5] study the problem through this relaxation and implement the deep
empirical risk minimization exactly as described in the earlier section. Additionally, using
the known convex dual of the stopping problem, they are able to obtain computable upper-
bounds. For many financial products of interest, they obtain remarkable results in very
high-dimensions. They also consider a fractional Brownian motion model for the stock price.
As for this example there is no Markovian structure, in their calculations the state is all
the past yielding an enormous state space. Still the algorithm is tractable with computable
guarantees.

4.3 The free boundary
In most examples, the optimal stopping rule is derived from a surface called the free boundary.
For instance, the continuation region of a one-dimensional American Put option is the
epigraph of a function of time. The stopping region of an American max-call option on the
other hand, is obtained by comparing the maximum of the stock values to a scalar-valued
function as proved in Proposition 4.4 below. These stopping rules have the advantage of
being interpretable [12] and easy to implement. Additionally, free-boundary problems of
this type appear often in financial economics as well as problems from other disciplines.
Thus numerical methods developed for the free-boundary of an American option could have
implications elsewhere as well.

To be able to apply this method, we assume that the stopping region S has a certain
structure. Namely, we assume that there exists two functions

α : Rd+ 7→ R, and F : {0, . . . , N} × Rd+ 7→ R,

so that the stopping region of (4.1) is given by,

S = { (t, s) : α(s) ≤ F (t, s) }.

7



Reppen, Soner & Tissot-Daguette Deep Stochastic Optimization

More importantly, we also assume that α is given by the problem and we only need to
determine F which we call the free boundary. The following examples clarifies this assumption
which holds in a large class of problems.
Example 4.2. It is known that the stopping region of an American Put option with a
Markovian stock process is given by

S = {(t, s) : s ≤ f(t) },

for some function f : [0, T ] 7→ R+. In this case, α(s) = s and F (t, s) = f(t).
In the case of the max-call option, we show in Proposition 4.4 below that for any

s = (s1, . . . , sd) ∈ Rd+ with α(s) = max{s1, . . . , sd}, there exists a free boundary F .

Given the above structure of the stopping region through the pair (α, F ) the optimal
stopping time is given by τ∗ = τF , where for any free boundary F ,

τF := min { t ∈ T̂ : α(St) ≤ F (t, St) }.

In this approach, the output of the artificial neural network is a scalar valued function
Φ(·; θ) of time and the state values, and it approximates the free boundary F . Then for any
parameter θ, the stopping time is

τθ := τΦ(·;θ) = min{ t ∈ T̂ : α(St) ≤ Φ(t, St ; θ) }.

4.4 Fuzzy boundary
A sharp free-boundary has the same problem of zero-gradients as the original problem and
its remedy is again a relaxation to allow for partial stopping. Indeed, given a free-boundary
Φ(·; θ) and a tuning-parameter ε > 0, we define a fuzzy boundary region given by,

FΦ,ε := { (t, s) : −ε ≤ Φ(t, s; θ)− α(s) ≤ ε }.

If Φ−α ≤ −ε we stop, and if Φ−α ≥ ε we continue, and we do these with probability one in
each case. But if the process falls into the fuzzy region FΦ,ε, then as in the relaxed problem,
we assign a stopping probability as a function of the normalized distance dθt to the sharp
boundary {Φ− α = 0}, i.e.,

pθt := g(dθt ), where dθt = Φ(t, St; θ)− α(St)
ε

,

and g : [−1, 1] 7→ [0, 1] is a fixed increasing, onto function. Linear or sigmoid-like functions
are the obvious choices. Once we compute the process pθt , the value corresponding to the
parameter θ is vr(pθ) with vr as in (4.2). Hence, the relaxed free boundary problem is to
train the network to

minimize θ ∈ Θ 7→ vr(pθ).
The resulting trained artificial neural network is an approximation of the optimal free
boundary.

4.5 American Put in one-dimension
As in [4, 5] we run the algorithm for an American put on a non-dividend paying stock whose
price process is modeled by a standard geometric Brownian motion with parameters

S0 = K = 40, T = 1, σ = 0.4, r = 0.06,
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where as usual S0 is the initial stock value, K is the strike, σ is the volatility, and r is the
risk-free rate. In this example, the state process is simply the stock process.

We are able to obtain accurate results for the value as well as for the free boundary. One
typical result is given in Figure 4.5 below. As the free boundary has a large derivative near
maturity, we use a non-uniform mesh near maturity. Figure 4.5 uses 500 time points. We
also employ important sampling to ensure more crossings of the free boundary. After the
training is completed, the value corresponding to this trained free boundary is computed by
using the corresponding sharp interface. Accurate price values are obtained rather easily. All
of these calculations are implemented by python in a personal laptop.

0 1
t

0

40

Initial

0 1
t

0

40

Trained

Optimal Neural Net  corridor

Figure 1: Left figure is a random initialization and the right one is the final trained boundary. Dashed
line is the optimal calculated through a finite-difference scheme. The value is 5.311.

4.6 Max-Call Options
In this subsection, we consider the max-call option studied in the seminal paper by Broadie
& Detemple [8] and also in the book by Detemple [14]. Let St ∈ Rd be the price process of a
dividend bearing stock. The pay-off the max-call option at time τ is

ϕ(Sτ ) = (m(Sτ ) − K )+ ,

where the function m : Rd+ 7→ R+ is given by,

m(s) := max
i=1,...,d

si, s = (s1, . . . , sd) ∈ Rd+.

The main structural assumption needed is the natural sub-linear dependence of the stock
prices on their initial values.
Assumption 4.3 (Sublinearity). For t ∈ T , s ∈ Rd+, non-decreasing function φ : Rd+ 7→ R,
λ ≥ 1 and a stopping time τ ≥ t,

E [φ(Sτ ) | St = λs] ≤ E [φ(λSτ ) | St = s] .

Above assumption is satisfied in all examples. In fact, in most models the dependency
on the initial data is linear. Although in our numerical calculations, we use a geometric
Brownian motion model for the stock price process, the method also applies more generally
to all factor models.
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We use this assumption to show that the stopping region has a certain geometric structure
which we exploit. The following result is already proved in [8]. We provide its proof for
completeness. Let S be as in (4.1) and set

K :=
{
s ∈ Rd+ : m(s) = 1

}
.

Note that for any s ∈ Rd+, s/m(s) ∈ K.
Proposition 4.4. Consider the max-call option in a market satisfying the Assumption 4.3.
Then, if (t, s) ∈ S, then (t, λs) ∈ S for any λ ≥ 1. In particular,

S = { (t, s) : m(s) ≥ F (t, s/m(s)) },

where F : T̂ × K 7→ R+ is given by,

F (t, k) := inf { ρ > 0 : (t, ρk) ∈ S } , m ∈M.

Above result can be equivalently stated as the t-section St := { s ∈ Rd+ : (t, s) ∈ S } of
the continuation region being star-shaped for every t.

Proof. Suppose that (t, s) ∈ S and λ ≥ 1. As {(N, s) : s ∈ Rd+} ⊂ S, if t = N , clearly
(t, λs) = (N,λs) ∈ S. So we assume that t < N . Then, a point (t, s′) is in S if and only if
s′ > K and for every τ ∈ Tt the following inequality is satisfied:

E
[
e−r(τ−t) (Sτ −K)+ |St = s′

]
≤ s′ −K.

By Assumption 4.3,

E
[
e−r(τ−t) (Sτ −K)+ |St = λs

]
≤ E

[
e−r(τ−t) (λSτ −K)+ |St = s

]
= E

[
e−r(τ−t) (λ[Sτ −K] + (λ− 1)K)+ |St = s

]
≤ λE

[
e−r(τ−t) (Sτ −K)+ |St = s

]
+ (λ− 1)K

≤ λ(s−K) + (λ− 1)K
= (λs−K).

Hence, we conclude that (t, λs) ∈ S.

4.6.1 Numerical Experiments
We consider a max-Call option and in a geometric Brownian motion model under the risk
neutral measure,

St = S0 exp
(

(r − div)t+ σWt −
1
2σ

2t
)
,

with parameters

K = 100, S0 = 90, 100, 110, σ = 0.2, r = 0.05, div = 0.1,

where the notation is as in the previous subsection and div is the dividend rate. We take the
maturity to be 3 years and N = 9. Thus, each time interval corresponds to four months. All
these parameters are taken from [4, 5] to allow for comparison. We also make qualitative
comparison to the results of [8].

Table 1 shows the results with d = 2, S0 = 90, batch size of B = 213 and 7, 000 iterations.
The corresponding price is computed after the training is completed with 223 Monte-Carlo
simulations using the sharp boundary instead of the fuzzy one. Important sampling is used
with an downward drift of 7%. We repeated the experiment ten times in a personal computer.
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Runs 1 2 3 4 5 6
Price 8.0747 8.0757 8.0710 8.0684 8.0670 8.0731
Stdev 0.00305 0.00315 0.00310 0.00310 0.00309 0.00311
Runs 7 8 9 10 Mean Stdev
Price 8.0686 8.0707 8.0620 8.0679 8.0699 0.0040
Stdev 0.00306 0.00308 0.00307 0.00311 - -

Table 1: Ten experiments with S0 = 90, batch size 213, 7000 iterations. Prices are calculated with
223 simulations. Stdev in the third and sixth rows refer to the standard deviations of the Monte-Carlo
simulations, while Stdev at the end is the standard deviation of the calculated ten prices.

All of the results are within the 95% confidence interval [8.053 , 8.082] computed in [1]. The
standard deviation of each price computation is quite low. Hence, the maximum of the values
is a lower bound for the price.

We also repeated the experiments of [4, 5] in space dimensions d = 5, 10, 100 with the
above parameters. For each parameter set, we computed ten prices exactly as described
above. The results reported in Table 2 below are in agreement with the results of [5] (Table
9). We should also note when d is large, the maximum of many stocks have a very strong
upward drift making the standard deviation of the rewards quite high.

Dim. S0 Price Std Price in [5] Max Price Its Std
2 90 8.0699 0.0031 8.068 8.0757 0.0040
2 100 13.9086 0.0059 13.901 13.9128 0.0033
2 110 21.3434 0.0059 21.341 21.3541 0.0104
5 90 16.6187 0.0040 16.631 16.6238 0.0045
5 100 26.1194 0.0259 26.147 26.1644 0.0057
5 110 36.7176 0.0078 36.774 36.7408 0.0078
10 90 26.2130 0.0182 26.196 26.2362 0.0069
10 100 38.2735 0.0538 38.272 38.3351 0.0089
10 110 50.8350 0.0397 50.812 50.8685 0.0081
100 90 66.2460 0.4946 66.359 66.6163 0.0223
100 100 82.5475 0.6463 83.390 83.6563 0.0272
100 110 98.9868 0.0366 100.421 99.0575 0.0353

Table 2: Each price is the mean of ten experiments with parameters as in Table 1. Max price is the
maximum of ten experiments with a standard deviation of the price calculation with 223 Monte-Carlo
simulations.

The above table reports the average values for ten runs to be able to asses the possible
variations. However, the maximum value among these ten runs is in fact a lower bound the
actual price. As we computed these values with 223 (roughly eight million) simulations, the
standard devision of this price value is small.

In two dimensions, the stopping region can be visualized effectively. Figures 2, 4 are
stopping regions in two space dimensions obtained with initial data S0 = 90 and S0 = 100.
Clearly the free boundary is independent of the initial condition and the below numerical
results verify it.
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Figure 2: Evolution of the Free Boundary with S0 = 90
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Figure 3: Evolution of the Free Boundary with S0 = 100

5 Valuation and Hedging
We consider a European option with stock process S and pay-off ϕ(ST ). We consider the
Heston dynamics,

dSt = St (µdt+
√
vt dWt),

dvt = (κ(θ − vt)− λ vt) dt+ σ vt dW̃t,

where W, W̃ are one-dimensional Brownian motions with constant correlation of ρ, and the
five Heston parameters (µ, κ, θ, σ, ρ) are chosen satisfying the Feller condition. In particular,
we choose the market price of volatility risk parameter λ.

Let p∗ be the price of this claim, and Z be the return process, i.e.,

Zt+1 := St+1 − St
St

, t ∈ T . (5.1)

Further, let the feedback actions be the continuous functions

π : T × R+ × R 7→ R,
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representing the dollar amount invested in the stock. The corresponding wealth process is
given by,

Xπ,x
t+1 = (1 + r)Xπ,x

t + π(t,Xπ,x
t , Zt) (Zt+1 − r ) , t ∈ T , (5.2)

with initial data Xπ,x
0 = x.

We first fix an initial wealth of x < p∗ and consider the following pure-hedging problem of
minimizing the square hedging error, i.e.,

v∗(x) := min
π∈C

v(x, π), where v(x, π) := E
[
(ϕ(ST )−Xπ,x

T )2 ] . (5.3)

In the second problem, we minimize over x as well, i.e,

v∗ := min
x∈R

v∗(x) = min
(x,π)∈R×C

v(x, π). (5.4)

As proved by Föllmer & Schweizer [18], it is well-known that in continuous time the solution to
the second problem, v∗, is equal to the Heston price. Thus, for sufficiently fine discretization
v∗ is close to zero, x∗ is close to the known continuous-time Heston price. Also the numerical
hedge π∗ must be equal to the continuous time hedge.

If r = 0, then, Xπ,x
t = x+Xπ,0

t and the initial wealth x only influences the mean of the
hedging error. Therefore, we expect that after an initial adjustment to minimize the mean,
the networks would minimize the variance which is independent of the initial wealth. This
approximate reasoning indicates that after an initial transient region, both minimization
problems may behave similarly when there is large data.

5.1 Numerical results
We implemented the above hedging problem in Julia’s Flux [27] by parameterizing the
portfolio at each time point, including the initial wealth level. In particular, we hedge a call
option with strike K, i.e., ϕ(x) = (x−K)+ = max{x−K, 0}. Our implementation follows
the scheme in Section 3, which we here describe in greater detail for this particular problem.

We see in (5.4) that the two quantities we optimize over are x and π. As x is a scalar, we
directly parameterize it with a 1-element tensor, which after optimization is the option price.
The policy π, however, can be approximated in various ways. We here opt for a very direct
method in which we represent it by a single neural network with time and stock data as
inputs. This contrasts [9], where the authors discretize time and design one neural network
per time point. As we shall see, our implementation of a single neural network also performs
well, with the additional benefit of allowing changes to the time discretization during training.
There are also other training differences between the two parameterizations, as, for instance,
the one used here accomplishes a large degree of parameter sharing. Nevertheless, a thorough
account of these differences is outside the scope of the present paper.

Another detail of our implementation is that we write π as a function of t and St instead
of the formulation in (5.2). It is clear that the two are mathematically equivalent, although
they could differ in training performance. Ours is a naïve choice and we make it because
we find it more natural, not because it necessarily leads to better performance. The neural
network is designed with two hidden layers of width 20 and with ReLU activation. In-between
layers, batch normalization is employed.1

The results of our computations are presented in Table 3. We compare our numerical
solution to the Heston prices from https://www.quantlib.org/. No significant tuning has

1Although we believe that the following parameters are not crucial for replicating our results (because they
were not tuned), we list them here for completeness: batch size: 512; optimizer: Adam with the Flux default
parameters (η, β1, β2) = (0.001, 0.9, 0.999); and the number of epochs was a fixed value for which the training error
of a typical run had plateaued.
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gone into producing our values, and it is nevertheless clear that accurate prices are consistently
attained. We see, for instance, that the absolute error is approximately the same for all
three strikes, which we argue is a consequence of (i) not tuning the training parameters to
each individual problem and (ii) our hedging is in discrete time, which introduces a time
discretization error. Although this is only a one-dimensional problem, it gives credence to the
method’s effectiveness, effectiveness that does translate into higher-dimensional performance,
as we illustrated for for the American options problems.

K QuantLib price Price Avg. abs. error Error std. dev.
90 10.076508 10.078163 0.001869 0.001174
100 2.295405 2.295211 0.002018 0.001065
110 0.128136 0.127069 0.001971 0.001793

Table 3: Hedging performance of a call option with strike K in a Heston model with parameters
S0 = 100, v0 = 0.04, κ = 0.9, θ = 0.04, r = λ = 0 and σ = 0.2. The maturity T = 1/12 and the time
interval is discretized in 22 steps. Each row lists the deep hedging price average over 100 runs along with
the standard deviation over the same 100 runs.

Theoretically, in continuous-time, the optimal henge is independent of the initial wealth.
We also studied this by fixing the initial portfolio value to the price and also to its half value.
One simulation of the trained hedge is given in the Figure 4 shows that the dependence is
minimal.

Figure 4: Optimal Hedges for the Heston model

6 Merton Problem and Overlearning
In this section, we summarize the results of [31] by the first two authors. As in that paper,
to emphasize the essential features of the algorithm, we take a very simple financial market
without any frictions and constant coefficients. Further we consider a pure investment problem
without consumption. All these details can incorporated into the model and problems with
complex market structures have already been studied extensively by Buehler et.al. [9, 10].

Consider a stock price process St ∈ Rd+ in discrete time and assume a constant interest
rate of r. Let the return process Z be as in (5.1) and Xπ = Xπ,x be as in (5.2). We suppress
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the dependence of the initial wealth x for simplicity. Then, the classical investment problem
is to maximize v(π) := E[U(Xπ

T )] with a given utility function U .
In [31] it is proved that the deep empirical risk minimization algorithm converges as the

size of the training data gets larger. On the other hand, it is also shown that for fixed training
data sets, larger and deeper neural networks have the capability of overlearning the data,
however large it might be. In such situations, the trained neural networks while substantially
over-perform the theoretical optimum on the training set, they do not generalize and perform
poorly on other data sets.

These theoretical results are demonstrated in the following stylized example with an
explicit solution in [31](Section 8). In that example, the utility function is taken to be the
exponential with parameter one, and as the decisions are independent of the initial value
for these class of utilities, the initial value is fixed as one dollar. To simplify even further,
for one period this amount is invested uniformly on all stocks. Then, with 1 := (1, . . . , 1),
π0 = 1/d and X1 = (Z1 · 1)/d− r are uncontrolled, and the investment problem is to choose
the feedback portfolio π1(Z1) ∈ Rd so as to maximize

v(π) = E
[
1− exp(−Xπ

2 )
]
,

where Xπ
2 = (1 + r)X1 + a(Z1) · (Z2 − r1). The certainty equivalent of a utility value v < 1

given by
ce(v) := ln(1− v) ⇐⇒ v = U(ce(v))

is a more standard way of comparing different utility values. Indeed, agents with expected
utility preferences would be indifferent between an action π and a cash amount of ce(v(π))
because the utilities of both positions are equal to each other. Thus, for these agents the
cash equivalent of the action π is ce(v(π)).

The following table [31](Table 1) clearly demonstrates overlearning. In this experiments
the training data of size N = 100, 000 and an artificial neural network with three hidden
layers of width 10 is trained on this set for four or five epochs. For each dimension the
algorithm is run thirty times and Table 4 below reports the mean and the standard. deviation.
Although conservative stopping rules are employed in [31], there is substantial overperformance
increasing with dimension.

dims pin (%) pin − pout (%)
µ σ µ σ

100 10.12820 1.09290 23.67080 2.01177
85 8.38061 1.35575 20.16440 2.30489
70 7.32720 0.86458 15.62060 1.94043
55 5.05783 0.81518 10.93950 1.54431
40 3.74648 0.62588 7.91105 1.32581
25 2.11501 0.43845 4.58954 0.88461
10 0.53982 0.34432 1.46138 0.39078

Table 4: Average relative in-sample performance, and its comparison to the out-of-sample performance
with the above described conservative stopping rule. Everything is in % with training size of N = 100, 000
and three hidden layers of width 10. The µ value is the average of 30 runs and σ is the standard deviation.

7 Conclusion
The deep empirical risk minimization proposed by E, Han & Jentzen [21, 22] provides a flexible
and a highly effective tool for stochastic optimization problems arising in computational
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finance. Recent development of optimization libraries make this algorithm tractable in very
high dimensions allowing to include important market details such as factors and frictions,
as well as models with long memory. Once a large training set is given, the algorithm mimics
the market dynamics with all its details. This simple description together with powerful
new computational tools are keys to the power of the algorithm. We have demonstrated
above properties in three different classes of problems. As it is always the case, each requires
problem specific but natural modifications. Moreover, the output can be designed to be
exactly the decision rule that is under investigation.

The method on the other hand needs large data sets for reliable results. In the financial
setting this essentially limits its scope to model driven markets with an unlimited simulation
capability. However, due to its seamless transition to more complex structures, more
interesting parametric models are now feasible. Thus, on-going research on market generators
will be an important factor on further developments.
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