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Abstract
We obtain a dual representation of the Kantorovich functional defined for functions
on the Skorokhod space using quotient sets. Our representation takes the form of a
Choquet capacity generated by martingale measures satisfying additional constraints
to ensure compatibility with the quotient sets. These sets contain stochastic integrals
defined pathwise and two such definitions starting with simple integrands are given.
Another important ingredient of our analysis is a regularized version of Jakubowski’s
S-topology on the Skorokhod space.

Mathematics Subject Classification 60B05 · 60G44 · 91B24 · 91G20

1 Introduction

Kantorovich duality [42,43] is an important tool in the classical theory of optimal
transport [3,13,57]. Abstractly it provides a dual representation for a convex, lower
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semicontinuous functional � defined on a locally convex Riesz spaceX , i.e., a locally
convex lattice-ordered topological vector space. In the Kantorovich setting, X is a set
of real-valued functions defined on a topological space�. Typical examples are the set
of all bounded continuous functions Cb(�) or the set of all bounded Borel measurable
functions Bb(�) with the supremum norm.

For a quotient set given by a convex cone I, we consider the extended real-valued
functional given by

�(ξ ; I) := inf {c ∈ R : c + � ≥ ξ for some � ∈ I} , ξ ∈ X .

There are several immediate properties of �. For instance, it follows directly from
the definition that � is monotone and convex. Also, it is clear that for any constant c,
one has �(c; I) ≤ c and �(λξ ; I) = λ�(ξ ; I) for every λ ≥ 0. If additionally, one
can establish that � is lower semicontinuous and proper (i.e., not identically equal to
infinity and never equal to minus infinity), then one may apply the Fenchel-Moreau
theorem [60, Theorem 2.4.14] to obtain the representation

�(ξ ; I) = σ∂�(ξ) := sup
ϕ∈∂�

ϕ(ξ), ξ ∈ X , (1.1)

where the set of sub-gradients ∂� is the convex subset of the topological dual X ∗ of
X given by ∂� = ∂�(0; I) := {ϕ ∈ X ∗ : ϕ(ξ) ≤ �(ξ ; I) for all ξ ∈ X }.

This formulation is similar to the one given in [13]. In addition to many other
applications, it provides a natural framework for risk management [51,52]. Recently,
it has also been used to reduce model dependency in pricing problems [8,33]. In these
applications, � is the super-replication functional and I the hedging set. The main
goal of this paper is to establish the dual representation (1.1) in the case where � is
a suitable subset of the Skorokhod space taking also the trajectory of transportation
into account.

In classical optimal transport, one has � = R
d × R

d and the quotient set Iot is
defined through two given probability measures μ, ν on R

d by

Iot :=
{
f ⊕ h : f , h ∈ Cb(Rd) and μ( f ) = ν(h) = 0

}
,

where μ( f ) = ∫
f dμ, ν(h) = ∫

h dν and ( f ⊕h)(x, y) := f (x)+h(y). Let�ot be
the corresponding convex functional on X = Cb(�) with the supremum norm. Then,
it is immediate that �ot is proper and Lipschitz continuous. Moreover,

∂�ot =
{
ϕ ∈ Cb(�)∗ : ϕ ≥ 0 and ϕ( f ⊕ h) = μ( f ) + ν(h) for all f , h ∈ Cb(Rd)

}
.

Hence, any ϕ ∈ ∂�ot is non-negative and has marginals μ and ν. It follows that ϕ is
tight and therefore a Radon probability measure on �.

Alternatively, one could deduce the countable additivity of the dual elements by
using the β0-topology on Cb(�) recalled in Appendix B below. If the topology on �

is completely regular Hausdorff
(
T3 1

2

)
, then the topological dual of Cb(�) with the
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Martingale optimal transport duality 1687

β0-topology is equal to the set of all signed Radon measures of finite total variation
and the tightness argument is not needed. On the other hand, one then has to prove
the continuity of � with respect to this topology. We use this observation in our study,
which considers the problem on a more complex topological space �.

Kellerer [45] used Choquet’s capacibility theorem [20] to show that the optimal
transport duality also holds for measurable (and Suslin) functions if measurable
functions are used in the definition of the quotient set. Similarly, for martingale or
constrained optimal transport, one needs to enlarge the set I to achieve duality for
more general functions with the same set of sub-gradients [9,29]. Alternatively, one
could fix the quotient set I and obtain duality by extending the set of sub-gradients as
it is done in [29]. We do not pursue this approach here.

In this paper, we study general martingale optimal transport on a subset � of the
Skorokhod space D

([0, T ];Rd+
)
of all Rd+-valued càdlàg functions, i.e., functions

ω : [0, T ] �→ R
d+ that are continuous from the right and have finite left limits. We

assume that � is a closed subset of D
([0, T ];Rd+

)
with respect to Jakubowski’s S-

topology [39,40] and endow itwith a regularized version of S. Ourmain goal is to prove
duality with the same Choquet capacity defined by countably additive (martingale)
measures, for different choices of X by appropriately extending the quotient set.

Martingale optimal transport was first introduced in a discrete time model in [8]
and in continuous time in [33]. Since then it has been investigated extensively. The
initial duality results [25–27,38] are proved by real-analytic techniques and only for
uniformly continuous functions. Alternatively, [4–6,18,19] use functional analytical
tools. In particular, [18] provides a general representation result. [19] proves duality in
discrete time and [4–6] for a σ -compact set�. Our approach is similar to that of [5] but
without the assumption of σ -compactness. Instead, we use the S-topology introduced
by Jakubowski [39] which provides an efficient characterization of compact sets via
up-crossings. This characterization allows us in Theorem6.4 to construct an increasing
sequence of compact sets Kn such that �(1�\Kn ) decreases to zero. This localization
result is central to our approach. In a similar context, Jakubowski’s S-topologywas first
used in [34–36] to prove several important properties of martingale optimal transport.
Their set-up is related to [33] and differs from ours.

In martingale optimal transport, the quotient set I contains the “stochastic inte-
grals”. Since there is no a priori given probabilistic structure, the definition of the
integral must be pathwise and is a delicate aspect of the problem. Starting from simple
integrands, we first extend the integrands using the theory developed by Vovk [58,59],
later by [49] and used in [7] to prove duality. This construction provides duality for
upper semicontinuous functions. We then further enlarge the quotient set I by taking
its Fatou-closure as defined in Sect. 2.3 and prove the duality for measurable functions
by using Choquet’s capacitability theorem as done earlier in [4–6,9]. These results are
stated in Theorem 3.1. Section 8 provides examples showing the necessity of enlarging
the set of integrands.

There are also deep connections between duality and the fundamental theorem
of asset pricing (FTAP), which provides equivalent conditions for the dual set of
measures to be non-empty. In the classical probabilistic setting, [37] proves it for the
Black-Scholes model, [21] for discrete time and [22,23] in full generality. The robust
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discrete time model has first been studied in [1] and later in [15–17]. [10,14] on the
other hand study probabilistic models with none or finitely many static options. We
also obtain a general robust FTAP, Corollary 9.7, as an immediate consequence of our
main duality result Theorem 3.1.

The paper is organized as follows. After providing the necessary structure and
definitions in Sect. 2, we state the main result in Sect. 3. Important properties of the
dual elements are proven in Sect. 4, and several approximation results are derived in
Sect. 5. Section 6 analyses � on Cb(�). The proof of the main result, Theorem 3.1,
is given in Sect. 7. Several examples are constructed in Sect. 8. Section 9 discusses
applications to model-free finance. The topological structures used in the paper and a
sufficient condition for a probability measure to be a martingale measure are given in
the Appendix.

2 Set-up

Let � be a non-empty subset of the Skorokhod space D
([0, T ];Rd+

)
of all càdlàg

functions ω : [0, T ] → R
d+ that is closed with respect to Jakubowski’s S-topology

[39,40]. We denote the relative topology of S on � again by S and, similarly to [46],
endow�with the coarsest topology S∗ making all S-continuous functions ξ : � → R

continuous. More details on S and S∗ are given in Appendix A, where it is shown
that (�, S∗) is a perfectly normal Hausdorff space (T6), and every Borel probability
measure on (�, S∗) is automatically a Radon measure. Moreover, we know from
[39,46] that for all s < t and every i = 1, . . . , d,

∫ t
s ωi (u) du is continuous with

respect to S, and

‖ω‖∞ := sup
0≤t≤T

|ω(t)|

is S-lower semicontinuous, where | · | denotes the Euclidean norm on R
d .

For t ∈ [0, T ], we denote by Xt (ω) = ω(t) the coordinate map on � and let
F
X = (F X

t )t∈[0,T ] be the natural filtration of X given by F X
t = σ(Xs : s ≤ t). By

F = (Ft ), we denote the right-continuous filtration given by Ft = F X
t+ = ⋂

s>t F
X
s ,

t < T , and FT = F X
T . Adapted and predictable processes, as well as stopping times,

are defined with respect to the filtration F. In particular, for any open subset A of Rd+,
the hitting time τA(ω) = inf{t ≥ 0 : Xt (ω) ∈ A} is a stopping time; see e.g. [24,50]
for these facts. Moreover, arguments from [39,46] show that FT = F X

T is equal to the
collection of all Borel subsets of (�, S∗).

2.1 Riesz spaces

Let B(�) be the set of all Borel measurable functions ξ : � → [−∞,∞] and Bb(�)

the subset of bounded functions in B(�). For p ∈ [1,∞), we define

Bp(�) := {
ξ ∈ B(�) : ω �→ ξ(ω)/(1 + ‖ω‖p∞) is bounded

}
,
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Martingale optimal transport duality 1689

and

B0(�) := {ξ ∈ Bb(�) : for all ε > 0, {ω ∈ � : |ξ(ω)| > ε} is relatively compact} .

By Ub(�) and Up(�) we denote the sets of all upper semicontinuous functions in
Bb(�) andBp(�), respectively. C(�) is the set of all real-valued continuous functions
on �. Cb(�) and Cp(�) are defined analogously to Ub(�) and Up(�). In addition, we
need the set

Cq,p(�) := {
ξ ∈ C(�) : ξ+ ∈ Cq(�), ξ− ∈ Cp(�)

}
,

where ξ+ = max(ξ, 0) and ξ− = max(−ξ, 0).
ByM(�)we denote the set of all signedRadonmeasures of bounded total variation

on � and by P(�) ⊂ M(�) the subset of probability measures. For Q ∈ P(�) and
ξ ∈ B(�), we define the expectation EQ[ξ ] ∈ [−∞,∞] by EQ[ξ ] := EQ[ξ+] −
EQ[ξ−] with the convention ∞ − ∞ = −∞. For p ≥ 1, Lp(�, Q) is the collection
of all functions ξ ∈ B(�) satisfying EQ[|ξ |p] < ∞.

The β0-topology on Cb(�) is generated by the semi-norms ‖. η‖∞, η ∈ B+
0 (�),

where we use the superscript + to indicate the subset of non-negative elements. More
details on theβ0-topology are given inAppendixB. Since (�, S∗) is a perfectly normal
Hausdorff space, it is also completely regular, and it follows that the dual of Cb(�)

with the β0-topology isM(�); see e.g. [41,54].

2.2 The standing assumption

We fix universal constants 1 ≤ p < q. All our definitions and results depend on them,
but we do not show this dependence in our notation.

Definition 2.1 For a convex cone G ⊂ B(�), we denote byQ(G) the (possibly empty)
set of all probability measures Q ∈ P(�) such that EQ[γ ] ≤ 0 for all γ ∈ G and the
canonical map X is an (F, Q)-martingale, i.e., for every t ∈ [0, T ], Xt ∈ L1(�, Q)

and EQ [Y · (Xt − XT )] = 0 for all Ft -measurable Y ∈ Bb(�)d .

The following assumption is used throughout the paper. Although all results assume
it, we do not always state this assumption explicitly.

Assumption 2.2 G ⊂ Cq,p(�) is a convex cone, and there exist cq ∈ R+ and ξq ∈ G
such that |XT |q ≤ cq + ξq .

Then, for every Q ∈ Q(G), EQ
[|XT |q] ≤ cq + EQ[ξq ] ≤ cq . We combine this

with Doob’s martingale inequality to conclude that

c∗
q := sup

Q∈Q(G)

EQ
[
Xq∗

]
< ∞, where X∗ := sup

t∈[0,T ]
|Xt |. (2.1)

In particular, EQ [Y · (Xt − XT )] = 0 for all Q ∈ Q(G), every t ∈ [0, T ] and any
Ft -measurable Y ∈ Bq−1(�)d .
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If, for a given μ ∈ P(Rd+), G contains all functions g(ω(T )) − μ(g) with g ∈
Cb(Rd+), then any element Q ∈ Q(G) has themarginalμ at the final time T . Hence, the
above construction includes the classical example of givenmarginals. For this example,
the celebrated result of Strassen [55] provides necessary and sufficient conditions for
Q(G) to be non-empty; see also Corollary 9.7, below.

2.3 Integrals and quotient sets

A simple integrand H consists of a sequence of pairs (τn, hn)n∈N such that τ0 ≤
τ1 ≤ τ2 ≤ · · · are F-stopping times, and each hn ∈ Bq−1(�)d is Fτn -measurable.
We assume that for every ω ∈ � there is an index n(ω) such that τn(ω) ≥ T . The
corresponding integral is defined directly as

(H · X)t (ω) :=
∞∑
n=0

hn(ω) · (Xτn+1∧t (ω) − Xτn∧t (ω)), (t, ω) ∈ [0, T ] × �.

A simple integrand H is called admissible if for some λ ∈ B+
q (�)

(H · X)τm∧t (ω) ≥ −λ(ω) for all (t, ω,m) ∈ [0, T ] × � × N.

Hs denotes the set of all admissible simple integrands. An admissible integrand is a
collection of simple integrands H := (Hk)k∈N ⊂ Hs satisfying (Hk · X)t ≥ −�, for
every t ∈ [0, T ], k ∈ N, for some � ∈ B+

q (�). H denotes the set of all admissible
integrands. The corresponding integral is defined pathwise by,

(H · X)t (ω) := lim inf
k→∞ (Hk · X)t (ω) for all (t, ω) ∈ [0, T ] × �.

We use the following quotient sets:

Is(G) := {γ + (H · X)T : γ ∈ G, H ∈ Hs},
I(0) := {(H · X)T : H ∈ H}, I(G) := {γ + (H · X)T : γ ∈ G, H ∈ H}.

Moreover, let Î(G) ⊂ B(�) be the Fatou-closure of I(G), i.e., the smallest set of
extended real-valued Borel measurable functions containing I(G) with the property
that for every sequence {�n}n∈N ⊂ Î(G) satisfying a uniform lower bound �n ≥ −λ

for some λ ∈ B+
q , lim infn �n ∈ Î(G). In the context of financial applications, similar

integrals were first constructed in [58] and later used in [7,49,59]. Their properties
have recently been studied in [48].

It is clear that Is(G) ⊂ I(G) ⊂ Î(G) and I(0) are all convex cones.
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3 Main result

Theorem 3.1 Under Assumption 2.2,

�(ξ ; I(G)) = σQ(G)(ξ) for all ξ ∈ Up(�) and (3.1)

�(ξ ; Î(G)) = σQ(G)(ξ) for all ξ ∈ Bp(�), (3.2)

where σQ(G)(·) := supQ∈Q(G) EQ[·] is the support functional of Q(G).

The proof is given in Sect. 7. If Q(G) is empty, by convention σQ(G) is identically
equal to minus infinity, in which case both sides of the above equalities are equal to
minus infinity; see Corollary 5.3. Counter-examples of Sect. 8 show that in general
Is(G) could be smaller than I(G) and (3.2) does not hold in general with I(G).

4 Properties ofQ(G)
Recall X∗ in (2.1). If Q(G) is empty, all results of this section hold trivially. For
ξ ∈ B(�), we define for every constant c ≥ 0,

ξ c(ω) := (c ∧ ξ(ω)) ∨ (−c), ω ∈ �. (4.1)

Lemma 4.1 limc→∞ σQ(G)(ξ
c) = σQ(G)(ξ) for all ξ ∈ Bp(�).

Proof Fix Q ∈ Q(G) and ξ ∈ Bp(�). There exists a constant c0 > 0 so that |ξ(ω)| ≤
c0X

p∗ (ω) whenever |ξ(ω)| ≥ c0. Using (2.1), we estimate that for c ≥ c0,

EQ
[∣∣ξ − ξ c

∣∣] ≤ EQ
[|ξ |1{|ξ |≥c}

] ≤ c0EQ

[
X p∗1{X p∗ ≥c/c0}

]

≤ c0
EQ

[
Xq∗1{X p∗ ≥c/c0}

]

(c/c0)q/p−1 ≤ cq/p
0 c∗

q

cq/p−1 .

Hence, by sub-additivity,

∣∣σQ(G)(ξ) − σQ(G)(ξ
c)

∣∣ ≤ σQ(G)

(∣∣ξ − ξ c
∣∣) ≤ sup

Q∈Q(G)

EQ
[∣∣ξ − ξ c

∣∣] ≤ cq/p
0 c∗

q

cq/p−1 .

��
Lemma 4.2 For every H ∈ H, t ∈ [0, T ], and Q ∈ Q(G), EQ [(H · X)t ] ≤ 0.
Consequently, EQ[�] ≤ 0 for every � ∈ I(G) and Q ∈ Q(G).

Proof Fix Q ∈ Q(G) and H = (τn, hn)n∈N ∈ Hs . For m ≥ 1, set

�mt := (H · X)τm∧t =
m−1∑
n=0

hn · (Xτn+1∧t − Xτn∧t ), t ∈ [0, T ].
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1692 P. Cheridito et al.

Since by definition each hn ∈ Bq−1(�)d and X is an (F, Q)-martingale, we have
EQ[�mt ] = 0. By the admissibility of H , there exists λ ∈ B+

q (�) such that �mt ≥ −λ

for each m and t ∈ [0, T ]. Therefore, by Fatou’s Lemma and (2.1),

EQ [(H · X)t ] ≤ lim inf
m→∞ EQ

[
�mt

] = 0 for all t ∈ [0, T ].

Let H = (Hk)k∈N ∈ H. Then, by definition each Hk ∈ Hs and by the above
result EQ

[
(Hk · X)t

] ≤ 0. Again by admissibility, there exists � ∈ B+
q (�) so that

(Hk · X)t ≥ −� for each k ≥ 1, t ∈ [0, T ]. By Fatou’s Lemma, for t ∈ [0, T ],

EQ [(H · X)t ] = EQ

[
lim inf
k→∞ (Hk · X)t

]
≤ lim inf

k→∞ EQ

[
(Hk · X)t

]
≤ 0.

The final statement follows directly from the definitions. ��
Lemma 4.3 For every � ∈ Î(G) and Q ∈ Q(G), EQ[�] ≤ 0. Therefore,

σQ(G)(ξ) ≤ �(ξ ; Î(G)) ≤ �(ξ ; I(G)) for all ξ ∈ B(�). (4.2)

Proof SetK(G) := {
ξ ∈ B(�) : σQ(G)(ξ) ≤ 0

}
. By Lemma 4.2, I(G) ⊂ K(G). Con-

sider a sequence {ξn}n∈N ⊂ K(G) satisfying a uniform lower bound ξn ≥ −λ for some
λ ∈ B+

q (�). Then, by Fatou’s Lemma and the uniform bound (2.1),

EQ

[
lim inf
n→∞ ξn

]
≤ lim inf

n→∞ EQ[ξn] ≤ 0 for all Q ∈ Q(G).

Hence, lim infn ξn ∈ K(G). Since Î(G), by its definition, is the smallest set of mea-
surable functions with this property containing I(G), we conclude that Î(G) ⊂ K(G).

Fix ξ ∈ B(�). Suppose that ξ ≤ c + � for some c ∈ R and � ∈ Î(G). Since
Î(G) ⊂ K(G), EQ[ξ ] ≤ EQ[c + �] ≤ c for every Q ∈ Q(G). Hence, σQ(G)(ξ) ≤ c.
Since �(ξ ; Î(G)) is the infimum of all such constants, σQ(G)(ξ) ≤ �(ξ ; Î(G)). The
fact I(G) ⊂ Î(G) implies that �(ξ ; Î(G)) ≤ �(ξ ; I(G)). ��

5 Approximation results

Lemma 5.1 ĉ∗
q := �(Xq∗ ; I(G)) < ∞.

Proof For N ∈ N, {yk}Nk=0 ⊂ R+ and n ≤ N , let y∗
n := max0≤k≤n yk .

Step 1. It is shown in [2, Proposition 2.1] that

(
y∗
N

)q + dq y
q
0 ≤

N−1∑
n=0

h
(
y∗
n

)
(yn+1 − yn) + (

dq yN
)q

,

where dq := q/(q − 1) and h(y) := −qdq yq−1 for y ∈ R+.
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Martingale optimal transport duality 1693

Step 2. Set τ0 := 0 and for each ω ∈ � and n ∈ N define recursively

τn(ω) := inf
{
t > τn−1(ω) : |Xt (ω)|q > |Xτn−1(ω)|q + 1

} ∧ T .

Then, the τn’s are stopping times. For ω ∈ �, i = 1, . . . , d, n = 0, 1, 2, . . . , set

h∗,i
n (ω) := h

(
max
0≤k≤n

Xi
τk

(ω)

)
, h∗

n(ω) :=
(
h∗,1
n (ω), . . . , h∗,d

n (ω)
)

.

It is clear that h∗
n ∈ Bq−1(�)d and therefore H∗ := (τn, h∗

n)n∈N is a simple integrand.
Step 3.We claim that H∗ is admissible. Indeed, fix t ∈ [0, T ],ω ∈ �, i = 1, . . . , d,

and set yn := Xi
τn∧t (ω). For k ∈ N, set

ñ = ñ(ω, t, k) := sup {m : τm(ω) ≤ t} ∧ (k − 1).

Then, for n ≤ ñ, yn = Xi
τn

and therefore, h∗,i
n (ω) = h(y∗

n ). For ñ < n < k,
Xi

τn+1∧t = Xi
τn∧t = Xi

t and yñ+1 = Xi
τk∧t . By Step 1,

k−1∑
n=0

h∗,i
n

(
Xi

τn+1∧t − Xi
τn∧t

)
=

ñ∑
n=0

h
(
y∗
n

)
(yn+1 − yn) ≥ (

y∗
ñ+1

)q − (dq yñ+1)
q

= sup
n≤k

(
Xi

τn∧t
)q −

(
dq X

i
τk∧t

)q
.

Hence, for every t ∈ [0, T ] and integer k,

(H∗ · X)τk∧t ≥
∑
i≤d

sup
n≤k

(
Xi

τn∧t
)q −

∑
i≤d

(
dq X

i
τk∧t

)q

≥
∑
i≤d

sup
n≤k

(
Xi

τn∧t
)q − c∗ ∣∣Xτk∧t

∣∣q ≥ −c∗Xq∗ , (5.1)

for some constant c∗ depending only on d and q. Hence, H∗ is admissible.
Step 4. We let t = T in (5.1) and send k to infinity to obtain

∑
i≤d

sup
n

(
Xi

τn∧T

)q ≤ (H∗ · X)T + c∗ |XT |q .

Choose a constant ĉ∗ so that for all y = (y1, . . . , yd) ∈ R
d+, |y|q ≤ ĉ∗ ∑

i≤d |yi |q .
Let cq , ξq be as in Assumption 2.2. Then,

0 ≤ sup
n

∣∣Xτn∧T
∣∣q ≤ ĉ∗ ∑

i≤d

sup
n

(
Xi

τn∧T

)q ≤ ĉ∗ [
(H∗ · X)T + c∗ |XT |q]

≤ (ĉ∗H∗ · X)T + ĉ∗c∗(cq + ξq) =: �∗ + ĉ∗c∗cq .
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1694 P. Cheridito et al.

Since H∗ ∈ Hs , ξq ∈ G and G is a cone, �∗ := (ĉ∗H∗ · X)T + ĉ∗c∗ξq ∈ I(G).
Step 5. By definition of the τn’s,

Xq∗ ≤ sup
n

∣∣Xτn∧T
∣∣q + 1 ≤ �∗ + ĉ∗c∗cq + 1,

from which one obtains �(Xq∗ ; I(G)) ≤ ĉ∗c∗cq + 1 < ∞. ��
Corollary 5.2 For any convex cone I ⊃ I(G) and ξ ∈ Bp(�), one has
limc→∞ �(ξ c; I) = �(ξ ; I).

Proof Fix ξ ∈ Bp(�). There exists c0 > 0 so that |ξ | ≤ c0X
p∗ whenever |ξ | ≥ c0.

Step 1. For c ≥ c0,

(|ξ | − c)1{|ξ |≥c} ≤ c0X
p∗ 1{X p∗ ≥c/c0} ≤ c0X

q∗
(c/c0)q/p−11{X p∗ ≥c/c0} ≤ cq/p

0

cq/p−1 X
q∗ .

Since I includes I(G), �((|ξ | − c)1{|ξ |≥c}; I) ≤ cq/p
0 c1−q/p�(Xq∗ ; I(G)), which in

view of Lemma 5.1, gives lim supc→∞ �((|ξ | − c)1{|ξ |≥c}; I) ≤ 0.
Step 2. Since |ξ − ξ c| ≤ (|ξ | − c)1{|ξ |≥c}, one obtains from sub-additivity,

�(ξ c; I) ≤ �(ξ c − ξ ; I) + �(ξ ; I) ≤ �((|ξ | − c)1{|ξ |≥c}; I) + �(ξ ; I),

which by the previous step, gives lim supc→∞ �(ξ c; I) ≤ �(ξ ; I).
Step 3. Similarly,

�(ξ ; I) ≤ �(ξ − ξ c; I) + �(ξ c; I) ≤ �((|ξ | − c)1{|ξ |≥c}; I) + �(ξ c; I),

and therefore, �(ξ ; I) ≤ lim infc→∞ �(ξ c; I). ��
It is a direct consequence of the definition that �(ξ ; I(G)) ≤ ‖ξ‖∞ for any ξ ∈

Bb(�). In particular, �(0; I(G)) ≤ 0.

Corollary 5.3 We have the following alternatives:

(i) If �(0; I(G)) = 0, then |�(ξ ; I(G))| ≤ ‖ξ‖∞ for all ξ ∈ Bb(�).
(ii) If �(0; I(G)) < 0, then Q(G) is empty, and �(·; I(G)) ≡ �(·; Î(G)) ≡ −∞

on Bp(�). In particular, (3.1) and (3.2) hold trivially.

Proof First, suppose that �(0; I(G)) = 0 and let ξ ∈ Bb(�). Since ξ + ‖ξ‖∞ ≥ 0,
one has

�(ξ ; I(G)) = −‖ξ‖∞ + �(ξ + ‖ξ‖∞; I(G)) ≥ −‖ξ‖∞ + �(0; I(G)) = −‖ξ‖∞.

Now assume that �(0; I(G)) < 0. Then, there exist c < 0, � ∈ I(G) such that
c + � ≥ 0. Also, for any constant λ > 0, λ(c + �) ≥ 0. Since I(G) is a cone,
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λ� ∈ I(G) and consequently, �(0; I(G)) ≤ cλ. As λ > 0 above was arbitrary, we
have �(0; I(G)) = −∞ and

�(ξ ; I(G)) ≤ ‖ξ‖∞ + �(ξ − ‖ξ‖∞; I(G)) ≤ ‖ξ‖∞ + �(0; I(G)) = −∞.

This shows that −∞ ≤ σQ(G)(·) ≤ �(·; Î(G)) ≤ �(·; I(G)) ≡ −∞ on Bb(�), and
by Corollary 5.2, also on Bp(�).

Moreover, (4.2) implies that if Q(G) is non-empty, �(0; Î(G)) = 0. Hence if
�(0; Î(G)) < 0, Q(G) must be empty. ��

For an R
d -valued càdlàg process Y , set

�Y (ω) :=
∫ T

0
Yu(ω) · (Xu(ω) − XT (ω)) du.

Lemma 5.4 Let Y be anRd -valued, adapted, càdlàg process. Suppose that there exists
λ ∈ Bq−1(�) satisfying |Yu | ≤ λ for every u ∈ [0, T ]. Then, �Y ∈ I(0) and for any
quotient set I containing I(0), �(�Y ; I) ≤ 0

Proof For k ∈ N and n = 0, . . . , k set τ kn := nT /k, Y k
n := Yτ kn

, Xk
n := Xτ kn

,

hk0 := −(T /k)Y0 and hkn := hkn−1 − (T /k)Y k
n for n ≥ 1. Since λ ∈ Bq−1(�), the

simple integrand Hk := (τ kn , hkn)
k
n=0 is admissible. Moreover,

(Hk · X)T =
k−1∑
n=0

hkn ·
(
Xk
n+1 − Xk

n

)
= T

k

k−1∑
n=0

Y k
n ·

(
Xk
n − XT

)
.

Let H := (Hk)k∈N. Since both Y and X are càdlàg,

(H · X)T = lim
k→∞(Hk · X)T = �Y .

One can directly verify that H ∈ H. Hence, �Y ∈ I(0). ��

6 Continuity on Cb(Ä)

We use the compact notation �(·) = �(·; I(G)).

Lemma 6.1 lim supc→∞ �(1{X∗>c}) ≤ 0.

Proof Fix c > 0, i ∈ {1, . . . , d} and set Xi∗ := supt∈[0,T ] Xi
t . Since Xi

T ≥ 0,

c1{Xi∗>c}(ω) ≤ Xi
T (ω) + (c − Xi

T (ω))1{Xi∗>c}(ω) for all ω ∈ �.

Set hi1 = −1, h j
1 = 0 for j �= i , τ0(ω) := inf{t ≥ 0 : Xi

t ∈ (c,∞)} ∧ T , τ1 := T
and let H be the corresponding integrand. Then, (H · X)T = (Xi

τ1
− Xi

T ). By right-
continuity, we have Xi

τ1
≥ c on the set {Xi∗ > c} and τ1 = T on its complement.
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Consequently, (H · X)T ≥ (c − Xi
T )1{Xi∗>c} and �

(
(c − Xi

T ) 1{Xi∗>c}
)

≤ 0. There-

fore, �(1{Xi∗>c}) ≤ �
(
Xi
T

)
/c, which, by Lemma 5.1, converges to zero as c tends

to infinity. Since {X∗ >
√
dc} ⊂ ∪i {Xi∗ > c}, the claim of the lemma follows from

the sub-additivity of �. ��
Definition 6.2 For ω ∈ D([0, T ];R+), t ∈ [0, T ], and a < b, the number of up-
crossings up to t , Ua,b

t (ω), is the largest integer n for which one can find 0 ≤ t1 <

· · · < t2n ≤ t such that ω(t2k−1) < a and ω(t2k) > b for k = 1, . . . , n.

For ω ∈ D([0, T ];Rd+), we set Ua,b,i
t (ω) := Ua,b

t (ωi ).

Lemma 6.3 For 0 < a < b and i = 1, . . . , d, there exists Ha,b,i ∈ Hs such that

(Ha,b,i · X)t (ω) ≥ −a + (b − a)Ua,b,i
t (ω) for all (t, ω) ∈ [0, T ] × �.

Proof For k ≥ 1, set Ik := [0, a) if k is an odd integer and Ik := (b,∞) if k is even,
and τ0 := 0. Recursively define a sequence of random times by

τk(ω) := inf
{
t ≥ τk−1(ω) : Xi

t (ω) ∈ Ik
}

∧ T ,

where the infimumover an empty set is infinity. Since X is càdlàg and Ik is open, τk’s are
F-stopping times.Definehk = (h1k, . . . , h

d
k ) as follows:h

i
k := 1when k is odd,hik := 0

for k even and h j
k = 0 for j �= i . Let Ha,b,i be the corresponding simple integrand. It

is clear that for every t ∈ [0, T ], ω ∈ �, (Ha,b,i · X)t (ω) ≥ −a + (b − a)Ua,b,i
t (ω).

Hence, Ha,b,i ∈ Hs . ��

6.1 Localization

Theorem 6.4 There exists an increasing sequence of compact subsets {Kn}n∈N of �

satisfying,

lim
n→∞ �(1�\Kn ) ≤ 0.

Proof We complete the proof in several steps.
Step 1. Let D be a countable dense subset of (0,∞) and {(a j , b j ) : j ∈ N} an

enumeration of the countable set {(a, b) ∈ D×D : 0 < a < b}. For all n ∈ N, define

Ki, j
n :=

{
ω ∈ � : Uaj ,b j ,i

T (ω) ≤ c jn
}

, K̂n :=
d⋂

i=1

⋂
j∈N

Ki, j
n , Kn := Bn ∩ K̂n,

where cnj := 2 j+n(a j ∨ 1)/(b j − a j ) and Bn := {ω ∈ � : X∗(ω) ≤ n}. Since � is

S-closed, one obtains from [39, Corollary 2.10] that Ki, j
n and Bn are S-closed subsets
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ofD([0, T ];Rd+). Hence, all Kn are S-compact and therefore also S∗-compact subsets
of �; see Appendix A or [46, Corollary 5.11]. Moreover,

(�\Kn) ⊂ On ∪ (�\Bn), where On :=
⋃
i, j

(
�\Ki, j

n

)
.

Step 2. Let Ha,b,i be as in Lemma 6.3 and set Hi, j
n := (cnj (b j − a j ))

−1Haj ,b j ,i .
Then, for every t ∈ [0, T ],

(Hi, j
n · X)t ≥ − a j

cnj (b j − a j )
+ U

aj ,b j ,i
t

cnj
≥ −2−( j+n) + U

aj ,b j ,i
t

cnj
.

Hence, Hi, j
n ∈ Hs and also (Hi, j

n · X)T ≥ −2−( j+n) + 1
�\Ki, j

n
.

For k ≥ 1, set Hk
n := ∑d

i=1
∑k

j=1 Hi, j
n . Then, for every k ≥ 1 and t ∈ [0, T ],

(Hk
n · X)t ≥ −d 2−n . Hence, for each n, Hn := (Hk

n )k∈N ∈ H and

(Hn · X)T = lim inf
k→∞

(
Hk
n · X

)
T

≥
d∑

i=1

∞∑
j=1

(
1

�\Ki, j
n

− 2−( j+n)
)

≥ 1On − d 2−n .

Therefore, �(1On ) ≤ d 2−n .
Step 3. By the previous steps and Lemma 6.1,

lim sup
n→∞

�(1�\Kn ) ≤ lim sup
n→∞

(
�(1�\Bn ) + �(1On )

) ≤ 0.

Finally, since for each pair (i, j), the sets Ki, j
n are increasing in n, we conclude

that Kn is also increasing in n. ��

6.2 ˇ0-continuity

Proposition 6.5 Suppose that �(0) = 0. Then � is real-valued and β0-continuous on
Cb(�).

Proof By Corollary 5.3, � is real-valued and the compact sets constructed in Theo-
rem 6.4 satisfy �(1�\Kn ) ↓ 0 as n tends to infinity. Let K0 be the empty set and by
relabeling, we may assume that �(1�\Kk ) ≤ 2−2k , for every k ≥ 0. Define

η∗ :=
∞∑
k=1

2−k1Kk\Kk−1 .
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Since on the complement of Kk−1, |η∗| ≤ 2−k , η∗ ∈ B0(�). Fix an integer n and
ξ ∈ Cb(�). Since on Kk\Kk−1, η∗ = 2−k , on Kk\Kk−1, (η∗)−1 = 2k , so, on
Kn = ∪n

k=1(Kk\Kk−1),

|ξ |1Kn = |ξ |η∗ (η∗)−11Kn ≤ ‖ξη∗‖∞ (η∗)−11Kn = ‖ξη∗‖∞
n∑

k=1

2k 1Kk\Kk−1 .

In view of the hypothesis �(0) = 0, |�(ξ1Kn )| ≤ �(|ξ |1Kn ) and consequently,

∣∣� (
ξ1Kn

)∣∣ ≤ ‖ξη∗‖∞
n∑

k=1

2k�
(
1Kk\Kk−1

) ≤ ‖ξη∗‖∞
n∑

k=1

2k�
(
1�\Kk−1

)

≤ ‖ξη∗‖∞
n∑

k=1

2k2−2(k−1) ≤ 4‖ξη∗‖∞ = 4‖ξ‖η∗ .

Therefore, by Theorem 6.4,

|�(ξ)| ≤ lim sup
n→∞

(|�(ξ1Kn )| + ‖ξ‖∞�(1�\Kn )
) ≤ 4‖ξη∗‖∞.

For ξ, ζ ∈ Cb(�), by sub-additivity, �(ξ) = �((ξ − ζ ) + ζ ) ≤ �(ξ − ζ ) + �(ζ).
Hence, �(ξ) − �(ζ) ≤ �(ξ − ζ ) ≤ 4‖(ξ − ζ ) η∗‖∞. Switching the roles of ξ and
ζ , we conclude that |�(ξ) − �(ζ)| ≤ 4‖(ξ − ζ ) η∗‖∞. Since the β0-topology is
generated by the semi-norms ‖ . η‖∞ for arbitrary η ∈ B+

0 (�) and η∗ ∈ B+
0 (�), the

above inequality yields that � is β0-continuous on Cb(�) (see Appendix B below).
��

6.3 Sub-differential

Proposition 6.6 Q(G) = ∂� := {ϕ ∈ M(�) : ϕ(ξ) ≤ �(ξ ; I(G)), ξ ∈ Cb(�)}.
Proof The lower bound (4.2) implies thatQ(G) ⊂ ∂�. To prove the opposite inclusion,
fix Q ∈ ∂� ⊂ M(�). The monotonicity of � implies that Q ≥ 0. Since �(c) ≤ c
for every constant c, we conclude that Q ∈ P(�).

Step 1. Let ξ ∈ C+(�), and define ξ c for c ≥ 0 as in (4.1). Then, ξ c ≤ ξ and by
the defining property of Q, EQ[ξ c] ≤ �(ξ c) ≤ �(ξ). So, by monotone convergence,
EQ[ξ ] = limc→∞ EQ[ξ c] ≤ �(ξ).

Step 2. For ε > 0, set

Xε
t (ω) := 1

ε

∫ t+ε

t
Xu∧T du, t ∈ [0, T ].

Since the map XT and time integrals are S-continuous [39], Xε is S∗-continuous.
Hence, for every t ∈ [0, T ], |Xε

t | ∈ C1(�) and
∣∣Xε

t

∣∣ ≤ X∗, where X∗ is as in (2.1).
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Also, limε→0 Xε
t (ω) = Xt (ω) for every ω ∈ �. Fix t ∈ [0, T ] and choose ξ = |Xε

t |q
in Step 1 to obtain, EQ[|Xε

t |q ] ≤ �(|Xε
t |q) ≤ �(Xq∗ ). By Fatou’s Lemma,

EQ[|Xt |q ] ≤ lim inf
ε→0

EQ[|Xε
t |q ] ≤ �(Xq∗ ) = ĉ∗

q < ∞,

where ĉ∗
q is as in Lemma 5.1. Hence, Xt ∈ Lq(�, Q) for every t ∈ [0, T ].

Step 3. Fix t ∈ [0, T ) and an Ft -measurable Y ∈ Cb(�)d . For ε ∈ (0, T − t], set

�Y ,ε := 1

ε

∫ t+ε

t

Y

|Xu | + 1
· (Xu − XT ) du, and �Y := Y

|Xt | + 1
· (Xt − XT ).

Observe that �Y ,ε ∈ C1(�), limε→0 �Y ,ε(ω) = �Y (ω), for all ω ∈ � and in view of
Corollary 5.4, �(�Y ,ε) ≤ 0. Moreover,

�Y ,ε ≥ −‖Y‖∞ [1 + |XT |] ⇒ �cY ,ε ≥ −‖Y‖∞ [1 + |XT |] ∈ Lq(�, Q).

Then, by Fatou’s Lemma, EQ[�Y ] ≤ lim infε→0 EQ[�Y ,ε]. We now use again Fatou’s
Lemma, the sub-differential inequality, and Corollary 5.2 to obtain EQ[�Y ,ε] ≤
lim infc→∞ EQ[�cY ,ε] ≤ limc→∞ �(�cY ,ε) = �(�Y ,ε) ≤ 0. Since this argument also
holds for −Y , we conclude that EQ[�Y ] = 0.

Step 4. Let Y be as in the previous step. For c > 0, set Yc := Y [(|Xt | + 1) ∧ c].
Since Xt , XT ∈ Lq(�, Q), by dominated convergence,

EQ[Y · (Xt − XT )] = lim
c→∞EQ

[
Yc

|Xt | + 1
· (Xt − XT )

]
= 0.

The above equality, the integrability proved in Step 2 and Lemma C.1 imply that X is
an (F, Q)-martingale. As in (2.1), this also implies that EQ

[
Xq∗

]
< ∞.

Step 5. Let ξ ∈ Cp(�). Then, |ξ | ≤ cξ (1 + Xq∗ ) for some constant cξ . Since
X∗ ∈ Lq(�, Q), dominated convergence yields that EQ[ξ ] = limc→∞ EQ[ξ c].
Also, by Corollary 5.2, limc→∞ �(ξ c) = �(ξ) and the sub-differential inequality
at ξ c ∈ Cb(�) imply that EQ[ξ c] ≤ �(ξ c). Hence, EQ[ξ ] = limc→∞ EQ[ξ c] ≤
limc→∞ �(ξ c) = �(ξ) for every ξ ∈ Cp(�).

Step 6. Fix γ ∈ G. Then, by Assumption 2.2, γ ∈ Cq,p(�) and hence, γ − ∈ Cp(�).
For a > 0, set γa := γ ∧ a. Since γa ≤ γ , �(γa) ≤ �(γ ) ≤ 0. Also, γa ∈ Cp(�)

and by the previous step, EQ[γa] ≤ �(γa) ≤ 0. Moreover, |γa | ≤ |γ | ≤ cγ (1 + Xq∗ )

for some cγ > 0. Since X∗ ∈ Lq(�, Q), dominated convergence yields EQ[γ ] =
lima→∞ EQ[γa] ≤ 0. Hence, EQ[γ ] ≤ 0 for every γ ∈ G. This and Step 4 imply that
∂� ⊂ Q(G). ��

The above results also prove the compactness of the set Q(G).

Corollary 6.7 Q(G) is convex and both compact as well as sequentially compact with
respect to the topology induced by the pairing 〈Cb(�),M(�)〉.
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Proof It is clear that ω̂ ∈ � is convex. Let Kn be as in the proof of Theorem 6.4.
Then, by (4.2), σQ(G)(1�\Kn ) ≤ �(1�\Kn ) =: αn . By Theorem 6.4, αn tends to zero.
Hence, Q(Kn) ≥ 1−αn uniformly over Q ∈ Q(G). Since αn converges to zero,Q(G)

is uniformly tight.
By Proposition 6.6, Q(G) = ⋂

ξ∈Cb(�)

{
Q ∈ P(�) : EQ[ξ ] ≤ �(ξ)

}
. Hence,

Q(G) isweak∗ closed. Then, by Prokhorov’s theorem for completely regularHausdorff
spaces [12, Theorem 8.6.7], Q(G) is weak∗ compact. By the second assertion of [12,
Theorem 8.6.7], since the compact sets Kn above are metrizable [46, Proposition 5.7],
Q(G) is also sequentially weak∗ compact. ��

7 Proof of Theorem 3.1

7.1 Duality on Cb(Ä)

Proposition 7.1 �(ξ ; I(G)) = σQ(G)(ξ) for all ξ ∈ Cb(�).

Proof In view of Corollary 5.3, we may assume that �(0; I(G)) = 0. Then, by the
results of Sect. 6,� is convex, finite-valued and β0-continuous. Hence, the hypotheses
of the Fenchel-Moreau theoremon the topological space Cb(�)with the locally convex
β0-topology are satisfied [60, Theorem 2.3.3]. Since � is positively homogenous,
�(ξ ; I(G)) = σ∂�(ξ) for every ξ ∈ Cb(�). We then complete the proof of duality on
Cb(�) by Proposition 6.6. ��

7.2 Duality onUp(Ä)

We first extend the duality from Cb(�) to Ub(�) by a minimax argument.

Lemma 7.2 The duality �(ξ ; I(G)) = σQ(G)(ξ) holds for all ξ ∈ Cb(�) if and only
if it holds for all ξ ∈ Ub(�).

Proof Assume that the duality holds on Cb(�) and let η ∈ Ub(�). In view of (4.2), we
need to show thatσQ(G)(η) ≥ �(η; I(G)). Since S∗ is perfectly normal byLemmaA.6
below, for every Q ∈ P(�),EQ[η] = infη≤ξ∈Cb(�) EQ[ξ ]. Clearly, {ξ ∈ Cb(�) : η ≤
ξ} is a convex subset ofCb(�) and themapping that takes (ξ, Q) toEQ[ξ ] is continuous
and bilinear on Cb(�) ×Q(G). Moreover, by Corollary 6.7,Q(G) is a convex, weak∗
compact subset ofP(�). Hence, the assumptions of a standard minimax argument are
satisfied, see e.g. [60, Theorem 2.10.2]. Since � is monotone,

σQ(G)(η) = sup
Q∈Q(G)

inf
η≤ξ∈Cb(�)

EQ[ξ ] = inf
η≤ξ∈Cb(�)

sup
Q∈Q(G)

EQ[ξ ]

= inf
η≤ξ∈Cb(�)

σ∂�(ξ) = inf
η≤ξ∈Cb(�)

�(ξ ; I(G)) ≥ �(η; I(G)).

Therefore, the duality holds on Ub(�). ��
Proposition 7.3 �(ξ ; I(G)) = σQ(G)(ξ) for all ξ ∈ Up(�).
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Proof Fix ξ ∈ Up(�) and ξ c be as in (4.1). Then, ξ c ∈ Ub(�) and duality holds at ξ c.
We now combine this with Lemma 4.1 and Corollary 5.2 to arrive at

σQ(G)(ξ) = lim
c→∞ σQ(G)(ξ

c) = lim
c→∞ �(ξ c; I(G)) = �(ξ ; I(G)).

��

7.3 Duality onBp(Ä)

In this section, we follow the approach of [45] and extend the duality to measurable
functions by the Choquet capacitability theorem [20].

Proposition 7.4 �(ξ ; Î(G)) = σQ(G)(ξ) for all ξ ∈ Bp(�).

Proof We write �̂(·) instead of �(·; Î(G)) and �(·) for �(·; I(G)) as before.
Step 1. Since Î(G) ⊃ I(G), �̂ ≤ �. By Proposition 7.3 and (4.2), for every

η ∈ Ub(�), σQ(G)(η) ≤ �̂(η) ≤ �(η) = σQ(G)(η). Hence, � = �̂ on Ub(�).
Step 2. Consider a sequence {Qn}n∈N in M(�) converging to Q∗ in the weak∗

topology. Then, EQn [ξ ] converges to EQ∗ [ξ ] for every ξ ∈ Cb(�). Fix η ∈ Ub(�).
Since S∗ is perfectly normal by Lemma A.6 below, there is a decreasing sequence
{ξk}k∈N ⊂ Cb(�) converging to η and EQ∗ [ξk] converges to EQ∗ [η]. We use this and
the weak∗ convergence of Qn to arrive at

lim sup
n→∞

EQn [η] ≤ inf
k

lim
n→∞EQn [ξk] = inf

k
EQ∗ [ξk] = EQ∗ [η].

Since by Corollary 6.7, Q(G) is weak∗ compact, the above property implies that for
every η ∈ Ub(�) there is Qη ∈ Q(G) satisfying, EQη [η] = σQ(G)(η).

Step 3. Suppose that a sequence {ηn}n∈N ⊂ Ub(�) decreases monotonically to a
function η∗ ∈ Ub(�). Then, Qn := Qηn satisfies EQn [ηn] = σQ(G)(ηn). Since Q(G)

is sequentially compact with respect to σ(M, Cb), there is a subsequence (without
loss of generality, again denoted by Qn) and Q∗ ∈ Q(G) such that Qn converges to
Q∗ in the weak∗ topology. Then, by the previous step,

lim sup
n→∞

EQn [ηn] ≤ inf
k

lim sup
n→∞

EQn [ηk] ≤ inf
k

EQ∗ [ηk] = EQ∗ [η∗],

where we used monotone convergence in the final equality.
By the first step, � = �̂ on Ub(�). Then, by Proposition 7.3 and (4.2),

lim sup
n→∞

�̂(ηn) = lim sup
n→∞

σQ(G)(ηn) = lim sup
n→∞

EQn [ηn]
≤ EQ∗ [η∗] ≤ σQ(G)(η

∗) ≤ �̂(η∗).

Since ηn’s are decreasing to η∗, the opposite inequality is immediate. Hence,

lim
n→∞ �̂(ηn) = �̂(η∗) whenever Ub(�) � ηn ↓ η∗ ∈ Ub(�) as n → ∞. (7.1)
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Step 4. Consider {ζn}n∈N ⊂ Bb(�) increasing monotonically to ζ ∗ ∈ Bb(�).
Choose {�n}n∈N ⊂ Î(G) so that �̂(ζn) + 1

n + �n(ω) ≥ ζn(ω), for every ω ∈ �. It is
clear that �̂(ζ1) ≤ �̂(ζn) ≤ �̂(ζ ∗). Since ζn ≥ ζ1, �n ≥ (ζ1− �̂(ζ ∗)−1)∧0 =: −λ.
Then, by the definition of Î(G), �∗ := lim infn �n ∈ Î(G). Therefore,

ζ ∗(ω) = lim
n→∞ ζn(ω) ≤ lim inf

n→∞

[
�̂(ζn) + 1

n
+ �n(ω)

]
= lim

n→∞ �̂(ζn) + �∗(ω),

for every ω ∈ �. Hence, limn→∞ �̂(ζn) ≥ �̂(ζ ∗). Again the opposite inequality is
immediate. So we have shown that

lim
n→∞ �̂(ζn) = �̂(ζ ∗) whenever Bb(�) � ζn ↑ ζ ∗ ∈ Bb(�) as n → ∞. (7.2)

Step 5. (7.1) and (7.2) imply that we can apply the Choquet capacitability theo-
rem (see [45, Proposition 2.11] or [4, Proposition 2.1]) to the functional �̂. Let S(�)

denote the family of all Suslin functions generated by Ub(�) i.e. functions of the form
supφ∈NN infk≥1 ξφ|k , where φ|k denotes the restriction of φ ∈ N

N to {1, . . . , k} and
each ξφ|k is an element of Ub(�); we refer to [32, Section 42] for details. Since the
S∗-topology on� is perfectly normal, by LemmaA.6 below, the familyS(�) contains
Bb(�). Moreover, �̂ = � on Ub(�). Hence, �̂(ζ ) = sup {�(η) : η ∈ Ub(�), η ≤ ζ }
for every ζ ∈ Bb(�). This approximation together with the duality proved in
Lemma 7.2 yield,

�̂(ζ ) = sup
{η≤ζ, η∈Ub(�)}

sup
Q∈Q(G)

EQ[η] = sup
Q∈Q(G)

sup
{η≤ζ, η∈Ub(�)}

EQ[η]

= sup
Q∈Q(G)

EQ[ζ ] for all ζ ∈ Bb(�).

Hence, the duality holds on Bb(�).
Step 5.We now follow the proof of Proposition 7.3 mutatis mutandis to extend the

result to Bp(�). ��

8 Counter-examples

In this section, d = 1, T = 1, p = 1 and q = 2. For a given μ ∈ P(R+), set

Gμ := {
g(X1(ω)) : g ∈ C2,1(R+) , μ(g) = 0

}
.

Example 8.1 Suppose thatμ is supported in [1, 3] and let� = D([0, 1]; [1, 3]). Then,
there exists a countable set A ⊂ � such that 0 = σQ(Gμ)(1A) = �(1A; I(Gμ)) and
�(1A; Is(Gμ)) = 1. In particular, Is(Gμ) �= I(Gμ).

Proof For ω ∈ �, let v3(ω) := supπ

∑n
k=1 |ω(τk) − ω(τk−1)|3, where π ranges over

all finite partitions 0 = τ0 < τ1 < · · · < τn = 1 of [0, 1]. Set t0 = 1 and for k ≥ 1,
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tk := 1/k, sk := (tk+1+ tk)/2, ck := 2 f (sk)/(tk − tk+1)with f (x) := x1/3 for x ≥ 0,
and

ω̂(t) :=
∞∑
k=1

ck(t − tk+1)1(tk+1,sk ](t) + [ f (sk) − ck (t − sk)]1(sk ,tk ](t), t ∈ [0, 1].

It is clear that ω̂ ∈ � and ω̂(tn) = 0, ω̂(sn) = f (sn). Set ω̂n(t) := ω̂(t ∧ tn) for
t ∈ [0, 1]. Then, ω̂n(t) = 0 for t ∈ [tn, 1] and

v3(ω̂n) ≥
∞∑
k=n

( f (sk) − f (tk))
3 =

∞∑
k=n

sk = ∞.

Let Q be the set of rational numbers in [1, 2]. Set Aq := {q + ω̂n : n ∈ N} and
A := ∪q∈QAq . Then, A ⊂ {ω ∈ � : v3(ω) = ∞}. Since for any martingale measure
Q, Q(ω ∈ � : v3(ω) = ∞) = 0, we conclude that σQ(Gμ)(1A) = 0. Suppose that for
some c ∈ R, γ ∈ G and H = (τm, hm)m∈N ∈ Hs , we have c+γ (ω)+ (H · X)1(ω) ≥
1A(ω) for every ω ∈ �. Then, γ (ω) = g(X1(ω)) with μ(g) = 0 and γ (ω) = g(q)

for every ω ∈ Aq . Hence, c+ g(q) + (H · X)1(q + ω̂n) ≥ 1, for every q ∈ Q, n ≥ 1.
By the adaptedness of H , (H ·X)1(q+ω̂n) = (H ·X)tn (q+ω̂), for each q. Therefore,

lim
n→∞ (H · X)1(q + ω̂n) = lim

n→∞ (H · X)tn (q + ω̂) = 0.

This implies that c + g(q) ≥ 1. Moreover, g is continuous and μ(g) = 0. Hence,
c ≥ 1. Since �(1A; Is(Gμ)) is the smallest of all such constants, we conclude that
�(1A; Is(Gμ)) ≥ 1. As 1A ≤ 1, �(1A; Is(Gμ)) = 1.

We next proceed as in Lemma 6.3 to show that �(1A; I(Gμ)) = 0. Indeed, for
k ≥ 2, define Hk = (τ km, hkm)m∈N ∈ Hs as follows. Let τ k0 = 0 and for m ≥ 1,
recursively define the stopping times by

τ k2m−1(ω) := inf{t > τ k2m−2(ω) : ω(t) > ω(0) + k−1/3/2} ∧ 1,

τ k2m(ω) := inf{t > τ k2m−1(ω) : ω(t) < ω(0) + k−1/3/3} ∧ 1.

For m ≥ 0, set hk2m = k−4/3, hk2m+1 = 0. Let Uk
t (ω) be the crossings in the time

interval [0, t] between the lower boundary ω(0) + k−1/3/3 and the upper boundary
ω(0) + k−1/3/2. Then, as in Lemma 6.3,

(Hk · X)t (ω) ≥ −ω(0)

k4/3
+ 1

6k5/3
Uk
t (ω) for all t ∈ [0, 1] and ω ∈ �.

In particular, Hk ∈ Hs . Observe that Uk
t (q + ω̂n) ≥ k − n for all n ≤ k. Therefore,

for any q ∈ [1, 2],

(Hk · X)t (q + ω̂n) ≥ − 2

k4/3
+ (k − n)

6k5/3
for all 1 ≤ n ≤ k.
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1704 P. Cheridito et al.

For ε > 0, let H ε := ε(Ĥ j ) j∈N, where Ĥ j := ∑
k≤ j H

k . Then, for each j ≥ 1,

(H ε · X)t (ω) = ε
∑

1≤k≤ j

(Hk · X)t (ω) ≥ −ε
∑
1≤k

2

k4/3
=: −εC∗ for all t ∈ [0, 1].

Hence, H ε is admissible. Also, for q ∈ [1, 2],

(H ε · X)t (q + ω̂n) = lim inf
j→∞

∑
1≤k≤ j

ε(Hk · X)t (q + ω̂n)

≥
∑
1≤k

− 2ε

k4/3
+ ε(k − n)+

6k5/3
= ∞.

Therefore, �(1A; I(Gμ)) ≤ εC∗ for every ε > 0. ��

The following example motivates the use of the Fatou-closure Î(G) to establish the
duality for measurable functions in Theorem 3.1.

Example 8.2 Let � = D([0, 1];R+) and consider the quotient spaces given by G =
{g(X1(ω)) : g ∈ C2,1(R+), g(1) = 0}. Then, there exists an open set B ⊂ � such that
0 = σQ(G)(1B) = �(1B; Î(G)) < 1 = �(1B; I(G)). In particular, I(G) �= Î(G).

Proof Consider the open set B := {XT �= 1}, set ω∗ ≡ 1 and let Q∗ be the Dirac
measure at ω∗. Then, Q(G) = {Q∗}. Hence, σQ(G)(1B) = EQ∗ [1B] = 0.

Suppose that � ∈ I(G) and c ∈ R satisfy c + � ≥ 1B . By the definition of I(G),
there are H ∈ H and g(X1(·)) ∈ G such that �(ω) = (H · X)1(ω) + g(X1(ω)).
Consider a constant path ω ≡ x . Then, for this path (H · X)T (ω) = 0 and therefore,
1B(ω) = 1 ≤ c + g(x) for every x �= 1. Since g(1) = 0 and g is continuous, we
conclude that c ≥ 1. Hence, �(1B; I(G)) = 1. ��

9 Financial applications

In this section we assume that X models the discounted prices of d assets. Alterna-
tively, one could also model undiscounted prices and introduce an additional process
representing a savings account. But this does not change the essential mathematical
structure; see [19]. For related examples and discussions of the role of� as a prediction
set, we refer to [5,6,38].

The set G represents the set of net outcomes of investments in liquid derivative
instruments. Their initial prices are normalized to zero. Since we do not assume any
probabilistic structure, this set plays an essential role in determining the pricing func-
tionals. We give different examples of the set G. They show that finite discrete-time
models can be included in our framework by appropriately choosing the closed set �.
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Example 9.1 (Final Marginal) In this example � = D([0, T ];Rd+). We fix a probabil-
ity measure μ on Rd+ with finite q-th moments and set

Gμ :=
{
γ (ω) = g(ω(T )) − μ(g) : g ∈ Cq,p(R

d+)
}

, where μ(g) =
∫

R
d+

g dμ.

Then, Q(Gμ) consists of all martingale measures Q whose final marginal is μ, i.e.,

EQ[h(XT )] = μ(h) for all h ∈ Bq

(
R
d+
)

.

Remark 9.2 The duality in the setting of Example 9.3 with one fixed marginal does not
immediately extend to the case of two marginals assuming that � = D([0, T ];Rd+).
The difficulty arises from the fact that the coordinate mapping X0 is not continuous.
This issue can be removed by introducing a fictitious element X0− on the Skorokhod
space D([0, T ];Rd+), i.e. one considers �x0− := R

d+ × D([0, T ];Rd+).

Example 9.3 (Initial Value and Final Marginal) In addition to a final marginal, in this
example we wish to fix the initial asset values x0 ∈ R

d+. However, the canonical
map, Xt : ω ∈ D([0, T ];Rd+) �→ ω(t) ∈ R

d+, is continuous only for t = T and
discontinuous at all other points. Therefore, �x0 := {ω ∈ � : ω(0) = x0} is not an
S-closed subset of D([0, T ];Rd+). To overcome this difficulty, we fix a small time
increment h > 0 and define

�h,x0 := {ω ∈ � : ω(t) = x0 for all t ∈ [0, h)} .

Onemay directly verify that�h,x0 is S-closed.We keep Gμ as in the previous example.
Then, the elements ofQ(Gμ) restricted to�h,x0 are martingale measures with the final
marginal μ and satisfy

Q(Xt = x0 for all t ∈ [0, h)) = 1, Q ∈ Q(Gμ).

The set Q(Gμ) is non-empty provided that
∫
x μ(dx) = x0.

Example 9.4 (Multiple Marginals) In Example 9.1 we fixed the marginal of the dual
measures at the final time. In a given application, marginals at other time points
T = {t1, . . . , tN } might be approximately known. So one may want to fix these
marginals as well. Since Xti are all discontinuous, functions of the form g(Xti ) are
not necessarily S∗-continuous on D([0, T ];Rd+). So, as in the previous example, we
fix a small h > 0 and consider the set given by

�T :=
N⋂
i=1

{
ω ∈ � : Xt (ω) = Xti (ω) for all t ∈ [ti , ti + h)

}
.
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Then, �T is an S-closed subset ofD([0, T ];Rd+). Moreover, for each i , Xti restricted
to �T is S∗-continuous. Given probability measures {μi }Ni=1 on R

d+ with finite q-th
moments, we consider the set

GT :=
{

γ (ω) =
N∑
i=1

gi (Xti (ω)) − μi (gi ) : gi ∈ Cq,p(R
d+) for all i = 1, . . . , N

}
.

Then, GT ⊂ Cq,p(�τ ). The measures Q ∈ Q(GT ) are martingale measures and have
marginal μi at times t ∈ [ti , ti + h). Assume 0 ≤ t1 < . . . < tN ≤ T . In view of
Strassen’s result [55],Q(GT ) is non-empty if and only ifμi ’s are increasing in convex
order, i.e, μ1(ϕ) ≤ . . . ≤ μN (ϕ), for every convex function ϕ : Rd+ → R.

In the following examples, we collect some common option payoffs satisfying the
assumptions of Theorem 3.1.

Example 9.5 The typical examples of S∗-continuous functions are the payoffs of Asian
type options. Indeed, let g : [0, T ] → R be continuous. Then,

ξ(ω) =
∫ T

0
g(t)Xi

t (ω) dt,

for any i ∈ {1, . . . , d}, is S∗-continuous. However, the running maximum and mini-
mum of Xi are only lower and upper semicontinuous, respectively; see [39]. We refer
the reader to [39,46], for further examples.

In particular, the duality (3.2) holds for every derivative contract that is ameasurable
function of the underlying underlying assets.

Example 9.6 Since � is a measurable subset of D([0, T ];Rd+), we know from [44]
that there exists an F-progressively measurable d × d-matrix-valued process 〈X〉 =
(〈X〉t )t∈[0,T ] on � which equals the predictable quadratic variation of X Q-a.s., for
every F-martingale measure Q on �. We define the d × d-matrix-valued volatility
process σ = (σt )t∈[0,T ] as the square-root of the non-negative, symmetric matrix-
valued process

vt (ω) := lim inf
ε↓0

〈X〉t (ω) − 〈X〉(t−ε)∨0(ω)

ε
, (t, ω) ∈ [0, T ] × �.

In particular, σ is a measurable process on �. So Theorem 3.1 yields model-
independent price bounds for derivative contracts written on σ . However, the
construction of the quadratic variation process 〈X〉 relies on stopping times and there-
fore, on F-progressively measurable partitions of the interval [0, T ], which in general
are non-deterministic; we refer to [11] for details. In particular, derivative contracts
depending on σ are in general not upper semicontinuous on �.

As a consequence of Theorem 3.1, we obtain a fundamental theorem of asset pric-
ing relating the non-emptiness of Q(G) to an appropriate no-arbitrage condition. For
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classical versions of this result see e.g. [21] for discrete time, [22,23] for continuous
time and the references therein. Robust versions have been derived in [1,19,22,26].
Our no-arbitrage conditions are the following.

Corollary 9.7 (Robust Fundamental TheoremofAsset Pricing)Under Assumption 2.2,
the following are equivalent:

(i) Q(G) is non-empty.
(ii) �(η; Î(G)) is finite for all η ∈ Bp(�).
(iii) �(0; I(G)) = 0.

A Appendix: S and S∗-topologies

The following definition is from Jakubowski [39,40].

Definition A.1 For {νn}n∈N ⊂ D([0, T ];Rd+) and ν∗ ∈ D([0, T ];Rd+), we write
νn⇀Sν

∗ if for each ε > 0, there exist functions {νn,ε}n∈N and ν∗,ε in D([0, T ];Rd+)

which are of finite variation such that

‖ν∗ − ν∗,ε‖∞ ≤ ε, ‖νn − νn,ε‖∞ ≤ ε for every n ∈ N,

and

lim
n→∞

∫

[0,T ]
f (t) dν

n,ε
t =

∫

[0,T ]
f (t) dν

∗,ε
t , (A.1)

for all f ∈ Cb([0, T ];Rd), where the integrals in (A.1) are Stieltjies integrals with
ν
n,ε
0− = ν

∗,ε
0− = 0. The topology generated by this sequential convergence is called the

S-topology.

In particular, a subsetC ⊂ D([0, T ];Rd+) is S-closed if and only if it is sequentially
closed for the above notion of convergence, i.e., if {νn}n∈N ⊂ C and νn⇀Sν

∗, then
ν∗ ∈ C . Open sets are the complements of the closed ones. One may directly verify
that this collection of sets satisfies the definition of a topology.

Remark A.2 The (a posteriori) convergence in this topology could be different from
the a priori convergence ⇀S defined above. This definition of a topology is known as
the Kantorovich-Kisyński recipe; see [47] or [30, Sections 1.7.18, 1.7.19 on pages 63-
64]. In particular, it is discussed in [40, Appendix] that {νn}n∈N converges to ν∗ in the
(a posteriori) S-topology, if every subsequence {νnk }k∈N has a further subsequence
{νnkl }l∈N such that νnkl ⇀Sν

∗.
As a different example, if one starts with almost-sure convergence as the a priori

convergence (instead of the⇀S convergence as above), then the resulting a posteriori
convergence is the convergence-in-probability; see [40].

The following fact from [39,40] is an essential ingredient of our continuity proof.
Recall the up-crossings Ua,b,i

t of Definition 6.2.
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Proposition A.3 (Jakubowski [39], Theorem 2.13; [40], Theorem 5.7). A subset K ⊂
D([0, T ];Rd+) is relatively S-compact if and only if

sup
ω∈K

‖ω‖∞ < ∞ and sup
ω∈K

Ua,b,i
T (ω) < ∞ for all a < b and i = 1 . . . , d. (A.2)

Let us denote the relative topology of S on � again by S. It is not known whether
(�, S) is completely regular. As this property plays an important role in our analysis,
we regularize S on � analogously to [46].

Definition A.4 The S∗-topology on� is the coarsest topologymaking all S-continuous
functions ξ : � → R continuous.

It is clear from this definition that S∗ ⊂ S, and a function ξ : � → R is S∗-
continuous if and only if it is S-continuous. Moreover, (�, S) and (�, S∗) are both
Hausdorff, and since compact sets stay compact if the topology is weakened, every
S-compact subset of � is also S∗-compact.

The collection of finite intersections of sets of the form

Oξ,ε(ω∗) := {ω ∈ � : |ξ(ω) − ξ(ω∗)| < 1}

with arbitrary S-continuous functions ξ : � → R, form a neighborhood basis at ω∗.
In particular, for any S∗-open set O and ω∗ ∈ O , there is a neighborhood of ω∗ of the
form

n⋂
k=1

{ω ∈ � : |ξk(ω) − ξk(ω∗)| < 1} ,

contained inO , where each ξk is an S-continuous function from� toR. For each k ≤ n,
set ηk(ω) = |ξk(ω) − ξk(ω∗)| ∧ 1 and η(ω) = maxk≤n ηk(ω). Then, η continuously
maps � into [0, 1] and satisfies η(ω∗) = 0 and η(ω) = 1 for all ω /∈ O . This is
the defining property of a completely regular space. Hence, (�, S∗) is a completely
regular Hausdorff space, (T3 1

2
). In fact, it turns out to be perfectly normal.

Lemma A.5 (�, S∗) is perfectly normal Hausdorff (T6) and a Lusin space. In partic-
ular, every Borel probability measure on (�, S∗) is a Radon measure.

Proof It is well-known that the standard J1-topology on the Skorokhod space is Polish.
Moreover, by [39, Theorem 2.13 (vi)], S ⊂ J1. So, since � is S-closed it is also J1-
closed. Therefore, if we denote the relative J1-topology on � again by J1, (�, J1) is
still Polish and S∗ ⊂ J1. As a consequence, the identity map from (�, J1) to (�, S∗)
is bijective and continuous, which shows that (�, S∗) is a Lusin space.

[31, Proposition I.6.1, page 19] proves that any completely regular Lusin space is
perfectly normal. We note that [31] uses the terminology “Espaces standards” [31,
Definition I.2.1, page 7] which is exactly a Lusin space and the term “régulier” as
defined on page 18 in [31] corresponds to completely regular. The reader may also
consult page 64 of [28] for a brief discussion of this implication.
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Finally, on a Lusin space, every Borel probability measure is Radon; see e.g., [53,
p. 122]. ��

We also need the following facts about the S∗-topology.
Lemma A.6 Every S∗-upper semicontinuous function from � to R is the pointwise
limit of a decreasing sequence of S∗-continuous functions, and the family of Suslin
functions generated by Ub(�) includes Bb(�).

Proof The statement about approximation of upper semicontinuous functions by con-
tinuous ones is proved in [56, Theorem 3]. Also, see [24, Theorem 49 (c)] or [30,
Page 61].

The statement about Suslin functions is proved in [4] (see the end of the proof of
Theorem 2.2). Alternatively, by Proposition 421L in [32, page 143] on any topological
space, every Baire set is a Suslin set. On perfectly normal Hausdorff spaces, Baire and
Borel sets agree [12, Proposition 6.3.4]. Hence, bounded Borel functions with respect
to S∗ are Suslin. ��
Remark A.7 [46] contains more results about the S∗-topology on D([0, T ];Rd). In
particular, the compact sets of S∗ and S agree. Also, the S∗-topology is the strongest
topology on the Skorokhod space for which the compactness criteria (A.2) holds and
the Riesz representation theorem with the β0-topology is true.

B Appendix:ˇ0-topology

Let E be a completely regular Hausdorff space and recall that B0(E) is the set of
real-valued, bounded, Borel measurable functions on E that vanish at infinity. Note
that any perfectly normal topology, such as S∗ on �, is completely regular.

For each η ∈ B+
0 (E) consider the semi-norm on Cb(E) given by,

‖ξ‖η := ‖ξη‖∞ := sup
x∈E

|ξ(x)η(x)|.

The β0-topology on Cb(E) is generated by the semi-norms ‖.‖η as η varies in B+
0 (E).

Importantly, the topological dual of Cb(E)with the β0-topology is the set of all signed
Radon measures of bounded total variation on E ; see e.g., [41, Theorem 3, page 141]
or [54] for further details on the β0-topology.

C Appendix: Martingale measures

Lemma C.1 Let Q ∈ P(�) such that supt∈[0,T ] EQ[|Xt |q ] < ∞ for some q > 1 and
EQ[Y · (XT − Xt )] = 0 for every t ∈ [0, T ] and all Ft -measurable Y ∈ Cb(�)d .
Then, the canonical map X is an (F, Q)-martingale.

Proof Fix t < T , and denote by A the family of all subsets of � that can be written
as a finite intersection of sets of the form X−1

t j (Bj ) for t j ≤ t and a Borel subset Bj

of Rd . Let i ∈ {1, . . . , d}. If we can show that
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EQ[1A(Xi
T − Xi

t )] = 0 for all A ∈ A, (C.1)

it follows from a monotone class argument that

EQ[1A(Xi
T − Xi

t )] = 0 for all A ∈ F X
t .

By uniform integrability and right-continuity of X , this implies

EQ[1A(Xi
T − Xi

t )] = lim
ε↓0 EQ[1A(Xi

T − Xi
t+ε)] = 0 for all A ∈ Ft ,

which proves the lemma.
To show (C.1), note that for every set A ∈ A of the form

A = X−1
t1 (B1) ∩ · · · ∩ X−1

tk (Bk)

for t1, . . . , tk ≤ t and Borel subsets B1, . . . , Bk ofRd , there exist bounded continuous
functions f nj : Rd → R such that

EQ[1A(Xi
T − Xi

t )] = lim
n→∞EQ[ f n1 (Xt1) · · · f nk (Xtk )(X

i
T − Xi

t )]. (C.2)

On the other hand, for all n, one has

EQ[ f n1 (Xt1) · · · f nk (Xtk )(X
i
T − Xi

t )] = lim
ε↓0 EQ[ f n1 (Xε

t1) · · · f nk (Xε
tk )(XT − Xt+ε)],

(C.3)

for the S-continuous functions

Xε
t j = 1

ε

∫ t j+ε

t j
Xu∧T du, j = 1, . . . , d.

Since f n1 (Xε
t1) · · · f nk (Xε

tk ) is Ft+ε-measurable and belongs to Cb(�), it follows from
the assumptions that (C.2)–(C.3) vanish, and the proof is complete. ��
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