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VIABILITY AND ARBITRAGE UNDER KNIGHTIAN UNCERTAINTY
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We reconsider the microeconomic foundations of financial economics. Motivated by
the importance of Knightian uncertainty in markets, we present a model that does not
carry any probabilistic structure ex ante, yet is based on a common order. We derive
the fundamental equivalence of economic viability of asset prices and absence of arbi-
trage. We also obtain a modified version of the fundamental theorem of asset pricing
using the notion of sublinear pricing measures. Different versions of the efficient mar-
ket hypothesis are related to the assumptions one is willing to impose on the common
order.
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1. INTRODUCTION

ASSET PRICING MODELS TYPICALLY TAKE a basic set of securities as given and determine
the range of option prices that is consistent with the absence of arbitrage. From an eco-
nomic point of view, it is crucial to know if modeling security prices directly is justified; an
asset pricing model is called viable if its security prices can be thought of as (endogenous)
equilibrium outcomes of a competitive economy. Traditional finance models rely on a
probabilistic framework. The capital asset pricing model assumes that agents have mean-
variance preferences and share the same view of mean and variance-covariance matrix
of asset returns. The consumption-based capital asset pricing model derives asset returns
from economic equilibrium and also assumes that agents share the same prior. Harrison
and Kreps (1979) realized that a reference probability that determines the null sets, the
topology, and the order of the model is sufficient to prove the equivalence of economic
viability and pricing by arbitrage. The common prior or the weaker reference probability
assumption is made in most asset pricing models.

Recently, a large and increasing body of literature has focused on decisions, mar-
kets, and economic interactions under uncertainty. Frank Knight’s pioneering work
(Knight (1921)) distinguishes risk—a situation that allows for an objective probabilistic
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description—from uncertainty—a situation that cannot be modeled by a single probabil-
ity distribution. By now, it is widely acknowledged that drift and volatility of asset prices,
the term structure of interest rates, and credit risk are important instances in which the
probability distribution of the relevant parameters is imprecisely known, if not completely
unknown. Epstein and Ji (2013) emphasized the relevance of nonprobabilistic uncertainty
in financial modeling when parameters vary too frequently to be estimated accurately, or
when nonlinearities arise that are too complex to be captured by existing models, or when
nonstationarities prevent the use of the law of large numbers or the central limit theo-
rem. They show that a probability space framework is not able to model ambiguity about
volatility.1

We take these insights as a motivation to reconsider the foundations of arbitrage pricing
and its relation to economic equilibrium without imposing a priori a probability space
framework. We show that the basic relations between economic equilibrium (viability),
absence of arbitrage, and suitable pricing functionals can be proved with ease by merely
assuming a common order with respect to which preferences are monotone.2 Using this
approach, we achieve a unifying theory that covers classical models of risk as well as new
models of ambiguity.

We first show that the absence of arbitrage and the (properly defined) economic via-
bility of the model are equivalent. In equilibrium, there are no arbitrage opportunities;
conversely, for arbitrage-free asset pricing models, it is possible to construct a heteroge-
neous agent economy such that the asset prices are equilibrium prices of that economy.

The second key result is the fundamental theorem of asset pricing. In contrast to risk,
it is no longer possible to characterize viability through the existence of a single linear
pricing measure (or equivalent martingale measure). Instead, it is necessary to use a
suitable nonlinear pricing expectation, that we call a sublinear martingale expectation.
A sublinear expectation has the common properties of an expectation including mono-
tonicity, preservation of constants, and positive homogeneity, yet it is no longer additive.
Indeed, sublinear expectations can be represented as the supremum of a class of (lin-
ear) expectations, an operation that does not preserve linearity.3 Nonlinear expectations
arise in decision-theoretic models of ambiguity-averse preferences (Gilboa and Schmei-
dler (1989), Maccheroni, Marinacci, and Rustichini (2006)). It is interesting to see that a
similar nonlinearity arises here for the pricing functional. A general theory of equilibrium
with such sublinear prices is developed in Beissner and Riedel (2019).4

The common order shapes equilibrium asset prices. We study various common orders
and how they are related to versions of the efficient market hypothesis (Fama (1970)).
A strong interpretation of the efficient market hypothesis says that properly discounted
expected returns of assets are equal to the return of a safe bond. We obtain this con-
clusion when the common order is based on expected payoffs with respect to a common

1Compare also the general conceptual discussion of ambiguity and limitations of probabilistic modeling in
Lo and Mueller (2010).

2An obvious and intuitive example of an order that we have in mind here is the pointwise order, that is,
when agents will prefer a contingent consumption plan over their endowment if the new plan pays off more
in every state of the world. Preferences over monetary outcomes are naturally assumed to be monotone with
respect to this basic order.

3In economics, such a representation theorem appears first in Gilboa and Schmeidler (1989). Sublinear
expectations also arise in robust statistics (compare Huber (1981)), and they play a fundamental role in theory
of risk measures in Finance; see Artzner, Delbaen, Eber, and Heath (1999) and Föllmer and Schied (2011).

4Given that we have a nonlinear price system, one might wonder whether agents can generate arbitrage
gains by splitting a consumption bundle into two or more plans. The convexity of our price functional excludes
such arbitrage opportunities; see Proposition 1 in Beissner and Riedel (2019).
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prior. When the common order is given by the almost sure order under a common prior,
one obtains a weaker version of the efficient market hypothesis: under an equivalent pric-
ing measure, expected returns are equal.5 In situations of Knightian uncertainty, different
specifications of the common order can be made. An example is the quasi-sure order in-
duced by a set of priors: a claim dominates quasi-surely another claim if it is almost surely
greater or equal under all considered probability measures. Another example is the or-
der induced by smooth ambiguity preferences, as introduced by Klibanoff, Marinacci, and
Mukerji (2005), where Knightian uncertainty is modeled by a second-order prior over a
class of multiple priors. We show that weaker versions of the efficient market hypothe-
sis hold, depending on the strength of the assumptions we are willing to impose on the
common order, and how the related fundamental theorem of asset pricing needs to be
suitably adapted.

Further Related Literature

The relation of arbitrage and viability has been discussed in various contexts. Jouini
and Kallal (1995) and Jouini and Kallal (1999) discussed models with transaction cost
and other frictions. Werner (1987) and Dana, Le Van, and Magnien (1999) studied the
absence of arbitrage in its relation to equilibrium when a finite set of agents is fixed a pri-
ori whereas Cassese (2017) characterized the absence of arbitrage in an order-theoretic
framework derived from coherent risk measures. Knightian uncertainty is also closely re-
lated to robustness concerns that play an important role in macroeconomic models that
deal with the fear of model misspecification (Hansen and Sargent (2001, 2008)). The
pointwise order corresponds to the “model-independent” (or rather “probability–free”)
approach in finance that has been discussed, for example, in Riedel (2015), Acciaio, Bei-
glböck, Penkner, and Schachermayer (2016), Burzoni, Frittelli, Hou, Maggis, and Obłój
(2019), and Bartl, Cheridito, Kupper, and Tangpi (2017). This literature uses different no-
tions of “relevant payoffs” that our approach allows to unify under a common framework.

The paper is set up as follows. Section 2 describes the model, the two main contributions
of this paper, and provides four examples. Section 3 derives various classic and new forms
of the efficient market hypothesis. The modeling philosophy is discussed in more detail
in Section 4. Section 5 is devoted to the proofs of the main theorems. The supplementary
online material contains a detailed study of general discrete time markets when the space
of contingent payoffs consists of bounded measurable functions. It also discusses further
extensions as, for example, the equivalence of absence of arbitrage and absence of free
lunches with vanishing risk, or the question if an optimal superhedge for a given claim
exists.

2. A PROBABILITY-FREE FOUNDATION FOR FINANCIAL ECONOMICS

A nonempty set Ω contains the states of the world; the σ–field F on Ω collects the
possible events.

The commodity space (of contingent claims) H is a vector space of F -measurable real-
valued functions containing all constant functions. We will use the symbol c both for real
numbers as well as for constant functions. H is endowed with a metrizable topology τ and
a preorder ≤ that are compatible with the vector space operations.

5This statement is equivalent to the classic version of the fundamental theorem of asset pricing in Harri-
son and Kreps (1979), Harrison and Pliska (1981), Duffie and Huang (1985), Dalang, Morton, and Willinger
(1990), Delbaen and Schachermayer (1998).
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The abstract vector space model allows to cover the typical models that have been used
in financial economics. Under risk, it is common to take a space of suitably integrable
functions with respect to a given prior with the usual almost sure order; without an ex
ante given probability measure, integrability cannot be used as a criterion. We thus allow
for more generality here in order to include, for example, spaces of suitably bounded
measurable functions.

We assume throughout that agents’ preferences are monotone with respect to the pre-
order ≤ which thus plays a crucial role in our analysis. A major conclusion of our study is
that the strength of the assumptions we are willing to make on the common order (and,
therefore, on the agents populating the economy) shapes the results about market re-
turns as we shall see in detail in Section 3. We assume throughout that the preorder ≤ is
consistent with the order on the reals for constant functions and with the pointwise or-
der for measurable functions. A consumption plan Z ∈ H is negligible if we have 0 ≤ Z
and Z ≤ 0. C ∈ H is nonnegative if 0 ≤ C and positive if in addition not C ≤ 0. We de-
note by Z , P and P+ the class of negligible, nonnegative, and positive contingent claims,
respectively.

We introduce a class of relevant contingent claims R, a convex subset of P+. The rel-
evant claims are used below in two important ways. On the one hand, they describe the
nonnegative consumption plans that some agents strictly prefer to the null claim. On the
other hand, they signal arbitrage: if a net trade allows to obtain a payoff that dominates a
relevant payoff with respect to the common order, we speak of an arbitrage. In the spirit
of Arrow (1953) and most of the literature, a common choice of the relevant claims is
the set of positive claims P+; we invite the reader to make this identification at first read-
ing. However, it might be of interest to consider smaller relevant sets in some economic
contexts. The introduction of R also allows to subsume various notions of arbitrage that
appeared in the literature, compare the discussion in Section 4.

The financial market is modeled by the set of net trades I ⊂ H, a convex cone con-
taining 0. I is the set of payoffs that the agents can achieve from zero initial wealth by
trading in the financial market. In the basic frictionless model of securities, I contains the
payoffs of self-financing strategies with zero initial capital. In a frictionless market, I is a
subspace. When short selling constraints, credit line limitations, or transaction costs are
imposed, for example, we are led to a convex cone instead of a subspace; see Example 4.1.

An agent in this economy is described by a preference relation � (i.e., a complete and
transitive binary relation) on H, that is,

• weakly monotone with respect to ≤, that is,X ≤ Y impliesX � Y for everyX�Y ∈H;
• convex, that is, the upper contour sets {Z ∈H :Z �X} are convex;
• τ-lower semicontinuous, that is, for every sequence {Xn}∞

n=1 ⊂H converging to X in τ
with Xn � Y for n ∈ N, we have X � Y .

The set of all agents is denoted by A.
In the spirit of Harrison and Kreps (1979), we think of a potentially large set of agents

about whom some things are known, without assuming that we know exactly their pref-
erences or their number. We only impose a list of properties on preferences that are
standard in economics. In particular, bearing in mind the interpretation of ≤ as a com-
mon order, the preferences are monotone with respect to ≤. Moreover, we impose some
weak form of continuity with respect to the given topology τ; it is known that, in general,
some form of continuity is required for the existence of equilibrium. Convexity reflects a
preference for diversification. We stress that preferences are defined on the entire com-
modity space H; this assumption can be relaxed (we refer to the Supplementary Online
Material (Burzoni, Riedel, and Soner (2021)) for the technical details).
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A financial market (H� τ�≤�I�R) is viable if there is a family of agents {�a}a∈A ⊂ A
such that

• 0 is optimal for each agent a ∈A, that is,

∀� ∈ I ��a 0� (2.1)

• for every relevant claim R ∈R there exists an agent a ∈A such that

0 ≺a R� (2.2)

We say that {�a}a∈A supports the financial market (H� τ�≤�I�R).
A market is in equilibrium when agents have no incentive to trade away from their

current endowment.6 We generalize the viability definition of Harrison and Kreps (1979)
who use a single representative agent to allow for economies with heterogeneous agents.
Heterogeneity of agents allows us to prove the two main theorems in great generality
with easy arguments without the need to construct strictly monotone preferences (that
might not exist in all cases). We replace the strict monotonicity assumption by the weaker
Condition (2.2) which, in particular, excludes the trivial case of agents who are indifferent
between all payoffs. Compare also our discussion of the viability concept in Section 4
below.

A net trade � ∈ I is an arbitrage if there exists a relevant claim R∗ ∈ R such that � ≥
R∗. More generally, a sequence of net trades {�n}∞

n=1 ⊂ I is a free lunch with vanishing
risk if there exists a relevant claim R∗ ∈ R and a sequence {en}∞

n=1 ⊂ H of nonnegative
consumption plans with en

τ→ 0 satisfying en + �n ≥ R∗ for all n ∈ N. We say that the
financial market is strongly free of arbitrage if there is no free lunch with vanishing risk.
In general, the absence of arbitrage is not equivalent to the absence of free lunches with
vanishing risk.7 In the Supplementary Online Material, we establish the equivalence for
finite horizon discrete time financial markets.

Two Theorems

Our first theorem establishes the equivalence of viability and absence of arbitrage.

THEOREM 2.1: A financial market is strongly free of arbitrage if and only if it is viable.

In the standard literature, the model of the economy is constructed on a probability
space with a given reference probability P that determines the null sets and the topology
of the model. In such common prior models, a financial market is viable if and only if there
exists a linear pricing measure in the form of a risk-neutral probability measure P∗ that is
equivalent to P, as Harrison and Kreps (1979) have shown. In the absence of a common
prior, we have to work with a more general, sublinear notion of pricing. A functional

E :H → R∪ {∞}

6We take the endowment to be zero in our definition; this comes without loss of generality; see also the
discussion in Section 4.

7Our notion of free lunch with vanishing risk is a modification of the one used by Kreps (1981). It corre-
sponds to the notion proposed by Delbaen and Schachermayer (1998) for financial markets in continuous time
in a probability space framework. This notion and our adapted viability concept allow to prove the equivalence
of viability, absence of arbitrage, and the existence of a suitable pricing functional in contrast to Kreps (1981).
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is a sublinear expectation if it is monotone with respect to ≤, translation-invariant, that is,
E(X + c)= E(X)+ c for all constant claims c ∈ H and X ∈H, and sublinear, that is, for
all X�Y ∈ H and λ > 0, we have E(X +Y)≤ E(X)+ E(Y) and E(λX)= λE(X). E has
full support if E(R) > 0 for every R ∈R. Last but not least, E has the martingale property if
E(�)≤ 0 for every � ∈ I . We say in short that E is a sublinear martingale expectation with
full support if all the previous properties are satisfied.

It is well known from decision theory that sublinear expectations can be written as
upper expectations over a set of probability measures. In our more abstract framework,
probability measures are replaced by suitably normalized functionals. We say thatϕ ∈H′

+
8

is a martingale functional9 if it satisfies ϕ(1)= 1 (normalization) and ϕ(�)≤ 0 for all � ∈ I .
In the spirit of the probabilistic language, we call a linear functional absolutely continuous
if it assigns the value zero to all negligible claims. We denote by Qac the set of absolutely
continuous martingale functionals.

The notions that we introduced now allow us to state the general version of the funda-
mental theorem of asset pricing in our order-theoretic context.

THEOREM 2.2—Fundamental theorem of asset pricing: The financial market is viable
if and only if there exists a lower semicontinuous sublinear martingale expectation with full
support.

In a viable market, the set of absolutely continuous martingale functionals Qac is not empty
and

EQac(X) := sup
φ∈Qac

φ(X)

is a lower semicontinuous sublinear martingale expectation with full support. Moreover, EQac

is maximal, in the sense that any other lower semicontinuous sublinear martingale expectation
with full support E satisfies E(X)≤ EQac(X) for all X ∈H.

REMARK 2.3: Under nonlinear expectations, one has to distinguish martingales from
symmetric martingales; a symmetric martingale has the property that the process itself
and its negative are martingales. In our context, this condition translates to the equality
EQac(�) = 0 for all � ∈ I . When the set of net trades I is a linear space as in the case of
frictionless markets, a net trade � and its negative −� belong to I . In this case, sublinearity
and the condition EQac(�)≤ 0 for all � ∈ I imply EQac(�)= 0 for all net trades � ∈ I . Thus,
the net trades � are symmetric martingales.

Four Examples

Our novel approach builds the foundations of financial economics without imposing
any a priori probabilistic structure, thereby including the new paradigm of Knightian un-
certainty into the theory. We illustrate the unifying power of the model with four examples
ranging from classical situations of risk to new ones with ambiguity.

EXAMPLE 2.4—The atom of finance and complete markets: The basic one-step bino-
mial model, that we like to call the atom of finance, and consists of two states of the world,

8H′ is the topological dual of H and H′
+ is the set of positive elements in H′.

9In this generality the terminology, functional is more appropriate. When the dual space H′ can be identified
with a space of measures, we will use the terminology martingale measure. The technical question whether these
measures are countably additive is discussed in the Supplementary Online Material.
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Ω = {1�2}. An element X ∈ H can be identified with a vector in R2. Let ≤ be the usual
partial order of R2. The relevant claims are the positive ones, R=P+.

There is a riskless asset B and a risky asset S. At time zero, both assets have value
B0 = S0 = 1. The riskless asset yields B1 = 1 + r for an interest rate r > −1 at time one,
whereas the risky asset takes the values u in state 1 and respectively d in state 2 with
u > d.

We use the riskless asset B as numéraire. The discounted net return on the risky asset
is �̂ := S1/(1 + r)− 1. I is the linear space spanned by �̂. There is no arbitrage if and only
if the unique candidate for a martingale probability of state one

p∗ = 1 + r − d
u− d

belongs to (0�1) which is equivalent to u > 1 + r > d. p∗ induces the unique martingale
measure P∗ with expectation

E∗[X] = p∗X(1)+ (
1 −p∗)X1(2)�

P∗ is a linear measure; moreover, it has the full support property since for every R ∈R we
have E∗[R]> 0. The market is viable with the single-agent economy A= {�∗} where the
preference relation �∗ is given by the linear expectation P∗, that is, X �∗ Y if and only if
E∗[X] ≤ E∗[Y ]. Indeed, under this preference � ∼∗ 0 for any � ∈ I and X ≺∗ X + R for
any X ∈ H and R ∈ P+. In particular, any � ∈ I is an optimal portfolio and the market is
viable.

The preceding analysis carries over to all finite Ω and complete financial markets.

EXAMPLE 2.5—Ellsberg market: We illustrate the concepts used in our definition of
viability and in Theorem 2.2 with the help of a market that is inspired by the Ellsberg
thought experiments, the archetypal instances of ambiguity in economics and decision
theory. In these experiments, an urn is called ambiguous if the exact composition is not
known to the participants. Suppose for simplicity that we model an ambiguous urn that
contains black and red balls; let it be known that the proportion of red balls is in the inter-
val [p∗�p∗] ⊂ [0�1]. The finite state space is given by Ω := {red�black}. The commodity
space H = RΩ is the set of functions on Ω with the usual order. Consider the claim that
pays one dollar if a red ball is drawn, that is,

X(ω)=
{

1 if ω is red�
0 if ω is black�

In contrast to the frictionless atom of finance, we now suppose that due to ambiguity, the
asset can be bought at price p∗ and sold at price p∗ > p∗.10 Then the set of net trades is
given by positive cone (rather than a linear subspace) generated by �1(ω) =X(ω)− p∗

and �2(ω)= p∗ −X(ω), that is,

I = {λ�1 +μ�2 : λ�μ≥ 0}�

10Such a price setting behavior is quite natural in today’s regulated financial markets when banks take the
model uncertainty or ambiguity of their algorithms into account and perform a number of stress tests to compute
an interval of possible prices; compare the early account of such practices in Artzner et al. (1999).
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Let Pp be the measure that assigns probability p to the event {red}. The risk-neutral
subjective expected utility agent’s preference with this subjective belief Pp is denoted by
�p. For this financial market, the set of absolutely continuous martingale expectations
Qac is given by

Qac = {
Pp;p ∈ [

p∗�p∗]}�
The set of agents A∗ = {�p;p ∈ [p∗�p∗]} supports this market in the sense of our viability
definition. The corresponding sublinear martingale expectation is given by

E(ξ)= max
{
Ep∗ [ξ]�Ep∗ [ξ]}�

In contrast to the frictionless, ambiguity-free, and complete atom of finance, we now
have a continuum of heterogeneous risk-neutral agents A∗ that support the market (in-
stead of a unique risk-neutral agent). The model’s ambiguity (or, the imprecise probabilis-
tic information) is described by the sublinear pricing functional E(ξ). The corresponding
ambiguity-averse Gilboa–Schmeidler agent’s preferences are represented by the utility
function

UGS(ξ) := inf
p∈[p∗�p∗]

Ep[ξ]�
We have then UGS(�) ≤ 0 for all � ∈ I . When 0 < p∗ < p∗ < 1, UGS is strictly monotone
and supports the market. Note however, that when p∗ = 0 or p∗ = 1, the agent with utility
function UGS does no longer support the market as strict monotonicity fails.

EXAMPLE 2.6—Multiple priors: Knightian uncertainty leads to frameworks in which
single ambiguity-averse or expected utility maximizers might not suffice to support a given
arbitrage-free market.11 Consider a one-step financial market that allows trading only at
time zero. Suppose that the underlying financial market returns are too ambiguous or too
nonstationary to be accurately estimated or modeled by a single probability distribution,
yet agents are willing to take a stand on a range of possible models for returns. Such a
situation of imprecise probabilistic information about the distribution of asset returns can
be modeled by a set of priors Q on a measurable space (Ω�F). Let the common order be
the quasi-sure order induced by the family of priors, that is,

X ≤ Y ⇔ Q(X ≤ Y)= 1� ∀Q ∈Q�

Then an event A ⊂Ω is negligible12 if Q(A) = 0 for every prior Q ∈ Q. The commodity
space that represents all claims in this market is given by

H =
⋂
Q∈Q

L2(Ω�Q)�

As the L2 spaces are defined as equivalence classes, two claims in H are in the same
equivalence class if they differ only on a negligible set. Call a claim R ≥ 0 relevant if the
set {R> 0} is not negligible, that is, R=P+. The set of net trades can be any convex cone
included in

I0 = {
� ∈H : EQ[�] ≤ 0 ∀Q ∈Q

}
�

11In a recent paper, Bartl (2019) analyzed portfolio and consumption choice in such discrete time models.
12These events are called polar in the mathematical literature on quasi-sure analysis.
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One might guess that the single Gilboa–Scheidler agent with the utility function

UGS(X) := inf
Q∈Q

EP[X]� X ∈H

supports the financial market. However, this agent would support the financial market
only when it satisfies the monotonicity condition (2.2), that is, UGS(R) > 0 for every R ∈
R. This monotonicity implies that all priors must have the same null sets. Indeed, suppose
that there are two priors P1�P2 ∈ Q and an event A satisfying P1(A) > 0 = P2(A). Then
A is not negligible, and consequently, the claim R = χA is relevant. On the other hand,
UGS(χA) = 0 showing that the Gilboa–Schmeidler agent is not strictly monotone when
there are priors with different null-sets.13

Similarly, suppose that a single agent with a linear preference relation �Q given by the
subjective expected utility function U(X) = EQ[X] for a prior Q supports the financial
market.14 LetA be a null set of Q. Then this agent is indifferent between χA and the zero
claim. Thus the monotonicity condition (2.2) implies that χA cannot be relevant and A
must be negligible. As negligible sets are null for every prior, we conclude that the null
sets of Q and the negligible sets coincide.

We conclude that we need to reconsider the viability concept in models that do not
allow to describe the negligible sets by a single probability measure. In particular, note
that the family of heterogeneous agents {�Q}Q∈Q with linear preferences induced by the
set of priors Q supports the financial market.

EXAMPLE 2.7—Volatility uncertainty: In the classical Samuelson–Merton–Black–
Scholes model, the stock price is a geometric Brownian motion satisfying the stochastic
differential equation dSt = σSt dBt where B is a standard Brownian motion and σ is a
positive constant modeling the volatility.

It is widely recognized and empirically well documented that volatility is time-varying
and stochastic; a variety of complex stochastic models of the underlying dynamics have
been proposed in turn.15 One might question whether it is plausible to assume that agents
can identify one of these models uniquely, in particular when the relevant volatility is not
directly observable. A robust modeling approach thus allows for a whole class of volatility
models.

Let us consider a financial market with Knightian uncertainty about the volatility of the
price process, as discussed in Epstein and Ji (2013) for consumption-based asset pricing
and in Vorbrink (2014) for option pricing; any adapted process σ taking values in a certain
interval [σ�σ] is a plausible volatility process. We denote this class by Σ; for a given σ ∈ Σ,
we let Pσ be the corresponding distribution of the stock price process. The ambiguity
about volatility is thus modeled by the the set of priors M = {Pσ : σ ∈ Σ}. Take R = P+,
and model the financial market by taking I to be the set of all stochastic integrals with
simple integrands that are bounded from below.16

In this situation, priors in M are not mutually equivalent; in fact, typically they are sin-
gular to each other. A single probability space framework is not able to capture volatility

13Note that the same conclusion holds if we define UGS with any set of probability measures equivalent to Q.
14We take a risk-neutral agent for simplicity. The argument holds as well for risk-averse agents with a stan-

dard Bernoulli utility function.
15Starting with the Heston model (Heston (1993)), a whole literature has explored ever more complex dy-

namics; see Ghysels, Harvey, and Renault (1996) for an overview.
16We refer the reader to Soner, Touzi, and Zhang (2012, 2013) for all the technical details, in particular, for

the formal construction of {Pσ : σ ∈ Σ} and its subtle properties.
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uncertainty. In most finance models, the assumption of a reference probability was made
for technical reasons, in order to be able to apply the Girsanov theorem. The restriction to
a single probability space framework in diffusion models limits the set of possible models;
only drift uncertainty can be captured by such models, not volatility uncertainty. The is-
sue becomes even more pertinent if one wants to capture more complex financial models
involving jumps.

As the negligible sets of M cannot be generated by any single probability measure, this
financial market is not covered by the classical probability space framework. However, the
family of heterogenous agents {�σ}σ∈Σ induced by the priors Pσ does support the financial
market. Indeed, for every prior Pσ , every � ∈ I is a Pσ -local martingale, and consequently,
EPσ [�] ≤ 0.

We now discuss briefly a variation of the example in which the set of relevant claims
is derived from preferences. In a first step, let us consider agents who do not have a
razor-sharp model of volatility, but are willing to use a robust version that is called “ε-
contamination” in statistics (Huber (1965)) and decision theory (Eichberger and Kelsey
(1999)) For any reference volatility σ ∈ Σ and contamination ε > 0, let

Σσ�ε := {
σ̃ ∈ Σ : ‖σ − σ̃‖∞ ≤ ε}

describe the sets of volatility models that are close to σ . The ε-contamination preferences
�σ�ε are represented by the utility functions

Uσ�ε(X) := inf
σ∈Σσ�ε

EPσ [X]�

We use these preferences to define the set of relevant claims as follows by setting

R= {
R ∈P+ :Uσ�ε(R) > 0 for some σ ∈ Σ�ε > 0

}
�

A payoff on an event is thus relevant if a bet on that event matters for some ambiguity-
averse agent with ε-contamination preferences. This technically more complex model
is also included in our framework. Indeed, for σ ∈ Σ and � ∈ I , EPσ [�] ≤ 0, and thus
Uσ�ε(�) ≤ 0, proving the optimality condition (2.1). The definition of R shows directly
that the monotonicity condition (2.2) is satisfied by the family of heterogenous agents
{�σ�ε}{σ∈Σ�ε>0}.

3. THE EFFICIENT MARKET HYPOTHESIS

The Efficient Market Hypothesis (EMH) plays a fundamental role in the history of fi-
nancial economics. Fama (1970) called markets informationally efficient if all available
information is reflected properly in current asset prices. There are several interpretations
of this conjecture; in the early days after its appearance, the efficient market hypothesis
was usually interpreted as asset prices being random walks in the sense that (log-) returns
be independent from the past and identically distributed with the mean return being equal
to the return of a safe bond (Malkiel (2003)). Later, the informational efficiency of asset
prices was interpreted as a martingale property; (conditional) expected returns of all as-
sets are equal to the return of a safe bond under some probability measure. This conjec-
ture of the financial market’s being a “fair game” dates back to Bachelier (1900) and was
rediscovered by Paul Samuelson (Samuelson (1965, 1973)). In dynamic settings, market
efficiency is thus strongly related to (publicly available) information. Under Knightian
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uncertainty, the role of information and the martingale property of prices needs to be
adapted properly as we shall see in this section.17

Throughout this section, let us assume that we have a frictionless one-period or
discrete-time multiple period financial market as in Example 4.1. In particular, the set
of net trades I is a subspace of H.

3.1. A Strong Version of the Efficient Market Hypothesis Under Risk

There are various ways to formalize the efficient market hypothesis. A particular strong
interpretation of informational efficiency requires that expected returns of all risky invest-
ment be equal under a common prior. In our framework, such a conclusion results if the
common order is derived from a common prior.

Let P be a probability measure on (Ω�F). Set H =L1(Ω�F�P). Let the common order
be defined by saying X ≤ Y if and only if the expected payoffs under P satisfy

EP[X] ≤ EP[Y ]� (3.1)

We call P the common prior of this model. In this case, negligible claims coincide with the
claims with mean zero under P. Moreover, X ∈P if EP[X] ≥ 0. We take R=P+.

PROPOSITION 3.1: Under the assumptions of this subsection, the financial market is viable
if and only if the common prior P is a martingale measure. In this case, P is the unique
martingale measure.

PROOF: Note that the common order as given by (3.1) is complete. If P is a martingale
measure, the common order ≤ itself defines a linear preference relation under which the
market is viable with A= {≤}.

On the other hand if the market is viable, Theorem 2.2 ensure that there exists a sublin-
ear martingale expectation with full support. By the Riesz duality theorem, a martingale
functional φ ∈ Qac can be identified with a probability measure Q on (Ω�F). It is ab-
solutely continuous (in our sense defined above) if and only if it assigns the value 0 to
all negligible claims. As a consequence, we have EQ[X] = 0 whenever EP[X] = 0. Then
Q = P follows.18 Q.E.D.

The only absolutely continuous martingale measure is the common prior itself. As a
consequence, all traded assets have zero net expected return under the common prior.
A financial market is thus viable if and only if the strong form of the expectations hypoth-
esis holds true.

3.2. A Weak Version of the Efficient Market Hypothesis Under Risk

A weaker version of the efficient market hypothesis states that expected returns are
equal under some (pricing) probability measure P∗ that is equivalent to the common prior
(or “real world” probability) P.

17We refer to Jarrow and Larsson (2012) for a detailed analysis of the interplay between different informa-
tion sets and market efficiency under a common prior. In our framework, the information flow is taken as given;
it is implicitly encoded in the set of available claims I . We do not consider the issue of private information of
insiders.

18If Q �= P, there is an event A ∈ F with Q(A) < P(A). Set X = 1A − P(A). Then 0 = EP[X] > Q(A) −
P(A)=EQ[X].
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Let P be a probability on (Ω�F) and H = L1(Ω�F�P). In this example, the common
order is given by the almost sure order under the common prior P, that is,

X ≤ Y ⇔ P(X ≤ Y)= 1�

A payoff is negligible if it vanishes P–almost surely and is positive if it is P–almost surely
nonnegative. Let the relevant claims R consist of the P-almost surely nonnegative payoffs
that are strictly positive with positive P-probability,

R= {
R ∈L1(Ω�F�P)+ : P(R > 0) > 0

}
�

A functional φ ∈ H′
+ is an absolutely continuous martingale functional if and only if

it can be identified with a probability measure Q that is absolutely continuous with re-
spect to P and if all net trades have expectation zero under φ. In other words, discounted
asset prices are Q-martingales. We thus obtain a version of the fundamental theorem of
asset pricing under risk, similar to Harrison and Kreps (1979) and Dalang, Morton, and
Willinger (1990).

PROPOSITION 3.2: Under the assumptions of this subsection, the financial market is viable
if and only if there is a martingale measure Q that has a bounded density with respect to P.

PROOF: If Q is a martingale measure equivalent to P, define X �∗ Y if and only if
EQ[X] ≤ EQ[Y ]. Then the market is viable with A = {�∗}. Condition (2.2) is satisfied
because Q is equivalent to P.

If the market is viable, Theorem 2.2 ensures that there exists a sublinear martingale ex-
pectation with full support. By the Riesz duality theorem, a martingale functional φ ∈Qac

can be identified with a probability measure Qφ that is absolutely continuous with respect
to P, has a bounded density with respect to P, and all net trades have zero expectation
zero under Qφ. In other words, discounted asset prices are Qφ-martingales. From the
full support property, the family {Qφ}φ∈Qac is equivalent to P, meaning that Qφ(A) = 0
for every φ ∈ Qac if and only if P(A)= 0. By the Halmos–Savage theorem (Halmos and
Savage (1949), (Föllmer and Schied, 2011, Theorem 1.61)), there exists a countable sub-
family {Qφn}n∈N ⊂ {Qφ}φ∈Qac , which is equivalent to P. The measure Q := ∑∞

n=1 2−nQφn is
the desired equivalent martingale measure. Q.E.D.

3.3. The Efficient Market Hypothesis Under Knightian Uncertainty

We turn our attention to the EMH under Knightian uncertainty. We consider first the
case when the common order is derived from a common set of priors, inspired by the mul-
tiple prior approach in decision theory (Bewley (2002), Gilboa and Schmeidler (1989)).
We then discuss a second-order Bayesian approach that is inspired by the smooth ambi-
guity model (Klibanoff, Marinacci, and Mukerji (2005)).

3.3.1. A Strong Version Under Knightian Uncertainty

We consider a generalization of the original EMH to Knightian uncertainty that shares
a certain analogy with Bewley’s incomplete expected utility model (Bewley (2002)) and
Gilboa and Schmeidler’s maxmin expected utility (Gilboa and Schmeidler (1989)).19

19For the relation between the two approaches, compare also the discussion of objective and subjective
ambiguity in Gilboa, Maccheroni, Marinacci, and Schmeidler (2010).
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Let Ω be a metric space with metric d and Borel sets F . Let M be a convex, weak∗-
closed set of priors on (Ω�F). Define the seminorm

‖X‖M := sup
P∈M

EP|X|�

Let L1(Ω�F�M) be the closure of continuous and bounded functions on Ω under the
seminorm ‖ · ‖M. If we identify the functions which are P-almost surely equal for every
P ∈M, then H =L1(Ω�F�M) is a Banach space. The topological dual of L1(Ω�F�M)
can be identified with probability measures that admit a bounded density with respect to
some measure in M (Bion-Nadal, Kervarec et al. (2012), Beissner and Denis (2018)).
Therefore, any absolutely continuous martingale functional Q ∈Qac is a probability mea-
sure and M is closed in the weak∗ topology induced by L1(Ω�F�M).

Consider the uniform order induced by expectations over M,

X ≤ Y ⇔ ∀P ∈M EP[X] ≤ EP[Y ]�
Then Z ∈ Z if EP[Z] = 0 for every P ∈ M. A claim X is nonnegative if EP[X] ≥ 0 for
every P ∈M. Let the relevant claims consist of nonnegative claims with a positive return
under some prior belief, that is,

R=
{
R ∈H : 0 ≤ inf

P∈M
EP[R] and 0< sup

P∈M
EP[R]

}
�

PROPOSITION 3.3: Under the assumptions of this subsection, if the financial market is
viable, then the set of absolutely continuous martingale functionals Qac is a subset of the set
of priors M.

PROOF: Set EM(X) := supP∈MEP[X]. Then Y ≤ 0 if and only if EM(Y) ≤ 0. Fix Q ∈
Qac with the preference relation given by X �Q Y if EQ[X −Y ] ≤ 0.

Let us assume that Q /∈ M. Since M is a weak∗-closed and convex subset of the topo-
logical dual of L1(Ω�F�M), there exists X∗ ∈L1(Ω�F�M) with EM(X

∗) < 0< EQ[X∗]
by the Hahn–Banach theorem. In particular, X∗ ∈L1(Ω�F�M) and X∗ ≤ 0. Since �Q is
weakly monotone with respect to ≤,X∗ �Q 0. Hence, EQ[X∗] ≤ 0 contradicting the choice
of X∗. Therefore, Qac ⊂M. Q.E.D.

Expected returns of traded securities are thus not necessarily the same under all P ∈M.
However, the set of martingale measures is a subset of M here, and thus the strong form
of the EMH holds true on a subset of the set of priors M.

In general, it is not possible to characterize the set of martingale measures in more
detail. However, we can identify a subspace of claims on which expectations under all
priors coincide. Let HM be the subspace of claims that have no ambiguity in the mean
in the sense that EP[X] is the same constant for all P ∈ M. Consider the submarket
(HM� τ�≤�IM�RM) with IM := I ∩ HM and RM := R ∩ HM. Restricted to this mar-
ket, the sets of measures Qac and M are identical and the strong EMH holds true.

The following simple example illustrates these points.

EXAMPLE 3.4: Let Ω = {0�1}2, H be all functions on Ω. Then, H = R4 and we write
X = (x� y� v�w) for any X ∈ H. Let I = {(x� y�0�0) : x + y = 0}. Consider the priors
given by

M :=
{(
p�

1
2

−p� 1
4
�

1
4

)
: p ∈

[
1
6
�

1
3

]}
�
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There is Knightian uncertainty about the first two states, yet no Knightian uncertainty
about the last two states.

A claimZ = (Z1�Z2�Z3�Z4) is negligible iffZ1 =Z2 andZ4 = −2Z1 −Z3. In particular,
X = (1�1�0�−2) and Y = (0�0�1�−1) are negligible. Now let Q∗ = (q1� q2� q3� q4) ∈Qac.
The martingale property implies q1 = q2. Absolute continuity requires that EQ∗ [X] = 0
and EQ∗ [Y ] = 0, or q1 + q2 − 2q4 = 0 and q3 = q4. From here, we obtain with q1 = q2 that
q1 = q2 = q3 = q4, so Q∗ = ( 1

4 �
1
4 �

1
4 �

1
4). Notice that Q∗ ∈M.

In this case, HM = {X = (x� y� v�w) ∈H : x= y}. In particular, all priors in M coincide
with Q∗ when restricted to HM. Hence, for the claims that are mean-ambiguity-free, the
strong efficient market hypothesis holds true.

3.3.2. A Weak Version Under Knightian Uncertainty

Let M be a common set of priors on (Ω�F). Let H be the space of bounded, mea-
surable functions. Let the common order be given by the quasi-sure ordering under the
common set of priors M, that is,

X ≤ Y ⇔ P(X ≤ Y)= 1� ∀P ∈M�

In this case, a claim X is negligible if it vanishes M–quasi–surely, that is, with probability
one for all P ∈M. An indicator function 1A is thus negligible if the set A is polar, that is,
a null set with respect to every probability in M. Take the set of relevant claims to be20

R= {
R ∈P : ∃P ∈M such that P(R > 0) > 0

}
�

PROPOSITION 3.5: Under the assumptions of this subsection, the financial market is viable
if and only if there is a set of finitely additive martingale measures Q that has the same polar
sets as the common set of priors M.

PROOF: Suppose that the market is viable. We show that the class Qac from Theo-
rem 2.2 satisfies the desired properties. The martingale property follows by definition and
from the fact that I is a linear space. Suppose that A is polar. Then 1A is negligible and
from the absolute continuity property, it follows φ(A)= 0 for any φ ∈ Qac. On the other
hand, if A is not polar, 1A ∈ R and from the full support property, it follows that there
exists φA ∈Qac such that φA(A) > 0. Thus, A is not Qac-polar. We conclude that M and
Qac share the same polar sets. For the converse implication, define E(·) := supφ∈QEφ[·].
Using the same argument as above, E is a sublinear martingale expectation with full sup-
port. From Theorem 2.2, the market is viable. Q.E.D.

Under Knightian uncertainty, there can be indeterminacy in arbitrage-free prices as
there is frequently a range of economically justifiable arbitrage-free prices. Such indeter-
minacy has been observed in full general equilibrium analysis as well (Rigotti and Shan-
non (2005), Dana and Riedel (2013), Beissner and Riedel (2019)). In this sense, Knightian
uncertainty shares a similarity with incomplete markets and other frictions like transac-
tion costs, but the economic reason for the indeterminacy is different.

20These sets of positive and relevant claims can be derived from Gilboa–Schmeidler utilities. Define X � Y
if and only if infP∈MEP[U(X)] ≤ infP∈MEP[U(Y)] for all strictly increasing and concave real functions U .
Then 0 � Y implies that for all priors P ∈ M, every risk-averse expected utility agent prefers Y to the null
claim. As is well known, this is equivalent to Y dominating the null claim in the sense of second-order stochastic
dominance for every P ∈ M, implying that Y is nonnegative almost surely for all P ∈ M.
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3.3.3. A Second-Order Bayesian Version of the Efficient Market Hypothesis

We now consider a common order ≤ obtained by a second-order Bayesian approach,
in the spirit of the smooth ambiguity model (Klibanoff, Marinacci, and Mukerji (2005)).

Let F be a sigma algebra on Ω and P = P(Ω) the set of all probability measures
on (Ω�F). Let μ be a second-order prior, that is, a probability measure21 on P. The
common prior in this setting is given by the probability measure P̂ :F → [0�1] defined as
P̂(A)= ∫

P
P(A)μ(dP). Let H =L1(Ω�F� P̂).

The common order is given by

X ≤ Y ⇔ μ
({
P ∈P : P(X ≤ Y)= 1

}) = 1�

A claim is positive if it is P-almost surely nonnegative for all priors in the support of the
second-order prior μ. A claim is relevant if the set of beliefs P under which the claim is
strictly positive with positive probability is not negligible according to the second-order
prior.22

PROPOSITION 3.6: Under the assumptions of this subsection, the financial market is viable
if and only if there is a martingale measure Q that has the form

Q(A)=
∫
P

∫
A

DdPμ(dP)

for some state price density D.

PROOF: The set function P̂ : F → [0�1] defined as P̂(A) = ∫
P
P(A)μ(dP) is a proba-

bility measure on (Ω�F). The induced P̂-a.s. order coincides with ≤ of this subsection.
The result thus follows from Proposition 3.2 and the rules of integration with respect
to P̂. Q.E.D.

The smooth ambiguity model thus leads to a second-order Bayesian approach for asset
returns. All asset returns are equal to the safe return for some second-order martingale
measure; the expectation is the average expected return corresponding to a risk-neutral
second-order prior Q.

4. FURTHER DISCUSSION OF THE MODELING PHILOSOPHY

This section discusses various aspects of our modeling approach in more detail. We
first discuss the motivation of using a common order instead of a probabilistic framework.

21From Theorem 15.18 of Aliprantis and Border (1999), the space of probability measure is a Borel space if
and only if Ω is a Borel space. This allows to define second-order priors.

22The order used in this section can be derived from smooth ambiguity utility functions. Define X ≤ Y if
and only if ∫

P

ψ
(
EP

[
U(X)

])
μ(dP)≤

∫
P

ψ
(
EP

[
U(X)

])
μ(dP)

for all strictly increasing and concave real functions U and ψ. Recall that ψ reflects uncertainty aversion. Then
0 ≤ Y is equivalent to Y dominating the zero claim in the sense of second-order stochastic dominance for
μ-almost all P ∈P.
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We then explain how various static and dynamic financial markets are embedded in our
abstract model. Our notion of viability is related to the usual notion of equilibrium of
a competitive market with heterogeneous agents. We discuss the role of sublinear versus
linear prices in our theory, and lastly show how our concept of relevant claims can be used
to unify various notions of arbitrage in the finance literature.

A Common Order versus a Common Probabilistic Framework. Preference properties
shared by all agents in the market will be reflected in equilibrium prices.

A situation of risk is described by the fact that agents share a common prior; in the lab-
oratory, a random experiment based on an objective device like a roulette wheel or a coin
toss simulates such a market environment. If no such objective device can be invoked, as
in the real world, one might still presume the existence of a common subjective belief for
all market participants as it is done (implicitly) in the capital asset pricing model as well
as in its its consumption-based version. Such an assumption might be too strong; the Ells-
berg experiments show how to create an environment of Knightian uncertainty in the lab.
In complex financial markets in which credit risk claims, options on term structure shapes
and volatility dynamics are traded, Knightian uncertainty plays a prominent role because
agents lack precise probability estimates of crucial model parameters and they might be
wary of potential structural breaks in the data. Moreover, as Epstein and Ji (2013) have
shown (see also Example 2.7), if we model Knightian uncertainty about volatility, it is
logically impossible to construct a reference probability measure.

We take these considerations as a motivation to forego any explicit or implicit prob-
abilistic assumption, be it a common prior P or the weaker assumption of a common
reference probability. Instead, we base our analysis on a common order ≤, a far weaker
assumption that only requires a (typically incomplete) unanimous dominance criterion.
A minimal example of a common order is the pointwise order. Pointwise dominance is
certainly a criterion that we might assume to be unanimously shared in the context of
monetary or single good payoffs. The generality of our approach allows to cover a wide
variety of situations, including the well-studied case of risk as well as situations of Knigh-
tian uncertainty as we have seen in the previous section.23

The Financial Market. We model the financial market in a rather reduced form with
the help of the convex cone I . This abstract approach is sufficient for our purpose of
discussing the relation of arbitrage and viability. In the next example, we show how the
usual models of static and dynamic trading are embedded.

23It might be interesting to note an alternative way of setting up the model in which the common order is
derived from a class of given preference relations. Suppose that no common order is a priori given. Instead,
we start with a class of preference relations A0 on the commodity space H that are convex and τ-lower semi-
continuous. We can then define the uniform order derived from the set of preference relations A0 as follows.
Let

Z� := {Z ∈ H :X �Z +X �X�∀X ∈ H}�
be the set of negligible (or null) claims for the preference relation �∈ A0. We call Zuni := ⋂

�∈A0
Z� the set of

unanimously negligible claims. Let the uniform pre-order ≤uni on H be given by X ≤uni Y if and only if there
exists Z ∈ Zuni such thatX(ω)≤ Y(ω)+Z(ω) for all ω ∈Ω. Note that we use the pointwise order on the reals
and the set of uniformly negligible payoffs to derive the common order from A0. (H�≤uni) is then a preordered
vector space, and agents’ preferences in A0 are monotone with respect to the uniform preorder. Let A be the
set of (convex, etc.) preferences that are monotone with respect to the common order. Note that A contains
A0, but is usually larger than A0.
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EXAMPLE 4.1: We consider four markets with increasing complexity.
1. In a one period setting with finitely many states Ω = {1� � � � �N}, a financial market

with J+1 securities can be described by its initial prices xj ≥ 0, j = 0� � � � � J and a (J+1)×
N–payoff matrix F , compare LeRoy and Werner (2014). A portfolio H̄ = (H0� � � � �HJ) ∈
RJ+1 has the payoff H̄F = (∑J

j=0HjFjω)ω=1�����N ; its initial cost satisfies H · x= ∑J

j=0Hjxj .
If the zeroth asset is riskless with a price x0 = 1 and pays off 1 in all states of the world,
then a net trade with zero initial cost can be expressed in terms of the portfolio of risky
assetsH = (H1� � � � �HJ) ∈RJ and the return matrix F̂ = (Fjω−xj)j=1�����J�ω=1�����N . I is given
by the image of the J ×N return matrix F̂ , that is,

I = {
HF̂ :H ∈ RJ

}
�

2. Our model includes the case of finitely many trading periods. Let F := (Ft)
T
t=0 be

a filtration on (Ω�F) and S = (St)
T
t=0 be an adapted stochastic process with values in

RJ
+ for some J ≥ 1; S models the uncertain assets. We assume that a riskless bond with

interest rate zero is also given. Then the set of net trades can be described by the gains
from trade processes: � ∈H is in I provided that there exists predictable integrands Ht ∈
(L0(Ω�Ft−1))

J for t = 1� � � � � T such that

�= (H · S)T :=
T∑
t=1

Ht ·�St� where �St := (St − St−1)�

In the frictionless case, the set of net trades is a subspace of H. In general, one might
impose restrictions on the set of admissible trading strategies. For example, one might
exclude short-selling of risky assets, or impose a bound on agents’ credit line; in these
cases, the marketed subspace I is a convex cone, compare Luttmer (1996), Jouini and
Kallal (1995), and Araujo, Chateauneuf, and Faro (2018), for example,

3. In Harrison and Kreps (1979), the market is described by a marketed space M ⊂
L2(Ω�F�P) and a (continuous) linear functional π on M . In this case, I is the kernel of
the price system, that is,

I = {
X ∈M : π(X)= 0

}
�

4. In continuous time, the set of net trades consists of stochastic integrals of the form

I =
{∫ T

0
θu · dSu : θ ∈Aadm

}
�

for a suitable set of admissible strategies Aadm. There are several possible choices of such
a set. When the stock price process S is a semimartingale one example of Aadm is the set
of all S-integrable, predictable processes whose integral is bounded from below.24 Other
typical choices for Aadm would consist of simple integrands only; when S is a continuous
process and Aadm is the set of process with finite variation then the above integral can be
defined through integration by parts (see Dolinsky and Soner (2014a, 2015)).

In general, the absence of a common prior poses some nontrivial technical questions
about the integrability of contingent claims and net trades. Clearly, it is possible to restrict

24In continuous time, to avoid doubling strategies a lower bound (maybe more general than above) has to
be imposed on the stochastic integrals. In such cases, the set I is not a linear space.
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the commodity space to the class of bounded measurable functions (that are integrable
with respect to any prior). The condition I ⊂ H could be restrictive in some applications
and we provide a way to overcome this difficulty in the supplementary online material.

Viability. In Harrison and Kreps (1979), Kreps (1981), viability is defined with the help
of a single representative agent with a strictly monotone preference relation. We allow for
many agents, with weakly monotone preferences, yet the family as a whole satisfies a strict
monotonicity condition (equation (2.2)). We show that one can prove the same results as
Harrison and Kreps in classic cases, and one obtains easily the equivalence result in new
cases involving Knightian uncertainty as in the Epstein–Ji model (Example 2.7). From the
economic point of view, our definition of viability does not contradict the intuitive idea
of an economic equilibrium because that idea does allow for many agents and weakly
monotone preferences, of course. We thus believe that the use of our new definition is
justified (and its usefulness is illustrated by the proofs of our abstract theorems).

The reader might note that our notion of equilibrium does not model endowments ex-
plicitly as we assume that the zero trade is optimal for each agent. This reduced approach
comes without loss of generality in our context. In general, an agent is given by a pref-
erence relation �∈ A and an endowment e ∈ H. Given the set of net trades, the agent
chooses �∗ ∈ I such that e+ �∗ � e+ � for all � ∈ I . By suitably modifying the preference
relation, this can be reduced to the optimality of the zero trade at the zero endowment for
a suitably modified preference relation. LetX �′ Y if and only ifX+ e+ �∗ � Y + e+ �∗.
It is easy to check that �′ is also an admissible preference relation. For the new preference
relation �′, we then have 0 �′ � if and only if e+ �∗ � e+ �∗ + �. As I is a cone, �+ �∗ ∈ I ,
and we conclude that we have indeed 0 �′ � for all � ∈ I .

Sublinear Expectations. Our fundamental theorem of asset pricing characterizes the
absence of arbitrage with the help of a nonadditive expectation E . In decision theory,
non-additive probabilities have a long history; Schmeidler (1989) introduces an extension
of expected utility theory based on nonadditive probabilities. The widely used max–min
expected utility model of Gilboa and Schmeidler (1989) is another instance. If we define
the subjective expectation of a payoff to be the minimal expected payoff over a class of
priors, then the resulting notion of expectation has some of the common properties of an
expectation like monotonicity and preservation of constants, but is no longer additive.

In our case, the nonadditive expectation has a more objective than subjective flavor
because it describes the pricing functional of the market. It assigns a nonpositive value
to all net trades; in this sense, net trades have the (super)martingale property under this
expectation. If we assume for the sake of the discussion that the set of net trades is a
linear subspace, then the pricing functional has to be additive over that subspace. As a
consequence, the value of all net trades under the sublinear pricing expectation is zero.
For contingent claims that lie outside the marketed subspace, the pricing operation of the
market is subadditive.

Whereas an additive probability measure is sufficient to characterize viable markets in
probabilistic models, under uncertainty, it is more sensible to consider nonadditive notion
of expectation25 as, for example, in the framework of Example 2.5 because it allows to
characterize fully the ambiguity of market prices.26

25Beissner and Riedel (2019) developed a general equilibrium model based on such nonadditive pricing
functionals.

26In some technically complex models, only sublinear functionals can be strictly positive.
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Relevant Claims. We use the notion of relevant claims to generalize the typical ap-
proach to define arbitrage as positive net trades. This approach introduces some addi-
tional flexibility and allows to cover variants of the notion of arbitrage that were discussed
in the literature. For example, if some positive claim cannot be liquidated without costs,
agents would not consider a net trade that achieves such a payoff as free lunch if the
liquidation costs are larger than the potential gains. It is then reasonable to consider
as relevant only a restricted class of positive claims, possibly only cash. Moreover, rele-
vant payoffs identify those nonnegative consumption plans that some market participants
strictly prefer to the null plan. The commodity spaces that are used to model markets with
Knightian uncertainty may be quite large, for example, when we work with the space of
all bounded, measurable functions. In such models, it makes sense to work with a set of
relevant claims that is smaller than the cone of positive claims, see also Example 2.7.

We illustrate the usefulness of the notion of relevant claims by relating our work to
recent results in mathematical finance. Our approach gives a microeconomic foundation
to the characterization of absence of arbitrage in “robust” or “model-free” finance.

Let Ω be a metric space with the pointwise order ≤. In the finance literature, this ap-
proach is called model-independent as it does not rely on any probability measure. There
is still a model, of course, given by Ω and the pointwise order.

A claim is nonnegative, X ∈ P , if X(ω)≥ 0 for every ω ∈Ω and R ∈ P+ if R ∈ P and
there exists ω0 ∈Ω such that R(ω0) > 0.

In the literature, several different notions of arbitrage have been used. Our framework
allows to unify these different approaches under one framework with the help of the
notion of relevant claims.27 We start with the following large set of relevant claims

Rop :=P+ = {
R ∈P : ∃ω0 ∈Ω such that R(ω0) > 0

}
�

With this notion of relevance, an investment opportunity � is an arbitrage if �(ω) ≥ 0
for every ω with a strict inequality for some ω, corresponding to the notion of one point
arbitrage considered in Riedel (2015). In this setting, no arbitrage is equivalent to the
existence a set of martingale measures Qop so that for each point there exists Q ∈ Qop

putting positive mass to that point.
Other authors (Burzoni, Frittelli, and Maggis (2016), Riedel (2015), Dolinsky and

Soner (2014b)) introduced the notion of open arbitrage. In probability space frameworks,
the family of null-sets defines “small,” that is, negligible events. In absence of a reference
probability, it might be still reasonable to distinguish large and small events. When there
is a topology, one can define “small” events as those sets that are countable unions of
closed sets with empty interior (Baire first category set). Open sets are then considered as
relevant. We might then call � ∈ I an open arbitrage if it is nonnegative and is strictly posi-
tive on an open set. This case can be modeled in our framework by requiring the relevant
claims to be continuous, nonnegative functions that are different from zero somewhere,
that is,

Ropen := {
R ∈ Cb(Ω)∩P : ∃ω0 ∈Ω such that R(ω0) > 0

}
�

It is then clear that when R ∈R then it is nonzero on an open set.
Acciaio et al. (2016) defined a claim to be an arbitrage when it is positive everywhere,

corresponding, in our model, to the choice

R+ := {
R ∈P :R(ω) > 0�∀ω ∈Ω}

�

27One might also compare the similar approach in Burzoni, Frittelli, and Maggis (2016).
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Bartl et al. (2017) considered a slightly stronger notion of relevant claims. Their choice is

Ru = {
R ∈P : ∃c ∈ (0�∞) such that R≡ c}� (4.1)

Hence, � ∈ I is an arbitrage if is uniformly positive, which is sometimes called uniform
arbitrage. Notice that with the choice Ru, the notions of arbitrage and free lunch with
vanishing risk are equivalent.28

5. PROOF OF THE THEOREMS

Let (H� τ�≤ I�R) be a given financial market. Recall that (H� τ) is a metrizable topo-
logical vector space; we write H′ for its topological dual. We let H′

+ be the set of all
positive functionals, that is, ϕ ∈H′

+ provided that ϕ(X)≥ 0 for every X ≥ 0 and X ∈H.
The following functional generalizes the notion of superreplication functional from the

probabilistic to our order-theoretic framework. It plays a central role in our analysis. For
X ∈H, let

D(X) := inf
{
c ∈R : ∃{�n}∞

n=1 ⊂ I� {en}∞
n=1 ⊂H+� en

τ→ 0�

such that c+ en + �n ≥X}
� (5.1)

Note that D is extended real valued. In particular, it takes the value +∞ when there are
no superreplicating portfolios. It might also take the value −∞ if there is no lower bound.

We observe first that the absence of free lunches with vanishing risk can be equivalently
described by the statement that the superreplication functional D assigns a strictly positive
value to all relevant claims.

PROPOSITION 5.1: The financial market is strongly free of arbitrage if and only if D(R) > 0
for every R ∈R.

PROOF: Suppose {�n}∞
n=1 ⊂ I is a free lunch with vanishing risk. Then there is R∗ ∈ R

and {en}∞
n=1 ⊂ H+ with en

τ→ 0 so that en + �n ≥ R∗. In view of the definition, we obtain
D(R∗)≤ 0.

To prove the converse, suppose that D(R∗) ≤ 0 for some R∗ ∈ R. Then the definition
of D(R∗) implies that there is a sequence of real numbers {ck}∞

k=1 with ck ↓ D(R∗), net
trades {�k�n}∞

n=1 ⊂ I , and {ek�n}∞
n=1 ⊂H+ with ek�n

τ→ 0 for n→ ∞ such that

ck + ek�n + �k�n ≥R∗� ∀n�k ∈ N�

Let Br(0) be the ball with radius r centered at zero with the metric compatible with τ.
For every k, choose n = n(k) such that ek�n ∈ B 1

k
(0). Set �̃k := �k�n(k) and ẽk := ek�n(k) +

28The no arbitrage condition with Ru is the weakest one, Rop is the strongest one. The first one is equivalent
to the existence of one sublinear martingale expectation. The latter one is equivalent to the existence of a
sublinear expectation that puts positive measure to all points. In general, the no-arbitrage condition based
on R+ is not equivalent to the absence of uniform arbitrage. However, absence of uniform arbitrage implies
the existence of a linear bounded functional that is consistent with the market. In particular, risk neutral
functionals are positive on Ru. Moreover, if the set I is “large” enough then one can show that the risk neutral
functionals give rise to countably additive measures. In Acciaio et al. (2016), this conclusion is achieved by
using the so-called “power-option” placed in the set I as a static hedging possibility; compare also Bartl et al.
(2017).
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(ck∨0). Then ẽk+ �̃k ≥R∗ for every k. Since ẽk
τ→ 0, {�̃k}∞

k=1 is a free lunch with vanishing
risk. Q.E.D.

It is clear that D is convex and we now use the tools of convex duality to characterize this
functional in more detail. Recall the set of absolutely continuous martingale functionals
Qac defined in Section 2.

PROPOSITION 5.2: Assume that the financial market is strongly free of arbitrage. Then the
superreplication functional D defined in (5.1) is a lower semi-continuous, sublinear martin-
gale expectation with full support. Moreover,

D(X)= sup
ϕ∈Qac

ϕ(X)� X ∈H�

The technical proof of this statement can be found in the Appendix. The important
insight is that the superreplication functional can be described by a family of linear func-
tionals. In the probabilistic setup, they correspond to the family of (absolutely continuous)
martingale measures. With the help of this duality, we are now able to carry out the proof
of our first main theorem.

PROOF OF THEOREM 2.1: Suppose first that the market is viable and for some R∗ ∈
R, there are sequences {en}∞

n=1 ⊂ H+ and {�n}∞
n=1 ⊂ I with en

τ→ 0, and en + �n ≥ R∗. By
viability, there is a family of agents {�a}a∈A ⊂A such that for some a ∈A we haveR∗ �a 0.
Since ≤ is a preorder compatible with the vector space operations, we have −en+R∗ ≤ �n.
As �a∈ A is monotone with respect to ≤, we have −en + R∗ �a �n. By optimality of the
zero trade, �n �a 0, and we get −en+R∗ �a 0. By lower semicontinuity of �a, we conclude
that R∗ �a 0, a contradiction.

Suppose now that the market is strongly free of arbitrage. By Proposition 5.1, D(R) > 0,
for every R ∈ R. In particular, this implies that the family Qac is nonempty, as otherwise
the supremum over Qac would be −∞. For each ϕ ∈Qac, define �ϕ by

X �ϕ Y� ⇔ ϕ(X)≤ ϕ(Y)�
One directly verifies that �ϕ∈ A. Moreover, ϕ(�) ≤ ϕ(0) = 0 for any � ∈ I implies that
�∗
ϕ = 0 is optimal for �ϕ and (2.1) is satisfied. Finally, Proposition 5.1 and Proposition 5.2

imply that for any R ∈ R, there exists ϕ ∈ Qac such that ϕ(R) > 0; thus, (2.2) is satisfied.
We deduce that {�ϕ}ϕ∈Qac supports the financial market (H� τ�≤�I�R). Q.E.D.

The previous arguments also imply our version of the fundamental theorem of asset
pricing. In fact, with absence of arbitrage, the superreplication function is a lower semi-
continuous sublinear martingale expectation with full support. Convex duality allows to
prove the converse.

PROOF OF THEOREM 2.2: Suppose the market is viable. From Theorem 2.1, it is
strongly free of arbitrage. From Proposition 5.2, the superreplication functional is the
desired lower semicontinuous sublinear martingale expectation with full support.

Suppose now that E is a lower semicontinuous sublinear martingale expectation with
full support. In particular, E is a convex, lower semicontinuous, proper functional. Then,
by the Fenchel–Moreau theorem,

E(X)= sup
ϕ∈dom(E∗)

ϕ(X)�
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where dom(E∗) = {ϕ ∈ H′ : ϕ(X) ≤ E(X)�∀X ∈ H}. We can proceed as in the proof of
Theorem 2.1, to verify the viability of (H� τ�≤�I�R) using the preference relations {�ϕ

}ϕ∈dom(E∗).
We finally show the maximality of EQac . Let E be a lower semicontinuous sublinear

martingale expectation with full support. With the help of the martingale property of E
one can show, as in Lemma A.5, that every ϕ ∈ dom(E∗) is a martingale functional. As
E is monotone with respect to ≤, we also conclude that ϕ vanishes for negligible payoffs.
Hence, we obtain dom(E∗)⊂ Qac. From the above dual representation for EQac , E(X) ≤
EQac(X) for every X ∈H follows. Q.E.D.

6. CONCLUSION

This paper studies economic viability of a given financial market without assuming a
probability-space framework. We show that it is possible to understand the equivalence
of economic viability and the absence of arbitrage on the basis solely of a common order;
the order (which is typically quite incomplete) is unanimous in the sense that agents’
preferences are monotone with respect to it. A given financial market is viable if and only
if a sublinear pricing functional exists that is consistent with the given asset prices.

The properties of the common order are reflected in expected equilibrium returns.
When the common order is given by the expected value under some common prior, ex-
pected returns under that prior have to be equal in equilibrium, and thus, Fama’s efficient
market hypothesis results. If the common order is determined by the almost sure order
under some common prior, we obtain the weak form of the efficient market hypothesis
that states that expected returns are equal under some (martingale) measure that shares
the same null sets as the common prior.

In situations of Knightian uncertainty, it might be too demanding to impose a com-
mon prior for all agents. When Knightian uncertainty is described by a class of priors, it
is necessary to replace the linear (martingale) expectation by a sublinear expectation. It
is then no longer possible to reach the conclusion that expected returns are equal under
some probability measure. Knightian uncertainty might thus be an explanation for empir-
ical violations of the efficient market hypothesis. In particular, there is always a range of
economically justifiable arbitrage–free prices. In this sense, Knightian uncertainty shares
similarities with markets with friction or that are incomplete, but the economic reason for
the price indeterminacy is different.

APPENDIX: PROOF OF PROPOSITION 5.2

We separate the proof in several steps. Recall that the super-replication functional D is
defined in (5.1).

LEMMA A.1: Assume that the financial market is strongly free of arbitrage. Then D is
convex, lower semicontinuous and D(X) >−∞ for every X ∈H.

PROOF: The convexity of D follows immediately from the definitions. To prove lower
semi-continuity, consider a sequence Xk

τ→ X with D(Xk) ≤ c. Then, by definition, for
every k there exists a sequence {ek�n}∞

n=1 ⊂ H+ with ek�n
τ→ 0 for n→ ∞ and a sequence

{�k�n}∞
n=1 ⊂ I such that c + 1

k
+ ek�n + �k�n ≥ Xk, for every k, n. Let Br(0) be the ball of

radius r centered around zero in the metric compatible with τ. Choose n = n(k) such
that ek�n ∈ B 1

k
and set ẽk := ek�n(k), �̃k := �k�n(k). Then c + 1

k
+ ẽk + (X −Xk) + �̃k ≥ X
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and 1
k

+ ẽk + (X −Xk)
τ→ 0 as k→ ∞. Hence, D(X) ≤ c. This proves that D is lower

semicontinuous.
The constant claim 1 is relevant and by Proposition 5.1, D(1) ∈ (0�1]; in particular, it is

finite. Toward a counterposition, suppose that there exists X ∈H such that D(X)= −∞.
For λ ∈ [0�1], set Xλ := X + λ(1 −X). The convexity of D implies that D(Xλ) = −∞
for every λ ∈ [0�1). Since D is lower semicontinuous, 0<D(1)≤ limλ→1 D(Xλ)= −∞, a
contradiction. Q.E.D.

LEMMA A.2: Assume that the financial market is strongly free of arbitrage. The superrepli-
cation functional D is a sublinear expectation with full-support. Moreover, D(c)= c for every
c ∈ R, and

D(X + �)≤D(X)� ∀� ∈ I�X ∈H� (A.1)

In particular, D has the martingale property.

PROOF: We prove this result in two steps.
Step 1. In this step, we prove that D is a sublinear expectation. Let X�Y ∈ H such that

X ≤ Y . Suppose that there are c ∈R, {�n}∞
n=1 ⊂ I and {en}∞

n=1 ⊂H+ with en
τ→ 0 satisfying,

Y ≤ c + en + �n. Then, from the transitivity of ≤, we also have X ≤ c + en + �n. Hence,
D(X)≤D(Y), and consequently D is monotone with respect to ≤.

Translation-invariance, D(c+ g)= c+D(g), follows directly from the definitions.
We next show that D is sub-additive. Fix X�Y ∈ H. Suppose that either D(X)= ∞ or

D(Y) = ∞. Then, since by Lemma A.1 D > −∞, we have D(X)+ D(Y) = ∞ and the
sub-additivity follows directly. Now we consider the case D(X)�D(Y) <∞. Hence, there
are cX� cY ∈R, {�Xn }∞

n=1� {�Yn }∞
n=1 ⊂ I and {eXn }∞

n=1� {eYn }∞
n=1 ⊂H+ with eXn , eYn

τ→ 0 satisfying,

cX + �Xn + eXn ≥X� cY + �Yn + eYn ≥ Y�
Set c̄ := cX + cY , �̄n := �Xn + �Yn , ēn := eXn + eYn . Since I is a positive cone, {�̄n}∞

n=1 ⊂ I ,
ēn

τ→ 0 and

c̄+ ēn + �̄n ≥X +Y ⇒ D(X +Y)≤ c̄�
Since this holds for any such cX , cY , we conclude that

D(X +Y)≤D(X)+D(Y)�

Finally, we show that D is positively homogeneous of degree one. Suppose that c+en+
�n ≥X for some constant c, {�n}∞

n=1 ⊂ I and {en}∞
n=1 ⊂H+ with en

τ→ 0. Then, for any λ > 0
and for any n ∈ N, λc + λen + λ�n ≥ λX . Since λ�n ∈ I and λen

τ→ 0, this implies that

D(λX)≤ λD(X)� λ > 0�X ∈H� (A.2)

Notice that above holds trivially when D(X)= +∞. Conversely, if D(λX)= +∞ we are
done. Otherwise, we use (A.2) with λX and 1/λ,

D(X)=D
(

1
λ
λX

)
≤ 1
λ
D(λX)� ⇒ λD(X)≤D(λX)�

Hence, D positively homogeneous and it is a sublinear expectation.
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Step 2. In this step, we assume that the financial market is strongly free of arbitrages.
Since 0 ∈ I , we have D(0) ≤ 0. If the inequality is strict, we obviously have a free lunch
with vanishing risk,; hence D(0)= 0 and from translation-invariance the same applies to
every c ∈R. Moreover, by Proposition 5.1, D has full support. Thus, we only need to prove
(A.1).

Suppose that X ∈ H, � ∈ I and c + en + �Xn ≥X . Since I is a convex cone, �Xn + � ∈ I
and c + en + (� + �Xn ) ≥ X + �. Therefore, D(X + �) ≤ c. Since this holds for all such
constants, we conclude that D(X + �)≤D(X) for all X ∈H. In particular, D(�)≤ 0 and
the martingale property is satisfied. Q.E.D.

REMARK A.3: Note that for H = (Bb�‖·‖∞), the definition of D reduces to the classical
one:

D(X) := inf{c ∈ R : ∃� ∈ I� such that c+ �≥X}� (A.3)

Indeed, if c + � ≥X for some c and �, one can use the constant sequences �n ≡ � and
en ≡ 0 to get that D in (5.1) is less or equal than the one in (A.3). For the converse
inequality, observe that if c+ en + �n ≥X for some c, �n, and en with ‖en‖∞ → 0, then the
infimum in (A.3) is less or equal than c. The thesis follows. Lemma A.1 is in line with the
well-known fact that the classical superreplication functional in Bb is Lipschitz continuous
with respect to the sup-norm topology.

The results of Lemma A.1 and Lemma A.2 imply that the super-replication functional
defined in (5.1) is a proper convex function in the language of convex analysis, compare,
for example, Rockafellar (2015). By the classical Fenchel–Moreau theorem, we have the
following dual representation of D:

D(X)= sup
ϕ∈H′

{
ϕ(X)−D∗(ϕ)

}
� X ∈H� where

D∗(ϕ)= sup
Y∈H

{
ϕ(Y)−D(Y)

}
� ϕ ∈H′�

Since ϕ(0)=D(0)= 0, D∗(ϕ)≥ ϕ(0)−D(0)= 0 for every ϕ ∈H′. However, it may take
the value plus infinity. Set,

dom
(
D∗) := {

ϕ ∈H′ :D∗(ϕ) <∞}
�

LEMMA A.4: We have

dom
(
D∗) = {

ϕ ∈H′
+ :D∗(ϕ)= 0

} = {
ϕ ∈H′

+ : ϕ(X)≤D(X)�∀X ∈H
}
� (A.4)

In particular,

D(X)= sup
ϕ∈dom(D∗)

ϕ(X)� X ∈H�

Furthermore, there are free lunches with vanishing risk in the financial market, whenever
dom(D∗) is empty.

PROOF: Clearly, the two sets on the right of (A.4) are equal and included in dom(D∗).
The definition of D∗ implies that

ϕ(X)≤D(X)+D∗(ϕ)� ∀X ∈H�ϕ ∈H′�
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By homogeneity,

ϕ(λX)≤D(λX)+D∗(ϕ)� ⇒ ϕ(X)≤D(X)+ 1
λ
D∗(ϕ)�

for every λ > 0 and X ∈ H. Suppose that ϕ ∈ dom(D∗). We then let λ go to infinity to
arrive at ϕ(X)≤D(X) for all X ∈ Bb. Hence, D∗(ϕ)= 0.

Fix X ∈ H+. Since ≤ is monotone with respect to the pointwise order, −X ≤ 0. Then,
by the monotonicity of D, ϕ(−X)≤D(−X)≤D(0)≤ 0. Hence, ϕ ∈H′

+.
Now suppose that dom(D∗) is empty or, equivalently, D∗ ≡ ∞. Then the dual repre-

sentation implies that D ≡ −∞. In view of Proposition 5.1, there are free lunches with
vanishing risk in the financial market. Q.E.D.

We next show that, under the assumption of absence of free lunch with vanishing risk
with respect to any R, the set dom(D∗) is equal to Qac defined in Section 2. Since any
relevant set R by hypothesis contains Ru defined in (4.1), to obtain this conclusion it
would be sufficient to assume the absence of free lunch with vanishing risk with respect
to any Ru.

LEMMA A.5: Suppose the financial market is strongly free of arbitrage with respect to R.
Then dom(D∗) is equal to the set of absolutely continuous martingale functionals Qac.

PROOF: The fact that dom(D∗) is nonempty follows from Lemma A.2 and Lemma A.4.
Fix an arbitrary ϕ ∈ dom(D∗). By Lemma A.2, D(c)= c for every constant c ∈R. In view
of the dual representation of Lemma A.4,

cϕ(1)= ϕ(c)≤D(c)= c� ∀c ∈ R�

Hence, ϕ(1)= 1.
We continue by proving the monotonicity property. Suppose that X ∈ P . Since

0 ∈ I , we obviously have D(−X) ≤ 0. The dual representation implies that ϕ(−X) ≤
D(−X)≤ 0. Thus, ϕ(X)≥ 0.

We now prove the supermartingale property. Let � ∈ I . Obviously, D(�) ≤ 0. By the
dual representation, ϕ(�) ≤ D(�) ≤ 0. Hence ϕ is a martingale functional. The absolute
continuity follows as in Lemma S.4.3. Hence, ϕ ∈Qac.

To prove the converse, fix an arbitrary ϕ ∈Qac. Suppose that X ∈H, c ∈ R, {�n}∞
n=1 ⊂ I

and {en}∞
n=1 ⊂H+ with en

τ→ 0 satisfy, c+ en + �n ≥X . From the properties of ϕ,

0 ≤ ϕ(c+ en + �n −X)= ϕ(c+ en −X)+ϕ(�n)≤ c −ϕ(X − en)�
Since en

τ→ 0 and ϕ is continuous, ϕ(X) ≤ D(X) for every X ∈ H. Therefore, ϕ ∈
dom(D∗). Q.E.D.

PROOF OF PROPOSITION 5.2: It follows directly from Lemma A.4 and Lemma A.5.
Q.E.D.

We have the following immediate corollary, which proves the first part of the funda-
mental theorem of asset pricing in this context.

COROLLARY A.6: The financial market is strongly free of arbitrage if and only Qac �= ∅
and for any R ∈R, there exists ϕR ∈Qac such that ϕR(R) > 0.
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PROOF: By contradiction, suppose that there exists R∗ such that en + �n ≥ R∗ with
en

τ→ 0. Take ϕR∗ such that ϕR∗(R∗) > 0 and observe that 0 < ϕR∗(R∗) ≤ ϕ(en + �n) ≤
ϕ(en). Since ϕ ∈H′

+, ϕ(en)→ 0 as n→ ∞, which is a contradiction.
In the other direction, assume that the financial market is strongly free of arbitrage. By

Lemma A.5, dom(D∗)= Qac. Let R ∈ R and note that, by Proposition 5.1, D(R) > 0. It
follows that there exists ϕR ∈ dom(D∗)=Qac satisfying ϕR(R) > 0. Q.E.D.

REMARK A.7: The set of positive functionals Qac ⊂ H′
+ is the analogue of the set of

local martingale measures of the classical setting. Indeed, all elements of ϕ ∈ Qac can be
regarded as supermartingale “measures,” since ϕ(�) ≤ 0 for every � ∈ I . Moreover, the
property ϕ(Z) = 0 for every Z ∈ Z can be regarded as absolute continuity with respect
to null sets. The full support property is our analog to the converse absolute continuity.
However, the full-support property cannot be achieved by a single element of Qac.

Bouchard and Nutz (2015) studied arbitrage for a set of priors M. The absolute con-
tinuity and the full support properties then translate to the statement that “M and Q
have the same polar sets.” In the paper by Burzoni, Frittelli, and Maggis (2016), a class of
relevant sets S is given and the two properties can summarized by the statement “the set
S is not contained in the polar sets of Q.”

Also, when H = Bb, H′ is the class of bounded additive measures ba. It is a classical
question whether one can restrict Q to the set of countable additive measures car(Ω). In
several of the examples described in Section 4 and 3, this is proved. However, there are
examples for which this is not true.
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