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Abstract. We study a class of nonlinear integrodifferential equations on a subspace of all prob-
ability measures on the real line related to the optimal control of McKean--Vlasov jump-diffusions.
We develop an intrinsic notion of viscosity solutions that does not rely on the lifting to a Hilbert
space and prove a comparison theorem for these solutions. We also show that the value function is
the unique viscosity solution.
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1. Introduction. The main goal of this paper is to develop a viscosity theory
for integrodifferential equations on a subspace of all probability measures on the real
line related to the optimal control of McKean--Vlasov jump-diffusions. These control
problems are motivated by the mean field games theory developed by Lasry and Lions
[29, 30, 31] (see also the videos of the College de France lectures of Lions [33]) and
by Huang, Caines, and Malham\'e [25, 26, 27]. Although the mean-field games and
McKean--Vlasov control problems are related, there are subtle differences between
these problems, and a thorough introduction is given by Carmona, Delarue, and
Lachapelle [14]. Indeed, for both problems the master equations share many common
properties as initially derived by Bensoussan, Freshe, and Yam [6, 8, 7]. We refer
to the videos of Lions [33], the lecture notes of Cardaliguet [12], and the exhaustive
book of Carmona and Delarue [13] for more information on both problems and also
for further references.

The state space of these problems is the set of probability measures, and in
most applications the Wasserstein space of probability measures with finite second
moments is used. Since the space of probability measures is not linear, one encounters
some difficulties in differentiation, and Lions [33] observed that one can naturally lift
functions defined on the Wasserstein space to functions on an appropriate \scrL 2 space,
which allows for standard differentiation and more importantly an immediate use of
It\^o's calculus. This approach is then used by Cardaliguet et al. [11] to obtain the
regularity of the solutions to the master equation of a mean-field game. This very
strong regularity result implies in particular a classical interpretation of the master
equations on the Wasserstein space. On the other hand, in the absence of such strong
regularity, one needs to develop the notion of viscosity solutions for McKean--Vlasov
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MCKEAN--VLASOV JUMP-DIFFUSIONS 1677

control problems. Gangbo, Nguyen, and Tudorascu [23] also observe that the tangent
bundle of the Wasserstein space is given by appropriate \scrL 2 spaces and develop a
viscosity theory for a classical mechanics problem in this space. More recently, Pham
and Wei [34, 35] initiated the study of viscosity solutions by using Lions' lifting for
controlled diffusion processes. Bandini et al. [3, 4] further developed this theory
for the dynamic programming equations for the partially observed systems which also
have the same structure. An important advantage of this approach to viscosity theory,
in addition to the Hilbert structure of \scrL 2, is its ability to utilize the existing results
for viscosity solutions on Hilbert spaces [32, 19]. An intrinsic approach to viscosity
solutions without lifting could also have advantages, and Wu and Zhang [37] study
this approach for diffusion process using the techniques developed for path-dependent
viscosity solution [17, 18].

Our goal is to develop a viscosity theory for jump-diffusion processes. For the
standard control problems, the corresponding dynamic programming equations con-
tain nonlocal integral terms related to the infinitesimal generator of the jump-Markov
processes. Still these equations have maximum principle, and a viscosity theory is
appropriate. Starting from [36, 20, 16, 2] definitions, stability and comparison results
for nonlinear integrodifferential equations of this type have been developed. We refer
to more recent paper by Barles and Imbert [5] for more information.

The jump terms in these equations introduce several new aspects. In particular,
for the McKean--Vlasov control problems, the operator appearing in the dynamic pro-
gramming equations does not act on the Lions derivative (i.e., the derivative in the \scrL 2

space of the lifted function) but rather on the standard (sometimes called linear) deriv-
ative. Indeed, when all functions are smooth, it is immediate that the Lions derivative
is an \scrL 2 function and it is equal to the space derivative of the linear derivative (see
section 5.4 in [13]). For the diffusion problems, only the space derivatives of the linear
derivative appear in the dynamic programming equation, and therefore one can simply
replace them by the Lions derivative. For the integrodifferential equations, however,
one needs to recover the linear derivative from the Lions derivative even to state the
equations. Unfortunately the required regularity (to immediately connect these two
derivatives) is not readily available when one is working in the viscosity structure.

We choose to work directly on the space of probability measures with the linear
derivative to develop an intrinsic theory. Although this approach has several advan-
tages, the dynamic programming equations on the space of probability measures are
not as well studied as the lifted equation on the \scrL 2 spaces, and parts of the viscosity
theory have to be revisited. Indeed, we first provide appropriate definitions of viscos-
ity sub- and supersolutions for a class of integrodifferential equations in this space.
We then show that the value function is a viscosity solution in this sense. Several
properties of the dynamics are used to construct the framework that is appropriate
for this problem. In particular, we consider the equation only on the subset of the
measures that have exponential moments.

One of the main contributions of this paper is a comparison result for the viscosity
solutions. An important ingredient of our approach is a distance-like function d given
for two probability measures \mu , \nu by

d(\mu , \nu ) =

\infty \sum 
j=1

cj\langle \mu  - \nu , fj\rangle 2,

where the countable set \{ fj\} j\in \BbbN is carefully constructed to have several important
invariance-type properties. In the standard doubling-variables argument, we penalize
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1678 BURZONI, IGNAZIO, REPPEN, AND SONER

the two points using d. Then the subtle properties of fj allow us to estimate its linear
derivative of d by itself.

The paper is organized as follows. We first introduce a class of optimal control
problems of McKean--Vlasov type in the next section. A guiding example for this class
is a model of technological innovation [28, 1]. We discuss this problem in section 3.
The natural state space for this study is the set of measures with exponential moments,
and under mild assumptions, the corresponding dynamical system lives in this space.
In section 5 we define this space, prove its functional analytic properties, and show
its connection to the controlled dynamics. In section 6 we give the definition of a
viscosity solution and in section 7 show that the value function is a viscosity solution.
Section 8 provides the construction of the functions fj and the comparison result. We
prove several technical results in the appendix.

Notation. For a random variable X, defined on a probability space (\Omega ,\scrF , P ),
we denote by \scrL (X) the distribution of X under P . We denote by \scrP (\BbbR ) the space
of probability measures on \BbbR and by ca(\BbbR ) the linear space of countably additive
measures. For any \mu \in \scrP (\BbbR ) and for any integrable function f : \BbbR \rightarrow \BbbR , we use the
standard compact notation \langle \mu , f\rangle :=

\int 
\BbbR f(x)\mu (dx). If f is smooth, f (i) denotes the

ith order derivative of f with f (0) = f . We endow the space of probability measures
\scrP (\BbbR ) with the weak\ast topology \sigma (\scrP (\BbbR ), \scrC b(\BbbR )), where \scrC b(\BbbR ) is the space of continuous
and bounded functions on \BbbR . We denote by \mu n \rightarrow \mu the \sigma (\scrP (\BbbR ), \scrC b(\BbbR ))-convergence
of \mu n to \mu , i.e., \langle \mu n, f\rangle converges to \langle \mu , f\rangle for every f \in \scrC b(\BbbR ).

2. The control problem and the assumption. Let (\Omega ,\scrF , (\scrF s)s\in [0,T ], P ) be a
given filtered probability space supporting the following class of controlled McKean--
Vlasov stochastic differential equations (SDEs) with initial condition \scrL (Xt) = \mu \in 
\scrP (\BbbR ) and

dXs = b(s,\scrL (Xs), \alpha s) ds+ \sigma (s,\scrL (Xs), \alpha s) dWs + dJs, s > t,(2.1)

where Js is a purely discontinuous process with controlled intensity \lambda (s,\scrL (Xs), \alpha s)
and jump size given by an independent random variable \xi with distribution \gamma \in \scrP (\BbbR ).
The class of admissible controls \scrA is the set of all measurable deterministic functions
of time with values in a prescribed measurable space A. Theorem 4.1 below proves
that under suitable assumptions, (2.1) has a unique solution for any given (t, \mu , \alpha ).
We denote this solution by (Xt,\mu ,\alpha 

u )u\in [t,T ], but to ease the notation, we also use the
notation X\alpha when the initial condition is clear from the context. The value function
is then given by

V (t, \mu ) := inf
\alpha \in \scrA 

\Biggl[ \int T

t

L(s,\scrL (Xt,\mu ,\alpha 
s ), \alpha s) ds+G(\scrL (XT ))

\Biggr] 

with given functions L and G. The optimal control problem consists of finding the
value V and a minimizer (if it exists).

We close this section by stating a set of conditions assumed to hold throughout
the paper, and they will not always be stated explicitly later on.

Assumption 2.1. There exist constants C0, \kappa 0, \delta > 0 such that the coefficients
b, \sigma , \lambda , L : [0, T ]\times \scrP (\BbbR )\times A \rightarrow \BbbR satisfy the following conditons:
(H1) For any \mu \in \scrP (\BbbR ), a \in A, s \in [0, T ],

| b(s, \mu , a)| + | \sigma (s, \mu , a)| + | \lambda (s, \mu , a)| \leq C0.
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MCKEAN--VLASOV JUMP-DIFFUSIONS 1679

(H2) There exists a finite set \scrI \subset \BbbN such that for any \mu , \mu \prime \in \scrP (\BbbR ), a \in A,
t, s \in [0, T ],

| b(t, \mu , a) - b(s, \mu \prime , a)| 

+ | \sigma (t, \mu , a) - \sigma (s, \mu \prime , a)| \leq \kappa 0

\biggl( 
| t - s| +

\sum 
i\in \scrI 

| \langle \mu  - \mu \prime , xi\rangle | 
\biggr) 
,

| \lambda (t, \mu , a) - \lambda (s, \mu \prime , a)| \leq \kappa 0

\biggl( 
| t - s| +

\sum 
i\in \scrI 

| \langle \mu  - \mu \prime , xi\rangle | 
\biggr) 
.

(H3) \gamma has \delta -exponential moment:\int 
\BbbR 
exp(\delta | x| )\gamma (dx) < \infty .

(H4) L is of the form L1(t, \mu , a)+L2(a)\langle \mu ,L3(\cdot )\rangle , where L1 : [0, T ]\times \scrP (\BbbR )\times A \rightarrow \BbbR 
is continuous in (t, \mu ), uniformly in a, L2 : A \rightarrow \BbbR with supa\in A L2(a) < \infty ,
and L3 : \BbbR \rightarrow \BbbR satisfies | L3(x)x| \leq C0 exp(\delta | x| ) for every x \in \BbbR . The
terminal cost G is continuous.

In what follows, the constants C0, \kappa 0, \delta > 0 are always as in the above assumption.

Remark 2.2. The condition (H2) is a form of Lipschitz continuity with respect to
cylindrical functions of the measure arguments. This condition also allows us to show
the Lipschitz continuity of the above functions with respect to a function d. Indeed, in
the comparison below, we construct a distance-like function d(\mu , \mu \prime ) :=

\sum \infty 
j=1 cj | \langle \mu  - 

\nu , fj\rangle | which, restricted to a suitable compact set, is a metric compatible with weak\ast 

convergence. As the class \{ fj\} j\in \BbbN contains all monomials, the condition (H2) implies
the Lipschitz continuity with respect to d, restricted to the chosen compact set.

3. A model of technological innovation. We briefly present here an example
of a McKean--Vlasov control problem where the underlying process is a jump-diffusion.
The controlled equations represent a model of knowledge diffusion which appeared in
the macroeconomic literature in the area of search-theoretic models of technological
change, e.g. [1],1 [28]. With controls \alpha = (\=\alpha , \^\alpha ), a social planner aims at promoting
technological innovation in the society by controlling the process

dX\alpha 
s = b

\bigl( 
\scrL (X\alpha 

s ), \=\alpha s

\bigr) 
ds+ \sigma dWs + dJs,(3.1)

where X0 \sim \mu 0 and Js is a purely discontinuous process with controlled intensity
\lambda (\scrL (X\alpha 

s ), \^\alpha s) and jump size given by a nonnegative independent random variable \xi 
with distribution \gamma . The value exp(X\alpha 

s ) represents the efficiency of the production of a
continuum of consumption goods (technological frontier), and the initial (logarithmic)
efficiency is represented by the distribution \mu 0. The aim is to maximize the average
efficiency of the production of goods in order to foster the growth of the economy:

maximize! \BbbE 

\Biggl[ \int T

0

(1 - \^\alpha s) exp(X
\alpha 
s ) - (\=\alpha s)

2 ds

\Biggr] 
,

where \alpha = (\=\alpha , \^\alpha ) is chosen from an appropriate class of deterministic processes.

1We thank Rama Cont for bringing this paper to our attention.
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1680 BURZONI, IGNAZIO, REPPEN, AND SONER

The social planner can promote innovation by issuing research funds (exercising
the control \=\alpha ). On the other hand, she can promote exchange of ideas by setting
up meetings at a controlled Poisson rate. Meetings have the effect of inducing a
nonnegative jump in the technological frontier, according to a random variable with
distribution \gamma . The functions \lambda and b are bounded since meetings cannot happen
too frequently and research funds have a limited impact on the technological frontier.
These functions also depends on the distribution of X\alpha . This aspect can represent a
positive feedback effect of a productive economy provided that the dependences on the
distribution are appropriately monotone. Finally, the random Brownian component
incorporates fluctuations in the efficiency of the production due to external contingent
factors.

This model satisfies Assumption 2.1 under some appropriate regularity conditions
on the parameters and initial distribution. Indeed, it is clear that (3.1) has the same
structure as (2.1). Moreover, because controls are deterministic,

\BbbE 

\Biggl[ \int T

0

(1 - \^\alpha s) exp(X
\alpha 
s ) ds

\Biggr] 
=

\int T

0

(1 - \^\alpha s)\BbbE 
\bigl[ 
exp(X\alpha 

s )
\bigr] 
ds

and

\BbbE 
\bigl[ 
exp(X\alpha 

s )
\bigr] 
=

\int 
exp(x)\scrL (X\alpha 

s )(dx) = \langle \scrL (X\alpha 
s ), exp(\cdot )\rangle .

Hence, the running cost L is given by

L(t, \mu , (\=\alpha , \^\alpha )) = (1 - \^\alpha )\langle \mu , exp(\cdot )\rangle  - \=\alpha 2.

In particular, L has the form L2 in hypothesis (H4).
We refer to [1] for further examples of problems where the controlled process is

only a diffusion without jump terms.

4. State space and dynamic programming. Since the Brownian motion has
exponential moments, Assumption 2.1, in particular (H3), implies that the solutions
of the state equation (2.1) has also exponential moments. Therefore it is natural to
study the optimal control problem in \scrO := [0, T ) \times \scrM , where \scrM is the subset of
probability measures with \delta -exponential moments, i.e.,

\mu \in \scrM \leftrightarrow \langle \mu , exp(\delta | \cdot | )\rangle =
\int 
\BbbR 
exp(\delta | x| )\mu (dx) < \infty ,

where \delta is as in (H3). Our first result is the well-posedness of the problem, and its
straightforward proof is given in Appendix A.

Theorem 4.1. Under Assumption 2.1, the SDE (2.1) has a unique solution,
(Xt,\mu ,\alpha 

u )u\in [t,T ], for any (t, \mu , \alpha ) \in \scrO \times \scrA .

The described McKean--Vlasov control problem is deterministic, and therefore, it
is classical that the dynamic programming principle holds [21]

V (t, \mu ) = inf
\alpha \in \scrA 

\Biggl[ \int \theta 

t

L(s,\scrL (Xt,\mu ,\alpha 
s ), \alpha s) ds+ V (\theta ,\scrL (Xt,\mu ,\alpha 

\theta ))

\Biggr] 
\forall \theta \in [t, T ].(4.1)

We need several definitions to formally state the corresponding dynamic program-
ming equation.
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MCKEAN--VLASOV JUMP-DIFFUSIONS 1681

Definition 4.2. For \varphi : \scrP (\BbbR ) \rightarrow \BbbR , the linear derivative of \varphi at \mu \in \scrP (\BbbR ), when
exists, is a function Dm\varphi : \scrP (\BbbR )\times \BbbR \rightarrow \BbbR such that for every \mu , \mu \prime \in \scrP (\BbbR ),

\varphi (\mu ) - \varphi (\mu \prime ) =

\int 1

0

\int 
\BbbR 
Dm\varphi (r\mu + (1 - r)\mu \prime , x) (\mu  - \mu \prime )(dx) dr.

When \varphi : [0, T ]\times \scrP (\BbbR ) \rightarrow \BbbR , with an abuse of notation, we denote the linear derivative
with respect to the \mu -variable still by Dm\varphi : [0, T ]\times \scrP (\BbbR )\times \BbbR \rightarrow \BbbR .

This derivative was used by Fleming and Viot [22] to study a martingale problem
in populations dynamics. Also recently Cuchiero, Larsson, and Svaluto-Ferro [15]
provided several of its properties in the context of polynomial diffusions. For a detailed
comparison of different notions of differentiability on spaces of measures we refer to
the recent paper by Gangbo and Tudorascu [24] and to the recent book by Carmona
and Delarue [13, section I.5].

Remark 4.3. Consider the linear function \varphi (\mu ) = \langle \mu , f\rangle with some f : \BbbR \rightarrow \BbbR . It
is immediate that Dm\varphi (\mu , x) = f(x) for any (\mu , x) \in \scrP (\BbbR ) \times \BbbR . Moreover, suppose
that \varphi : ca(\BbbR ) \rightarrow \BbbR is Frechet differentiable and such that D\varphi : ca(\BbbR ) \rightarrow \BbbR can
be represented as D\varphi [\mu ] = \langle \mu , f\rangle for some f : \BbbR \rightarrow \BbbR . Then f = Dm\varphi , namely,
D\varphi [\mu ] = \langle \mu ,Dm\varphi \rangle .

By the chain rule, the linear derivative of \varphi (\mu ) = F (\langle \mu , f\rangle ) with some smooth
function F is equal to Dm\varphi (\mu , x) = F \prime (\langle \mu , f\rangle )f(x).

For a given input function v = v(t, \mu , x), the operator \scrL a,\mu 
t acting on the x-variable

is given by

\scrL a,\mu 
t [v](x) := b(t, \mu , a)

\partial v

\partial x
(t, \mu , x) +

1

2
\sigma 2(t, \mu , a)

\partial 2v

\partial x2
(t, \mu , x)

+ \lambda (t, \mu , a)

\int 
\BbbR 
(v(t, \mu , x+ y) - v(t, \mu , x))\gamma (dy).

Using the above definitions, classical considerations starting from (4.1) formally
lead to the following dynamic programming equation:

 - \partial tV (t, \mu ) + sup
a\in A

Ha(t, \mu ,DmV ) = 0,(4.2)

where

Ha(t, \mu , v) :=  - L(t, \mu , a) - \langle \mu ,\scrL a,\mu 
t [v]\rangle .

Indeed, as in the finite-dimensional optimal control theory, if the value function
is smooth and cylindrical (i.e., if V has the form

V (t, \mu ) = F (t, \langle \mu , f1\rangle , . . . , \langle \mu , fn\rangle )

for some smooth functions F and f1, . . . , fn, then it is possible to derive (4.2) rig-
orously. Importantly, in this case, the classical It\^o's formula can be applied to
V (u,\scrL (Xt,\mu ,\alpha 

u )) = F (u,\BbbE [f1(Xt,\mu ,\alpha 
u )], . . . ,\BbbE [fn(Xt,\mu ,\alpha 

u )]) for any given (t, \mu , \alpha ) \in \scrO \times 
\scrA and u \in [t, T ]. However, this assumption on the value function is not expected
to hold and also is not needed. In section 7, we prove that the value function is the
unique viscosity solution to (4.2) even when it is neither smooth nor cylindrical.
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1682 BURZONI, IGNAZIO, REPPEN, AND SONER

5. \bfitsigma -compactness of the state space. Recall that \scrO := [0, T )\times \scrM , and \scrM 
is the set of probability measures \mu satisfying \langle \mu , exp(\delta | \cdot | )\rangle < \infty , where \delta is as in
(H3). We endow this space with the subspace topology induced by \scrP , i.e., weak\ast 

convergence. We use the product topology on \scrO := [0, T ] \times \scrM , and emphasize that
\scrO is not the topological closure of \scrO but simply includes the final time.

The space \scrO has a suitable \sigma -compact structure which is compatible with the
McKean--Vlasov dynamics. This representation of\scrO is instrumental to obtain uniform
integrability of the viscosity test functions as well as some continuity properties of the
Hamiltonian. We continue by constructing this structure.

For \delta as in (H3), set

e\delta (x) := exp

\biggl( 
\delta 
\Bigl[ \sqrt{} 

x2 + 1 - 1
\Bigr] \biggr) 

, x \in \BbbR .

We note that e\delta is twice continuously differentiable and

exp(\delta [| x|  - 1]) \leq e\delta (x) \leq exp(\delta | x| ) \leq e\delta e\delta (x) \forall x \in \BbbR .

For N \in \BbbN and C0, \delta as in Assumption 2.1, let

\scrO N :=
\bigl\{ 
(t, \mu ) \in [0, T )\times \scrP (\BbbR ) | \langle \mu , e\delta \rangle \leq NeK

\ast t
\bigr\} 
,

where

K\ast = K\ast (C0, \delta ) :=
\delta C0

2
(2 + C0 + \delta C0) + C0

\biggl( \int 
\BbbR 
e\delta | x| \gamma (dx) - 1

\biggr) 
.(5.1)

The exact definition of K\ast is not important for the functional analytic properties of
\scrO N but is used centrally in the next lemma to prove an invariance property.

It is clear that \scrO = [0, T )\times \scrM = \cup \infty 
N=1\scrO N and \scrO = \cup \infty 

N=1\scrO N , where

\scrO N :=
\bigl\{ 
(t, \mu ) \in [0, T ]\times \scrP (\BbbR ) | \langle \mu , e\delta \rangle \leq NeK

\ast t
\bigr\} 
.

We also use the following notation for a constant b > 0:

\scrM b :=
\bigl\{ 
\mu \in \scrP (\BbbR ) | \langle \mu , e\delta \rangle \leq b

\bigr\} 
.

The following lemma shows that for each N , \scrO N and thus also \scrO remain invariant
under the controlled dynamics (2.1) for any control. In particular, this means that
for any given initial law \mu \in \scrO N , we may restrict the dynamic programming equation
(4.2) to \scrO N .

Lemma 5.1. Under Assumption 2.1, for any N \in \BbbN , the set \scrO N is invariant for
the SDE (2.1), namely,

(t, \mu ) \in \scrO N \Rightarrow (u,\scrL (Xt,\mu ,\alpha 
u )) \in \scrO N \forall (u, \alpha ) \in [t, T ]\times \scrA ,

where (Xt,\mu ,\alpha 
u )u\in [t,T ] is the solution to (2.1) with initial condition \scrL (Xt,\mu ,\alpha 

t ) = \mu .

Proof. Set \varphi (x) :=
\surd 
x2 + 1 - 1 so that

e\delta (x) = e\delta \varphi (x), x \in \BbbR .

It is clear that \varphi is twice continuously differentiable and both | \varphi \prime | and \varphi \prime \prime > 0 are
bounded by 1.
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Fix (t, \mu ) \in \scrO N and \alpha \in \scrA . For u \in [t, T ], set Yu := e\delta \varphi (Xu), \mu u := \scrL (Xu), where
Xu := Xt,\mu ,\alpha 

u . In particular, \mu t = \mu for any control \alpha , and by It\^o's formula,

Yu = Yt +

\int u

t

b(s, \mu s, \alpha s)\delta \varphi 
\prime (Xs)Ys ds

+
1

2

\int u

t

\sigma 2(s, \mu s, \alpha s)
\bigl[ 
\delta \varphi \prime \prime (Xs) + \delta 2(\varphi \prime (Xs))

2
\bigr] 
Ys ds

+

\int u

t

\sigma (s, \mu s, \alpha s)\delta \varphi 
\prime (Xs)Ys dWs +

\sum 
t\leq s\leq u

\Delta Ys.

In view of assumption (H1), the stochastic integral in the above formula is a local
martingale. We take expectation on both sides up to a localizing sequence of stopping
times \{ \tau n\} n. We also use assumption (H1) to estimate that the expectation of the
second and third terms of the above sum is bounded by

C1\BbbE 
\biggl[ \int u

t

Ys\wedge \tau n ds

\biggr] 
,

where C1 := \delta C0

2 (2 + C0 + \delta C0) and C0 is as in assumption (H1).
We next estimate eJ := \BbbE [

\sum 
t\leq s\leq u\wedge \tau n

\Delta Ys]. First observe that for any x, y \in \BbbR ,
| \varphi (y + x) - \varphi (y)| \leq | x| . We then estimate, by using assumption (H3),

eJ = \BbbE 
\int u\wedge \tau n

t

\lambda (s, \mu s, \alpha s)

\int 
\BbbR 
e\delta \varphi (Xs\wedge \tau n+x)  - e\delta \varphi (Xs\wedge \tau n )\gamma (dx) ds

\leq C0\BbbE 
\int u\wedge \tau n

t

Ys\wedge \tau n

\int 
\BbbR 

\bigl( 
e\delta | x|  - 1

\bigr) 
\gamma (dx) ds

\leq C2\BbbE 
\int u

t

Ys\wedge \tau n ds,

where C2 := C0

\bigl( \int 
\BbbR e\delta | x| \gamma (dx) - 1

\bigr) 
. These and Fubini's theorem imply that

\BbbE [Yu\wedge \tau n ] \leq \BbbE [Yt] +K\ast 
\int u

t

\BbbE 
\bigl[ 
Ys\wedge \tau n

\bigr] 
ds,

where K\ast is as in (5.1). By Gronwall's lemma and Fatou's lemma,

\BbbE [Yu] \leq eK
\ast (u - t)\BbbE [Yt] = eK

\ast (u - t) \langle \mu , e\delta \varphi \rangle = eK
\ast (u - t)\langle \mu , e\delta \rangle .

As (t, \mu ) \in \scrO N , \langle \mu , e\delta \rangle \leq NeK
\ast t. Hence,

\BbbE [Yu] \leq eK
\ast (u - t)\langle \mu , e\delta \rangle \leq eK

\ast u.

We provide the proof of the following simple result for completeness.

Lemma 5.2. For N \in \BbbN , \scrO N is a compact subset of [0, T ]\times \scrP (\BbbR ).
Proof. Fix b > 0. For R sufficiently large, we have e\delta (x)/| x| \geq 1 for any | x| \geq R,

which implies

sup
\mu \in \scrM b

\mu ([ - R,R]c) = sup
\mu \in \scrM b

\int 
| x| \geq R

\mu (dx)

\leq sup
\mu \in \scrM b

\int 
| x| \geq R

e\delta (x)

| x| 
\mu (dx) \leq b

R
,

D
ow

nl
oa

de
d 

07
/0

7/
20

 to
 1

73
.7

2.
38

.6
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1684 BURZONI, IGNAZIO, REPPEN, AND SONER

and the last term converges to 0 as R \rightarrow \infty . Hence \scrM b is tight, and by Prokhorov's
theorem, it is relatively compact. We next show that it is also closed. Consider
a sequence \{ \mu n\} n\in \BbbN \subset \scrM b such that \mu n \rightarrow \mu . Set fm(x) := e\delta (x) \wedge m. Since
fm \in \scrC b(\BbbR ), fm \leq e\delta (x), and \mu n \in \scrM b,

\langle \mu , fm\rangle = lim
n\rightarrow \infty 

\langle \mu n, fm\rangle \leq b \forall m > 0.

By the monotone convergence theorem,

\langle \mu , e\delta \rangle = lim
m\rightarrow \infty 

\langle \mu , fm\rangle \leq b.

Hence, \mu \in \scrM b, and consequently, \scrM b is compact.
For every N , \scrO N is a subset of [0, T ] \times \scrM NeK\ast t ; hence, it is relatively compact.

Consider a sequence \{ (tn, \mu n)\} n\in \BbbN \subset \scrO N such that (tn, \mu n) \rightarrow (t, \mu ). Proceeding
exactly as above, we can show that

\langle \mu , e\delta \rangle = lim
n\rightarrow \infty 

lim
m\rightarrow \infty 

\langle \mu n, fm\rangle \leq NeK
\ast t.

Hence, (t, \mu ) \in \scrO N , and consequently, \scrO N is compact.

We close this section by recalling a well-known result; see [9, Theorem 30.1].
Suppose \mu , \nu \in \scrM . Then,

\mu = \nu \leftrightarrow \langle \mu  - \nu , xj\rangle = 0 \forall j = 1, 2, . . .(5.2)

6. Viscosity solutions and test functions. In this section, we define viscosity
sub- and supersolutions to the dynamic programming equation (4.2). As is standard
in the viscosity theory, one has to first specify the class of test functions. We continue
by this selection.

Definition 6.1. A cylindrical function is a map of the form (t, \mu ) \mapsto \rightarrow F (t, \langle \mu , f\rangle )
for some function f : \BbbR \rightarrow \BbbR and F : [0, T ] \times \BbbR \rightarrow \BbbR . This function is called
cylindrical polynomial if f is a polynomial and F is continuously differentiable.

The above class is not large enough, and we extend it to its linear span. For any
polynomial f , deg(f) denotes the degree of f .

Definition 6.2. For E \subseteq \scrO , a viscosity test function on E is a function of the
form

\varphi (t, \mu ) =

\infty \sum 
j=1

\varphi j(t, \mu ), (t, \mu ) \in E,

where \{ \varphi j\} j is a sequence of cylindrical polynomials that are absolutely convergent at
every (t, \mu ) and for every N \in \BbbN ,

lim
M\rightarrow \infty 

\infty \sum 
j=M

sup
(t,\mu )\in E

deg (Dm\varphi j)\sum 
i=0

\bigm| \bigm| \bigm| \langle \mu , (Dm\varphi j)
(i)\rangle 

\bigm| \bigm| \bigm| = 0.(6.1)

We let \Phi E be the set of all viscosity test functions on E.

Lemma 6.8 below shows that for a cylindrical polynomial \varphi , \langle \mu , (Dm\varphi )(i)\rangle is
uniformly bounded on (t, \mu , a) \in \scrO N \times A for every i = 0, . . . ,deg (Dm\varphi ). Therefore,
all cylindrical polynomials are test functions on every \scrO N .
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Remark 6.3. There are several other choices for test functions. In particular, we
could even restrict F to be quadratic or extend it to be more general with some
integrability properties. They all would yield equivalent definitions, and we do not
pursue this equivalence here.

When \mu t is the law of a stochastic process Xt and \varphi is a cylindrical function,
\varphi (t, \mu t) = F (t, \langle \mu t, f\rangle ) = F (t,\BbbE [f(Xt)]). Then, one can employ the standard It\^o
formula; see Proposition 6.9 below.

Definition 6.4. For E \subseteq \scrO and (t, \mu ) \in E with t < T , the superjet of u at (t, \mu )
is given by

J1,+
E u(t, \mu ) :=

\bigl\{ 
(\partial t\varphi (t, \mu ), Dm\varphi (t, \mu , \cdot )) | \varphi \in \Phi E , (u - \varphi )(t, \mu ) = max

E
(u - \varphi )

\bigr\} 
.

The subjet of u at (t, \mu ) is defined as J1, - 
E u(t, \mu ) :=  - J1,+

E ( - u)(t, \mu ).

Definition 6.5. On a subspace E \subseteq \scrO , the (sequential) upper semicontinuous
envelope of u on E is defined by2

u\ast 
E(t, \mu ) := lim sup

E\ni (t\prime ,\mu \prime )\rightarrow (t,\mu )

u(t, \mu ),

where the lim sup is taken over all sequences in E converging to (t, \mu ). The lower
semicontinuous envelope uE

\ast is defined analogously.

We use the compact notations

u\ast := u\ast 
\scrO , u\ast := u\scrO 

\ast , u\ast 
N := u\ast 

\scrO N
, uN

\ast := u
\scrO N
\ast .

We note that as opposed to the finite-dimensional cases, when u is not continuous,
the dependence of u\ast 

N and uN
\ast on N is nontrivial. This emanates from the fact that

the interiors of all \scrO N are empty.
To simplify the notation, we write H = supa\in A Ha.

Definition 6.6. We say that a function u : \scrO N \rightarrow \BbbR is a viscosity subsolution
of (4.2) on \scrO N if, for every (t, \mu ) \in \scrO N ,

 - \pi t +H(t, \mu , \pi \mu ) \leq 0 \forall (\pi t, \pi \mu ) \in J1,+
\scrO N

u\ast 
N (t, \mu ).

We say that a function v : \scrO N \rightarrow \BbbR is a viscosity supersolution of (4.2) on \scrO N if for
every (t, \mu ) \in \scrO N ,

 - \pi t +H(t, \mu , \pi \mu ) \geq 0 \forall (\pi t, \pi \mu ) \in J1, - 
\scrO N

uN
\ast (t, \mu ).

A viscosity solution of (4.2) is a function on \scrO that is both a subsolution and a
supersolution of (4.2) on \scrO N for every N \in \BbbN .

We continue with several technical results. Ultimately, we want to show some
continuity properties of H.

Definition 6.7. We say that g has \delta -subexponential growth if | g(x)x| \leq \^Ce\delta | x| 

for some \^C > 0 and every x \in \BbbR .
Note that any polynomial has \delta -subexponential growth.

2As \scrO is first countable, semicontinuity coincides with sequential semicontinuity.
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1686 BURZONI, IGNAZIO, REPPEN, AND SONER

Lemma 6.8. Let \delta > 0 be as in (H3). For any continuous g with \delta -subexponential
growth,

sup
\mu \in \scrM b

\langle \mu , | g| \rangle < \infty and lim
R\rightarrow \infty 

sup
\mu \in \scrM b

\int 
| x| \geq R

| g(x)| \mu (dx) = 0.

Moreover, there is a constant C, depending only on the constants appearing in As-
sumption 2.1, such that for any cylindrical polynomial \varphi and N \in \BbbN ,

sup
a\in A,(t,\mu )\in \scrO N

\bigm| \bigm| \langle \mu ,\scrL a,\mu 
t [Dm\varphi ]\rangle 

\bigm| \bigm| \leq C sup
(t,\mu )\in \scrO N

deg (Dm\varphi )\sum 
i=0

\bigm| \bigm| \bigm| \langle \mu , (Dm\varphi )(i)\rangle 
\bigm| \bigm| \bigm| < \infty .(6.2)

Proof. Since g has \delta -subexponential growth,

| g(x)x| \leq \^C exp(\delta | x| ) \leq \^Ce\delta e\delta (x) =: \~Ce\delta (x), x \in \BbbR .

By definition of \scrM b, sup\mu \in \scrM b
\langle \mu , e\delta \rangle \leq b and since g is bounded on compact sets the

estimate sup\mu \in \scrM b
\langle \mu , | g| \rangle < \infty follows. Moreover, for R \geq 1,

sup
\mu \in \scrM b

\int 
| x| \geq R

| g(x)| \mu (dx) \leq \~C sup
\mu \in \scrM b

\int 
| x| \geq R

e\delta (x)

| x| 
\mu (dx)

\leq 
\~C

R
sup

\mu \in \scrM b

\int 
| x| \geq R

e\delta (x)\mu (dx)

\leq b \~C

R
.

Let f be a polynomial. Then,

\langle \mu ,\scrL a,\mu 
t [f ]\rangle = b(t, \mu , a)\langle \mu , f \prime \rangle + 1

2
\sigma 2(t, \mu , a)\langle \mu , f \prime \prime \rangle 

+ \lambda (t, \mu , a)\langle \mu ,
\int 
\BbbR 
(f(x+ y) - f(x))\gamma (dy)\rangle .

We rewrite the last term by Taylor expansion of the polynomial f as follows:

\langle \mu ,
\int 
\BbbR 
(f(x+ y) - f(x))\gamma (dy)\rangle =

deg(f)\sum 
i=1

\langle \mu , f (i)\rangle 
i!

\int 
\BbbR 
yi\gamma (dy).

The above equations, together with Assumption 2.1 and the fact that all derivatives of
f have \delta -subexponential growth, imply (6.2). The result for a cylindrical polynomial
follows similarly.

Proposition 6.9. For every \varphi \in \Phi \scrO N
, (t, \mu ) \in \scrO N , and \alpha \in \scrA ,

\varphi (u, \mu u) = \varphi (t, \mu ) +

\int u

t

\bigl[ 
\partial t\varphi (s, \mu s) + \langle \mu s,\scrL \alpha s,\mu s

s [Dm\varphi ]\rangle 
\bigr] 
ds, u \in [t, T ],(6.3)

where \mu s = \scrL (Xt,\mu ,\alpha 
s ) and (Xt,\mu ,\alpha 

s )s\in [t,T ] is the solution to (2.1) with initial distribu-
tion \mu . Moreover, the map (t, \mu ) \mapsto \rightarrow H(t, \mu ,Dm\varphi ) is continuous on \scrO N .

Proof. Fix \varphi \in \Phi \scrO N
, (t, \mu ) \in \scrO N , and \alpha \in \scrA , and let \mu s be as in the statement.

In view of Lemma 5.1, \mu s \in \scrO N for all s \in [t, T ].
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Let first \varphi (\mu ) = \langle \mu , f\rangle with f polynomial, so that Dm\varphi = f and \langle \mu s, f\rangle =
\BbbE f(Xt,\mu ,\alpha 

s ). By stochastic calculus

\langle \mu u, f\rangle = \langle \mu , f\rangle +
\int u

t

\langle \mu s,\scrL \alpha s,\mu s
s [f ]\rangle ds.

Moreover, this derivative is uniformly bounded on \scrO N by the previous lemma. Now
consider a cylindrical polynomial \varphi (t, \mu ) = F (t, \langle \mu , f\rangle ). By calculus,

\varphi (u, \mu u) = \varphi (t, \mu ) +

\int u

t

\bigl[ 
\partial t\varphi (s, \mu s) + Fx(s, \langle \mu s, f\rangle )\langle \mu s,\scrL \alpha s,\mu s

s [f ]\rangle 
\bigr] 
ds.

Since Dm\varphi (s, \mu ) = Fx(s, \langle \mu , s\rangle )f , the above proves (6.3) for cylindrical polynomials.
For a general \varphi \in \Phi \scrO N

, (6.3) follows directly from above, the condition (6.1), and the
fact that \mu s \in \scrO N for all s \in [t, T ].

We now show continuity of H. Since all derivatives of f have \delta -subexponential
growth, Lemma 6.8 and the fact that \varphi is a smooth function imply \langle \mu , (Dm\varphi )(i)\rangle is
continuous on every \scrO N for any i \in \BbbN . In particular the uniform continuity of (t, \mu ) \mapsto \rightarrow 
\langle \mu ,\scrL a,\mu 

t [Dm\varphi (t, \mu )]\rangle follows from (H1) and (H2), and for L it is assumption (H4).
Hence, H(t, \mu ,Dm\varphi ) is continuous for all cylindrical polynomials. This continuity

extends directly to all functions of the type \varphi M :=
\sum M

j=1 Fj(\langle \mu , fj\rangle ).
Now consider a general test function \varphi =

\sum \infty 
j=1 Fj(\langle \mu , fj\rangle ), and for M \in \BbbN set

\varphi M :=
\sum M

j=1 Fj(\langle \mu , fj\rangle ). Since \varphi \in \Phi \scrO N
, it satisfies (6.1). This together with (6.2)

imply that

lim
M\rightarrow \infty 

sup
a\in A,(t,\mu )\in \scrO N

\infty \sum 
j=M

\bigm| \bigm| \langle \mu ,\scrL a,\mu 
t [Dm\varphi j ]\rangle 

\bigm| \bigm| = 0.

The above uniform limit enables us to conclude that H(t, \mu ,Dm\varphi M ) converges uni-
formly to H(t, \mu ,Dm\varphi ) as M tends to infinity. Hence, H(t, \mu ,Dm\varphi ) is also continu-
ous.

7. Value function. In this section we show that the value function V is a
viscosity solution to (4.2). We start with two technical lemmata.

Lemma 7.1. For every N \in \BbbN , (t0, \mu 0) \in \scrO N , there exists a viscosity test function
\phi \in \Phi \scrO N

such that \phi (t, \mu ) \geq 0, with equality only in (t0, \mu 0), and

(\phi (t0, \mu 0), \partial t\phi (t0, \mu 0), Dm\phi (t0, \mu 0, \cdot )) = (0, 0, 0).

In particular, in the definition of viscosity sub- and supersolutions, without loss of
generality, we may assume that the extrema are strict.

Proof. Fix (t0, \mu 0) \in \scrO N , and set

\phi (t, \mu ) = \phi (t, \mu ; t0, \mu 0) := (t - t0)
2 +

\infty \sum 
j=1

1

(j + 1)2j
\langle \mu  - \mu 0, x

j\rangle 2.

By (5.2) \phi (t, \mu ) > 0 when (t, \mu ) \not = (t0, \mu 0). For any j \in \BbbN , let \varphi j(\mu ) =
1

(j+1)2j \langle \mu  - 
\mu 0, x

j\rangle 2 and observe that

sup
(t,\mu )\in \scrO N

deg (Dm\varphi j)\sum 
i=0

\bigm| \bigm| \bigm| \langle \mu , (Dm\varphi j)
(i)\rangle 

\bigm| \bigm| \bigm| \leq 1

2j
KN

for some constant KN which only depend on \scrO N . It follows that \phi satisfies (6.1). It
is clear that \phi has all the claimed properties.
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Lemma 7.2. For each N , V, V \ast 
N , and V N

\ast are bounded on \scrO N .

Proof. Let (t, \mu ) \in \scrO N . From Lemma 5.1, \scrO N is invariant for (2.1), and recall that
\scrO N is compact. Assumption (H4) and Lemma 6.8 imply that | L| + | G| is uniformly
bounded on \scrO N by a constant KN . It follows that | V (t, \mu )| \leq (1 + T )KN on \scrO N .

The proof of the next result is standard [10, 21].

Theorem 7.3. Assume (4.1) holds. For any N \in \BbbN , the value function V is both
a viscosity sub- and a supersolution to (4.2) on \scrO N and

V \ast 
N (T, \cdot ) = V N

\ast (T, \cdot ) = G on \scrM NeK\ast T .

Proof. Fix N \in \BbbN , and note that both envelopes V \ast 
N , V N

\ast are finite by Lemma
7.2.

Step 1. V \ast 
N is a viscosity subsolution for t < T . Suppose that for \varphi \in \Phi \scrO N

and
(t, \mu ) \in \scrO N ,

0 = (V \ast 
N  - \varphi )(t, \mu ) = max

\scrO N

(V \ast 
N  - \varphi ).

Let (tn, \mu n) be a sequence in \scrO N such that (tn, \mu n, V (tn, \mu n)) \rightarrow (t, \mu , V \ast 
N (t, \mu )). Fix

a \in A, and let (Xtn,\mu n,a
s )s\in [tn,T ] denote the solution to (2.1) with constant control

a and distribution \mu n at the initial time tn. For ease of notation, we set \mu n,a
s :=

\scrL (Xtn,\mu n,a
s ). We use the dynamic programming (4.1) with \theta n := tn + h for 0 < h <

T  - t to obtain

V (tn, \mu n) \leq 
\int \theta n

tn

L(s, \mu n,a
s , a) ds+ V (\theta n, \mu 

n,a
\theta n

) \leq 
\int \theta n

tn

L(s, \mu n,a
s , a) ds+ \varphi (\theta n, \mu 

n,a
\theta n

).

We pass to the limit to arrive at

V \ast 
N (t, \mu ) = \varphi (t, \mu ) \leq 

\int t+h

t

L(s, \mu a
s , a) ds+ \varphi (t+ h, \mu a

t+h),

where \mu a
s is the distribution of the solution to (2.1) with initial data \mu at time t and

constant control a. We now use (6.3) to obtain

0 \leq 
\int t+h

t

[\partial t\varphi (s, \mu 
a
s) - Ha(s, \mu a

s , Dm\varphi )] ds.

Since this holds for every h > 0 and a \in A, we conclude that

 - \partial t\varphi (t, \mu ) + sup
a\in A

Ha(t, \mu ,Dm\varphi ) \leq 0.

Step 2. V N
\ast is a viscosity supersolution for t < T . Suppose that there exist

(t, \mu ) \in \scrO N and \varphi \in \Phi \scrO N
such that

0 = (V N
\ast  - \varphi )(t, \mu ) = min

\scrO N

(V \ast 
N  - \varphi ).

In view of Lemma 7.1, without loss of generality we assume that above minimum is
strict. Towards a counterposition assume that

 - \partial t\varphi (t, \mu ) +H(t, \mu ,Dm\varphi ) < 0.
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By the continuity of H proved in Proposition 6.9, there exists a neighbourhood B of
(t, \mu ) such that

 - \partial t\varphi (t, \mu ) - \langle \mu ,\scrL a,\mu 
t [Dm\varphi ]\rangle \leq L(t, \mu , a) \forall (t, \mu ) \in BN := B \cap \scrO N , \forall a \in A.

Let (tn, \mu n) be a sequence in \scrO N such that (tn, \mu n, V (tn, \mu n)) \rightarrow (t, \mu , V N
\ast (t, \mu )). It

is clear that for all large n, (tn, \mu n) \in BN . Fix an arbitrary control \alpha \in \scrA , and let
(Xtn,\mu n,\alpha 

s )s\in [tn,T ] denote the solution to (2.1) with distribution \mu n at the initial time
tn. For ease of notation, we set \mu 

n,\alpha 
s := \scrL (Xtn,\mu n,\alpha 

s ). Consider the deterministic times

\theta n := inf\{ s \geq tn : (s, \mu n,\alpha 
s ) /\in BN\} \wedge T.

By (6.3),

\varphi (tn, \mu n) = \varphi (\theta n, \mu 
n,\alpha 
\theta n

) - 
\int \theta n

tn

\Bigl[ 
\partial t\varphi (s, \mu 

n,\alpha 
s ) + \langle \mu n,\alpha 

s ,\scrL \alpha s,\mu 
n,\alpha 
s

s [Dm\varphi ]\rangle 
\Bigr] 
ds

\leq \varphi (\theta n, \mu 
n,\alpha 
\theta n

) +

\int \theta n

tn

L(s, \mu n,\alpha 
s , \alpha ) ds.

Since \scrO N \setminus BN = \scrO N \setminus B is compact and V N
\ast  - \varphi has a strict minimum at (t, \mu ), there

exists \eta > 0, independent of \alpha such that \varphi \leq V N
\ast  - \eta \leq V  - \eta on \scrO N \setminus B. Hence, the

above inequality implies that

\varphi (tn, \mu n) \leq V (\theta n, \mu 
n,\alpha 
\theta n

) +

\int \theta n

tn

L(s, \mu n,\alpha 
s , \alpha ) ds - \eta .

Since the (\varphi  - V )(tn, \mu n) \rightarrow 0, for n large enough,

V (tn, \mu n) \leq 
\int \theta n

tn

L(s, \mu n,\alpha 
s , \alpha ) ds+ V (\theta n, \mu 

n,\alpha 
\theta n

) - \eta 

2
.

As the above inequality holds with \eta > 0 independent of \alpha \in \scrA , it is in contradiction
with (4.1). Hence, V N

\ast is a viscosity supersolution to (4.2).

Step 3. V \ast 
N = G on \scrM NeK\ast T . Consider a sequence \scrO N \ni (tn, \mu n) \rightarrow (T, \mu )

such that V \ast 
N (T, \mu ) = limn\rightarrow \infty V (tn, \mu n). By assumption (H4), the uniform con-

tinuity of L1 implies
\int T

tn
L1(s, \mu 

n,\alpha 
s , \alpha s) \rightarrow 0. Also, by Lemma 6.8, the integral\int T

tn
L2(\alpha s)\langle \mu n,\alpha 

s , L3\rangle \leq \~C(T  - tn) converges to zero. We next show that \mu n,\alpha 
T \rightarrow \mu .

By the compactness of \scrO N , there exists \^\mu \in \scrM N such that \mu n,\alpha 
T \rightarrow \^\mu (up to a sub-

sequence). It\^o's formula and Lemma 6.8 imply that | \langle \mu n,\alpha 
T  - \mu n, x

j\rangle | \rightarrow 0 for every
j \in \BbbN . This implies that \^\mu = \mu . Hence, for an arbitrary \alpha \in \scrA , we have,

V \ast 
N (T, \mu ) = lim

n\rightarrow \infty 
V (tn, \mu n) \leq lim

n\rightarrow \infty 

\biggl[ \int T

tn

L(s, \mu n,\alpha 
s , \alpha s) +G(\mu n,\alpha 

T )

\biggr] 
= G(\mu ).

As V \ast 
N (T, \mu ) \geq V (T, \mu ) = G(\mu ), we conclude that V \ast 

N (T, \mu ) = G(\mu ).

Step 4. V N
\ast = G on \scrM NeK\ast T . Again consider \scrO N \ni (tn, \mu n) \rightarrow (T, \mu ) satis-

fying V N
\ast (T, \mu ) = limn\rightarrow \infty V (tn, \mu n). As in the previous step

\int T

tn
L(s, \mu \alpha ,n

s , \alpha s) \rightarrow 0

uniformly in \alpha and G(\mu n,\alpha 
T ) \rightarrow G(\mu ) as n \rightarrow \infty . For any n \in \BbbN , choose \alpha n \in \scrA so

that V (tn, \mu n) \geq 
\int T

tn
L(s, \mu n,\alpha n

s , \alpha n
s ) +G(\mu n,\alpha n

T ) - 1/n. This implies that

V N
\ast (T, \mu ) = lim

n\rightarrow \infty 
V (tn, \mu n) \geq lim

n\rightarrow \infty 

\Biggl[ \int T

tn

L(s, \mu n,\alpha n

s , \alpha n
s ) +G(\mu n,\alpha n

T )

\Biggr] 
= G(\mu ).
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1690 BURZONI, IGNAZIO, REPPEN, AND SONER

8. A comparison result. The following is the main comparison result.

Theorem 8.1 (comparison). Let u be a u.s.c. subsolution to (4.2) on \scrO N and
v an l.s.c. supersolution to (4.2) on \scrO N , satisfying u(T, \mu ) \leq v(T, \mu ) for any (T, \mu ) \in 
\scrO N . Then u \leq v on \scrO N .

The following corollary is the unique characterization of the value function. Re-
call, for any function u, we use the notation u\ast to denote the upper semicontinuous
envelope of u restricted to \scrO and u\ast is the lower semicontinuous envelope of u re-
stricted to \scrO .

Corollary 8.2. The value function V is the unique viscosity solution to (4.2)
on \scrO satisfying V \ast (T, \mu ) = V\ast (T, \mu ) = G for (T, \mu ) \in \scrO . Moreover, V restricted to
\scrO is continuous, i.e., V \ast = V\ast .

Proof. We apply the above comparison result to V \ast 
N , V N

\ast and use Theorem 7.3
to conclude that the subsolution V \ast 

N is less than the supersolution V N
\ast . Since the

opposite inequality is immediate from their definitions, V \ast 
N = V N

\ast =: VN . In view of
Lemma B.1 proved in the appendix, this implies that V \ast = V\ast = V .

Let v be a viscosity solution to (4.2) and v\ast (T, \mu ) = v\ast (T, \mu ) = G for (T, \mu ) \in \scrO .
Since v\ast \leq vN\ast \leq v\ast N \leq v\ast , we also have v\ast N (T, \mu ) = vN\ast (T, \mu ) = G for (T, \mu ) \in \scrO N .
Then, the comparison result implies that v\ast N \leq V N

\ast = VN = V \ast 
N \leq vN\ast \leq v\ast N . Hence,

v\ast N = vN\ast = VN . This proves the uniqueness.

The remainder of this section is devoted to the proof of Theorem 8.1. We begin
by constructing a specific class of polynomials that is central to the comparison proof.
Recall that, for any polynomial f , deg(f) is the degree of f .

Definition 8.3. We say that a set of polynomials \chi has the (\ast )-property if it
satisfies

1. for any g \in \chi , g(i) \in \chi for all i = 0, . . . ,deg(g);

2. for any g \in \chi ,
\sum deg(g)

i=1 mig
(i) \in \chi with mi :=

1
i!

\int 
\BbbR yi\gamma (dy).

Let \Sigma be the collection of all sets of polynomials that have the (\ast )-property.
Set

\chi (f) :=
\bigcap 

\chi \in \Sigma ,f\in \chi 

\chi .

One can directly show that \chi (f) has the (\ast )-property, and hence it is the smallest set
of polynomials with the (\ast )-property that includes f . It is also clear that for every
g \in \chi (f), \chi (g) \subset \chi (f).

Example 8.4. The following are a few examples of the above sets.

\chi (x) = \{ 0, 1,m1, x\} ,
\chi (x2) = \{ 0, 2, 2m1, 2m

2
1, 2x, 2m1x+ 2m2, x

2\} ,
\chi (x3) = \{ 0, 6, 6m1, 6m

2
1, 6m

3
1, 6x, 6m1x+ 6m2, 6m

2
1x+ 12m1m2, 3x

2,

3m1x
2 + 6m2x+ 6m3, x

3\} .

Lemma 8.5. For any polynomial f , \chi (f) is finite.

Proof. We show this by induction on the degree of the polynomial. Indeed if
deg(f) = 0, \chi (f) = \{ f, 0\} and hence is finite. Towards an induction proof, assume
that we have shown that \chi (h) is finite for every polynomial h with deg h \leq n for some

integer n \geq 0. Let f be a polynomial with deg(f) = n + 1. Set \^g :=
\sum deg(f)

i=1 mif
(i).
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Then, deg(\^g) = n, and consequently by our assumption \chi (\^g) is finite. Moreover,

\chi (f) = \{ f\} \cup \chi (\^g) \cup 
deg(f)\bigcup 
i=1

\chi (f (i)).

As deg(f (i)) \leq n for every i \geq 1, \chi (f (i)) are finite by the induction hypothesis, and
therefore, \chi (f) is also finite.

Set \Theta := \cup \infty 
j=1\chi (x

j). Then, \Theta contains all monomials \{ xj\} \infty j=1, it is countable,
and \chi (f) \subset \Theta for every f \in \Theta . Let \{ fj\} \infty j=1 be an enumeration of \Theta .

The definition of \scrM b and Lemma 6.8 imply that

sj(b) := 1 + sup
\mu \in \scrM b

\langle \mu , fj\rangle 2 < \infty \forall j = 1, 2, . . . .

As \chi (f) \subset \Theta for every f \in \Theta , there exists a finite index set Ij satisfying

\chi (fj) =
\bigl\{ 
fi | i \in Ij

\bigr\} 
, j = 1, 2, . . .

Fix b > 0, and set

cj(b) :=

\left(  \sum 
k\in Ij

2k

\right)   - 1 \left(  \sum 
k\in Ij

sk(b)

\right)   - 2

.(8.1)

Since fj \in \chi (fj), j \in Ij , and therefore, cj(b) \leq 2 - j . Hence,
\sum \infty 

j=1 cj(b) \leq 1. Also, for
each i \in Ij , fi \in \chi (fj), and consequently, \chi (fi) \subset \chi (fj). This implies that Ii \subset Ij .
Moreover, sj(b) \geq 1. Hence, the definition (8.1) implies that

cj(b) \leq ci(b) \forall i \in Ij .(8.2)

Finally, observe that, by the definitions of sj(b) and cj(b),

\infty \sum 
j=1

cj(b)\langle \mu , fj\rangle 2 \leq 1 \forall \mu \in \scrM b.(8.3)

Proof of Theorem 8.1. Fix N \in \BbbN .
To simplify the notation we write cj for cj(NeK

\ast T ). In particular, for any (t, \mu ) \in 
\scrO N , \mu \in \scrM NeK\ast t \subset \scrM NeK\ast T , and therefore, by (8.2)

sup
(t,\mu )\in \scrO N

\infty \sum 
j=1

cj\langle \mu , fj\rangle 2 \leq 1.

Towards a counterposition, suppose that sup\scrO N
(u - v) > 0. Since u - v is u.s.c.

and \scrO N is weak\ast compact, the maximum

\ell := max
(t,\mu )\in \scrO N

\bigl( 
(u - v)(t, \mu ) - 2\eta (T  - t)

\bigr) 
is achieved and \ell > 0 for all sufficiently small \eta \in (0, \eta 0].

Step 1. Doubling of variables. Recall \Theta = \{ fj\} \infty j=1 and the constants \{ cj\} in

(8.1) with b = NeK
\ast T . For n \in \BbbN , \varepsilon > 0, \eta \in (0, \eta 0] set

\phi \varepsilon (t, \mu , s, \nu ) := u(t, \mu ) - v(s, \nu ) - 1

\varepsilon 

\infty \sum 
j=1

cj\langle \mu  - \nu , fj\rangle 2  - \beta \eta ,\varepsilon (t, s),

\beta \eta ,\varepsilon (t, s) := \eta (T  - t+ T  - s) +
1

\varepsilon 
(t - s)2.
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1692 BURZONI, IGNAZIO, REPPEN, AND SONER

By our assumptions, \phi \varepsilon admits a maximizer (t\ast \varepsilon , \mu 
\ast 
\varepsilon , s

\ast 
\varepsilon , \nu 

\ast 
\varepsilon ) satisfying

\phi \varepsilon (t
\ast 
\varepsilon , \mu 

\ast 
\varepsilon , s

\ast 
\varepsilon , \nu 

\ast 
\varepsilon ) = max

\scrO N

\phi \varepsilon \geq \ell > 0.(8.4)

Since \scrO N is compact and u is u.s.c., M := max\scrO N
u \in \BbbR . As v is l.s.c., similarly

m := min\scrO N
v \in \BbbR . In view of (8.4),

0 \leq \zeta \epsilon 
\varepsilon 

:=
1

\varepsilon 

\left[  \infty \sum 
j=1

cj\langle \mu \ast 
\varepsilon  - \nu \ast \varepsilon , fj\rangle 2 + (t\ast \varepsilon  - s\ast \varepsilon )

2

\right]  \leq M  - m - \ell =: C < \infty .

As \scrO N is compact, there exist subsequences \{ (t\ast \varepsilon i , \mu 
\ast 
\varepsilon i), (s

\ast 
\varepsilon i , \nu 

\ast 
\varepsilon i)\} i\in \BbbN such that \mu \ast 

\varepsilon i
and \nu \ast \varepsilon i converge to \mu \ast and \nu \ast , respectively, and t\ast \varepsilon i and s\ast \varepsilon i both converge to t\ast .

Step 2. \nu \ast = \mu \ast . Since \zeta \epsilon converges to zero, \langle \mu \ast 
\varepsilon  - \nu \ast \varepsilon , fj\rangle converges to zero for

each j. As \Theta = \{ fj\} \infty j=1 contains all the monomials, lim\varepsilon \rightarrow 0\langle \mu \ast 
\varepsilon  - \nu \ast \varepsilon , x

j\rangle = 0 for any

j \in \BbbN . In view of Lemma 6.8, the map \mu \mapsto \rightarrow \langle \mu , xj\rangle is continuous on \scrO N . Hence,

\langle \mu \ast  - \nu \ast , xj\rangle = lim
i
\langle \mu \ast 

\varepsilon i  - \nu \ast \varepsilon i , x
j\rangle = 0, j = 1, 2, . . .

By (5.2), we conclude that \nu \ast = \mu \ast .
Step 3. t\ast < T . Towards a counterposition, assume that t\ast = T . Since by

hypothesis (u - v)(T, \cdot ) \leq 0, v is l.s.c., and u is u.s.c.,

0 \geq (u - v)(T, \mu \ast ) \geq lim sup
i

u(t\varepsilon i , \mu 
\ast 
\varepsilon i) - v(s\varepsilon i , \nu 

\ast 
\varepsilon i)

\geq lim sup
i

\phi \varepsilon i(t
\ast 
\varepsilon i , \mu 

\ast 
\varepsilon i , s

\ast 
\varepsilon i , \nu 

\ast 
\varepsilon i) \geq \ell > 0.

Step 4. We claim that lim supi\rightarrow \infty 
\zeta \varepsilon i
\varepsilon i

= 0. Indeed,

\ell \geq \phi \epsilon (t
\ast , \mu \ast , t\ast , \mu \ast )

= u(t\ast , \mu \ast ) - v(t\ast , \mu \ast ) - 2\eta (T  - t\ast )

\geq lim sup
i\rightarrow \infty 

\bigl( 
u(t\ast \varepsilon i , \mu 

\ast 
\varepsilon i) - v(s\ast \varepsilon i , \nu 

\ast 
\varepsilon i) - \eta (T  - t\ast \varepsilon i + T  - s\ast \varepsilon i)

\bigr) 
\geq \ell + lim sup

i\rightarrow \infty 

1

\varepsilon i

\left(  \infty \sum 
j=1

cj\langle \mu \ast 
\varepsilon i  - \nu \ast \varepsilon i , fj\rangle 

2 + (t\ast \varepsilon i  - s\ast \varepsilon i)
2

\right)  
= \ell + lim sup

i\rightarrow \infty 

\zeta \varepsilon i
\varepsilon i

.

Hence we conclude that

lim sup
i\rightarrow \infty 

\zeta \varepsilon i
\varepsilon i

= 0.(8.5)

Step 5. Initial estimate. Let \{ \mu \ast 
\varepsilon \} , \{ \nu \ast \varepsilon \} as in Step 1, and set

\pi \ast 
\varepsilon (\cdot ) :=

2

\varepsilon 

\infty \sum 
j=1

cj\langle \mu \ast 
\varepsilon  - \nu \ast \varepsilon , fj\rangle fj(\cdot ).

Note that
\pi \ast 
\varepsilon (\cdot ) = Dm\varphi 1(\mu 

\ast 
\varepsilon , \cdot ) =  - Dm\varphi 2(\nu 

\ast 
\varepsilon , \cdot ),
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MCKEAN--VLASOV JUMP-DIFFUSIONS 1693

where \varphi 1(\mu ) :=
1
\varepsilon 

\sum \infty 
j=1 cj\langle \mu  - \nu \ast \varepsilon , fj\rangle 2, respectively, \varphi 2(\mu ) :=

1
\varepsilon 

\sum \infty 
j=1 cj\langle \mu \ast 

\varepsilon  - \mu , fj\rangle 2.
One can directly verify that \varphi 1 and \varphi 2 are test functions on \scrO N , i.e., \varphi 1, \varphi 2 \in \Phi \scrO N

.
We thus have

(\partial t\beta \eta ,\varepsilon (t
\ast 
\varepsilon , s

\ast 
\varepsilon ), \pi 

\ast 
\varepsilon ) \in J1,+u(t\ast \varepsilon , \mu 

\ast 
\varepsilon ), ( - \partial s\beta \eta ,\varepsilon (t

\ast 
\varepsilon , s

\ast 
\varepsilon ), \pi 

\ast 
\varepsilon ) \in J1, - v(s\ast \varepsilon , \nu 

\ast 
\varepsilon ).

Then, by the viscosity properties of u and v,

 - \partial t\beta \eta ,\varepsilon (t
\ast 
\varepsilon , s

\ast 
\varepsilon ) +H(t\ast \varepsilon , \mu 

\ast 
\varepsilon , \pi 

\ast 
\varepsilon ) \leq 0, \partial s\beta \eta ,\varepsilon (t

\ast 
\varepsilon , s

\ast 
\varepsilon ) +H(s\ast \varepsilon , \nu 

\ast 
\varepsilon , \pi 

\ast 
\varepsilon ) \geq 0.

We combine and use the definition of \beta \eta ,\varepsilon to arrive at

0 < 2\eta \leq H(s\ast \varepsilon , \nu 
\ast 
\varepsilon , \pi 

\ast 
\varepsilon ) - H(t\ast \varepsilon , \mu 

\ast 
\varepsilon , \pi 

\ast 
\varepsilon )

= sup
a\in A

Ha(s\ast \varepsilon , \nu 
\ast 
\varepsilon , \pi 

\ast 
\varepsilon ) - sup

a\in A
Ha(t\ast \varepsilon , \mu 

\ast 
\varepsilon , \pi 

\ast 
\varepsilon )

\leq sup
a\in A

(Ha(s\ast \varepsilon , \nu 
\ast 
\varepsilon , \pi 

\ast 
\varepsilon ) - Ha(t\ast \varepsilon , \mu 

\ast 
\varepsilon , \pi 

\ast 
\varepsilon )) =: sup

a\in A
Ia.

Moreover,

Ia := L(t\ast \varepsilon , \mu 
\ast 
\varepsilon , a) - L(s\ast \varepsilon , \nu 

\ast 
\varepsilon , a) + \langle \mu \ast 

\varepsilon ,\scrL 
a,\mu \ast 

\varepsilon 
t\ast \varepsilon 

[\pi \ast 
\varepsilon ]\rangle  - \langle \nu \ast \varepsilon ,\scrL 

a,\nu \ast 
\varepsilon 

s\ast \varepsilon 
[\pi \ast 

\varepsilon ]\rangle 
= L(t\ast \varepsilon , \mu 

\ast 
\varepsilon , a) - L(s\ast \varepsilon , \nu 

\ast 
\varepsilon , a)\underbrace{}  \underbrace{}  

Ia
1

+ \langle \mu \ast 
\varepsilon  - \nu \ast \varepsilon ,\scrL 

a,\mu \ast 
\varepsilon 

t\ast \varepsilon 
[\pi \ast 

\varepsilon ]\rangle \underbrace{}  \underbrace{}  
Ia
2

+ \langle \nu \ast \varepsilon ,\scrL 
a,\mu \ast 

\varepsilon 
t\ast \varepsilon 

[\pi \ast 
\varepsilon ] - \scrL a,\nu \ast 

\varepsilon 
s\ast \varepsilon 

[\pi \ast 
\varepsilon ]\rangle \underbrace{}  \underbrace{}  

Ia
3

.

By assumption (H4) and Lemma 6.8, lim\varepsilon \rightarrow 0 supa\in A Ia1 \rightarrow 0.
Step 6. Estimate of I2. We rewrite the second term as

I2 := sup
a\in A

Ia2 \leq sup
a\in A

2

\varepsilon 

\infty \sum 
j=1

cj | \langle \mu \ast 
\varepsilon  - \nu \ast \varepsilon , fj\rangle \langle \mu \ast 

\varepsilon  - \nu \ast \varepsilon ,\scrL 
a,\mu \ast 

\varepsilon 
t\ast \varepsilon 

[fj ]\rangle | \leq Ib2 + I\sigma 2 + I\gamma 2 ,

related to the three terms appearing in the generator \scrL a,\mu \ast 
\varepsilon 

t\ast \varepsilon 
, which appear explicitly

below.
By construction, for every j \in \BbbN , there exists an index k1(j) such that f \prime 

j =
fk1(j). Also, as f \prime 

j = fk1(j) \in \chi (fj), \chi (fk1(j)) \subset \chi (fj), and consequently, Ik1(j) \subset Ij .
Therefore, the definition (8.1) yields that cj \leq ck1(j). We now directly estimate using
these and (H1) to obtain

Ib2 = sup
a\in A

2

\varepsilon 

\infty \sum 
j=1

cj | \langle \mu \ast 
\varepsilon  - \nu \ast \varepsilon , fj\rangle \langle \mu \ast 

\varepsilon  - \nu \ast \varepsilon , b(t
\ast 
\varepsilon , \mu 

\ast 
\varepsilon , a)f

\prime 
j\rangle | 

\leq C
2

\varepsilon 

\infty \sum 
j=1

cj | \langle \mu \ast 
\varepsilon  - \nu \ast \varepsilon , fj\rangle \langle \mu \ast 

\varepsilon  - \nu \ast \varepsilon , f
\prime 
j\rangle | 

\leq C
2

\varepsilon 

\left(  \infty \sum 
j=1

cj\langle \mu \ast 
\varepsilon  - \nu \ast \varepsilon , fj\rangle 2 +

\infty \sum 
j=1

ck1(j)\langle \mu 
\ast 
\varepsilon  - \nu \ast \varepsilon , fk1(j)\rangle 

2

\right)  
\leq C

4

\varepsilon 

\infty \sum 
j=1

cj\langle \mu \ast 
\varepsilon  - \nu \ast \varepsilon , fj\rangle 2,

which converges to 0 by (8.5).
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1694 BURZONI, IGNAZIO, REPPEN, AND SONER

We estimate I\sigma 2 similarly. Indeed, for every j \in \BbbN , there exists an index k2(j)
such that f \prime \prime 

j = fk2(j) and cj \leq ck2(j). Then,

I\sigma 2 = sup
a\in A

2

\varepsilon 

\infty \sum 
j=1

cj | \langle \mu \ast 
\varepsilon  - \nu \ast \varepsilon , fj\rangle \langle \mu \ast 

\varepsilon  - \nu \ast \varepsilon , \sigma (t
\ast 
\varepsilon , \mu 

\ast 
\varepsilon , a)f

\prime \prime 
j \rangle | 

\leq C
2

\varepsilon 

\infty \sum 
j=1

cj | \langle \mu \ast 
\varepsilon  - \nu \ast \varepsilon , fj\rangle \langle \mu \ast 

\varepsilon  - \nu \ast \varepsilon , f
\prime \prime 
j \rangle | 

\leq C
2

\varepsilon 

\left(  \infty \sum 
j=1

cj\langle \mu \ast 
\varepsilon  - \nu \ast \varepsilon , fj\rangle 2 +

\infty \sum 
j=1

ck2(j)\langle \mu 
\ast 
\varepsilon  - \nu \ast \varepsilon , fk2(j)\rangle 

2

\right)  ,

which also converges to 0 by (8.5).
We analyze I\gamma 2 next. By the Taylor expansion of fj ,

gj(x) :=

\int 
\BbbR 
[fj(x+ y) - fj(x)]\gamma (dy)

=

deg(fj)\sum 
i=1

f
(i)
j (x)

i!

\int 
\BbbR 
yi\gamma (dy) =

deg(fj)\sum 
i=1

mif
(i)
j (x).

Again, by the construction of \{ fj\} , for all j \in \BbbN , there exists k\lambda (j) such that gj =
fk\lambda (j) and cj \leq ck\lambda (j). Hence,

I\lambda 2 = sup
a\in A

2

\varepsilon 

\infty \sum 
j=1

cj | \langle \mu \ast 
\varepsilon  - \nu \ast \varepsilon , fj\rangle \langle \mu \ast 

\varepsilon  - \nu \ast \varepsilon , \lambda (t
\ast 
\varepsilon , \mu 

\ast 
\varepsilon , a)gj\rangle | 

\leq C
2

\varepsilon 

\infty \sum 
j=1

cj | \langle \mu \ast 
\varepsilon  - \nu \ast \varepsilon , fj\rangle \langle \mu \ast 

\varepsilon  - \nu \ast \varepsilon , gj\rangle | 

\leq C
2

\varepsilon 

\left(  \infty \sum 
j=1

cj\langle \mu \ast 
\varepsilon  - \nu \ast \varepsilon , fj\rangle 2 +

\infty \sum 
j=1

ck\lambda (j)\langle \mu 
\ast 
\varepsilon  - \nu \ast \varepsilon , fk\lambda (j)\rangle 

2

\right)  .

As this quantity also vanishes as \varepsilon \rightarrow 0, we conclude that I2 \rightarrow 0 as \varepsilon goes to zero.
Step 7. Estimating I3. As in the previous step, we write

I3 = sup
a\in A

\langle \nu \ast \varepsilon ,\scrL 
a,\mu \ast 

\varepsilon 
t\ast \varepsilon 

[\pi \ast 
\varepsilon ] - \scrL a,\nu \ast 

\varepsilon 
s\ast \varepsilon 

[\pi \ast 
\varepsilon ]\rangle \leq Ib3 + I\sigma 3 + I\gamma 3

related to the three terms appearing in the generator. Since the estimates of each
term are very similar to each other, we provide the details of only the first one.

By (H2), there exists C1 such that\bigl( 
b(t\ast \varepsilon , \mu 

\ast 
\varepsilon , a) - b(s\ast \varepsilon , \nu 

\ast 
\varepsilon , a))

2 \leq C1(t
\ast 
\varepsilon  - s\ast \varepsilon )

2 + C1

\infty \sum 
j=1

cj\langle \mu \ast 
\varepsilon  - \nu \ast \varepsilon , fj\rangle 2.

It follows that

| Ib3| \leq sup
a\in A

2

\varepsilon 

\infty \sum 
j=1

cj

\bigm| \bigm| \bigm| \langle \mu \ast 
\varepsilon  - \nu \ast \varepsilon , fj\rangle \langle \nu \ast \varepsilon , (b(t\ast \varepsilon , \mu \ast 

\varepsilon , a) - b(s\ast \varepsilon , \nu 
\ast 
\varepsilon , a))f

\prime 
j\rangle 
\bigm| \bigm| \bigm| 

\leq 2

\varepsilon 

\infty \sum 
j=1

cj\langle \mu \ast 
\varepsilon  - \nu \ast \varepsilon , fj\rangle 2

+
2C1

\varepsilon 

\biggl( 
(t\ast \varepsilon  - s\ast \varepsilon )

2 +

\infty \sum 
j=1

cj\langle \mu \ast 
\varepsilon  - \nu \ast \varepsilon , fj\rangle 2

\biggr) \infty \sum 
j=1

cj\langle \nu \ast \varepsilon , f \prime 
j\rangle 2.
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Note that by (8.3),
\infty \sum 
j=1

cj\langle \nu \ast \varepsilon , f \prime 
j\rangle 2 \leq 

\infty \sum 
j=1

cj\langle \nu \ast \varepsilon , fj\rangle 2 \leq 1.

Hence,

| Ib3| \leq 
4C1

\varepsilon 

\left(  (t\ast \varepsilon  - s\ast \varepsilon )
2 +

\infty \sum 
j=1

cj\langle \mu \ast 
\varepsilon  - \nu \ast \varepsilon , fj\rangle 2

\right)  .

In view of (8.5), we conclude that Ib3 goes to zero as \varepsilon \rightarrow 0. Repeating the same
argument for I\sigma 3 and I\lambda 3 , we conclude that I3 also converges to zero.

Step 8. Conclusion . In Step 5 we have shown that

0 < 2\eta \leq sup
a\in A

Ia = I1 + I2 + I3.

In the preceding steps we have shown that each of the three terms converges to zero
as \varepsilon tends to zero. Clearly this contradicts with the fact that \eta > 0.

Appendix A. Solutions of controlled McKean--Vlasov SDEs. For com-
pleteness, we provide here an existence result for the McKean--Vlasov SDE (2.1).

Using the functions and coefficients of section 8, we fix b > 0 and start by proving
functional analytic properties of \scrM b. Set

d(\mu , \nu ; b) :=

\infty \sum 
j=1

cj(b)| \langle \mu  - \nu , fj\rangle | , \mu , \nu \in \scrM b.

Lemma A.1. A sequence \{ \mu n\} n\in \BbbN in \scrM b converges weakly to \mu \in \scrM b if and only
if limn\rightarrow \infty d(\mu n, \mu ; b) = 0.

Proof. As \Theta contains all monomials, in view of (5.2), d(\mu , \nu ; b) = 0 if and only if
\mu = \nu , and one can then directly verify that d is a metric on \scrM b. Moreover, since\sum \infty 

j=1 cj(b) \leq 1, by (8.3), d \leq 1 on \scrM b. Suppose \mu n \rightarrow \mu as n \rightarrow \infty . By dominated
convergence,

lim
n\rightarrow \infty 

d(\mu n, \mu ; b) =

\infty \sum 
j=1

cj(b) lim
n\rightarrow \infty 

| \langle \mu n  - \mu , fj\rangle | = 0,

where the last equality follows from Lemma 6.8. Now suppose d(\mu n, \mu ; b) \rightarrow 0 as
n \rightarrow \infty . Since \scrM b is compact, the sequence \{ \mu n\} has limit points, and since d is a
metric, we conclude that it can only have one limit point \mu .

We next fix t \in [0, T ] and consider the space

\scrX t(b) :=
\bigl\{ 
\=\mu = (\mu s)s\in [t,T ] | \mu s \in \scrM b \forall s \in [t, T ]

\bigr\} 
and the function

dT (\mu , \nu ; b) = sup
t\leq s\leq T

d(\mu s, \nu s; b).

It is straightforward to see that dT is a metric on \scrX t(b).

Lemma A.2. (\scrX t(b), dT ) is a complete metric space.

Proof. Let \{ \=\mu n\} n\in \BbbN be a Cauchy sequence. In particular \{ \mu n
s \} n\in \BbbN is a Cauchy

sequence in (\scrM b, d) for any s \in [t, T ], and by Lemma A.1, there exists \mu s \in \scrM b such
that \mu n

s \rightarrow \mu s as n \rightarrow \infty . We claim that \=\mu := (\mu s)s\in [t,T ] is the limit of \{ \=\mu n\} n\in \BbbN .
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1696 BURZONI, IGNAZIO, REPPEN, AND SONER

Indeed, for \varepsilon > 0, there is \=n such that d(\mu n
s , \mu 

m
s ; b) \leq \varepsilon for every n,m \geq \=n and

s \in [t, T ]. By letting m tend to infinity and by using the previous lemma, we conclude
that d(\mu n

s , \mu s; b) \leq \varepsilon for any s \in [t, T ]. The result follows after taking the supremum
over s \in [t, T ].

This structure allows us to study the McKean--Vlasov equation (2.1). For similar
results we refer to the book of Carmona and Delarue [13] and the references therein.

Theorem A.3. Under Assumption 2.1, for any (t, \mu ) \in \scrO and control \alpha \in \scrA ,
(2.1) with initial data Xt \sim \mu has a unique solution.

Proof. Fix (t, \mu ) \in \scrO and control \alpha \in \scrA . There is N \in \BbbN such that \mu \in \scrM NeK\ast t .
Let \scrX := \scrX t(NeK

\ast (T - t)) and cj := cj((NeK
\ast (T - t)).

For any \=\mu = (\mu s)s\in [t,T ] \in \scrX , set

Xt,\=\mu ,\alpha 
s :=

\int s

t

b(r, \mu r, \alpha r)dr +

\int s

t

\sigma (r, \mu r, \alpha r) dWr +
\sum 

t\leq r\leq s

\Delta Jr

with distribution \mu at time t and

\Phi : \scrX \rightarrow \scrX , \=\mu \mapsto \rightarrow \Phi (\=\mu ) := (\scrL (Xt,\=\mu ,\alpha 
s ))s\in [t,T ].

Recall that the set \scrO N in Lemma 5.1 is invariant for (2.1). Therefore, \Phi (\=\mu ) \in \scrX .
Moreover, the law of any solution to (2.1) is a fixed point of \Phi .

To simplify the notation for \=\mu , \=\mu \prime \in \scrX , let \=\nu = \Phi (\=\mu ), \=\nu \prime = \Phi (\=\mu \prime ). Consider now
fj \in \Theta . We now apply It\^o's formula to arrive at

fj(X
t,\=\mu ,\alpha 
s ) = Xt,\=\mu ,\alpha 

t +

\int s

t

b(r, \mu r, \alpha r)f
\prime 
j(X

t,\=\mu ,\alpha 
r )dr

+
1

2

\int s

t

\sigma 2(r, \mu r, \alpha r)f
\prime \prime 
j (X

t,\=\mu ,\alpha 
r )dr

+

\int s

t

\sigma (r, \mu r, \alpha r)f
\prime 
j(X

t,\=\mu ,\alpha 
r ) dWr +

\sum 
t\leq r\leq s

fj(\Delta Jr).

From assumption (H1), the stochastic integral in the above formula is a local martin-
gale. Denote by \{ \tau n\} n\in \BbbN a localizing sequence, and take expectation on both sides.
Recalling that \alpha is deterministic, we obtain

\BbbE [fj(Xt,\=\mu ,\alpha 
s\wedge \tau n )] = Xt,\=\mu ,\alpha 

t +

\int s

t

b(r, \mu r, \alpha r)\BbbE [f \prime 
j(X

t,\=\mu ,\alpha 
r )1t\leq r\leq \tau n ]dr

+
1

2

\int s

t

\sigma 2(r, \mu r, \alpha r)\BbbE [f \prime \prime 
j (X

t,\=\mu ,\alpha 
r )1t\leq r\leq \tau n ]dr + \BbbE 

\bigl[ \sum 
t\leq r\leq s\wedge \tau n

fj(\Delta Jr)
\bigr] 
.

By dominated convergence, the equality passes to the limit as n \rightarrow \infty . For ease of
notation, denote \Delta b(r) := b(r, \mu r, \alpha r) - b(r, \mu \prime 

r, \alpha r) and similarly \Delta \sigma 2(r) and \Delta \lambda (r).
From \langle \nu s, fj\rangle = \BbbE [fj(Xt,\=\mu ,\alpha 

s )], we deduce

\langle \nu s  - \nu \prime s, fj\rangle =
\int s

t

\Delta b(r)\langle \nu , f \prime 
j\rangle dr +

\int s

t

b(r, \mu \prime 
r, \alpha r)\langle \nu  - \nu \prime , f \prime 

j\rangle dr

+
1

2

\int s

t

\Delta \sigma 2(r)\langle \nu , f \prime \prime 
j \rangle dr +

1

2

\int s

t

\sigma 2(r, \mu \prime 
r, \alpha r)\langle \nu  - \nu \prime , f \prime \prime 

j \rangle dr

+

\int s

t

\Delta \lambda (r)\langle \nu , gj\rangle dr +
\int s

t

\lambda (r, \mu \prime 
r, \alpha r)\langle \nu  - \nu \prime , gj\rangle dr,
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where gj =
\sum deg(fj)

i=1 mif
(i)
j with mi :=

1
i!

\int 
\BbbR yi\gamma (dy). Recall now that the collection

of coefficients \{ cj\} j\in \BbbN satisfies (8.2), so that

cj \leq kj := min\{ cj1 , cj2 , cjg\} ,

where cj1 , cj2 , and cjg are the coefficients of f \prime 
j , f

\prime \prime 
j , and gj , respectively. We can

therefore multiply by kj both sides of the above equality to get, using also assumption
(H1) and (H2),

cj | \langle \nu s  - \nu \prime s, fj\rangle | \leq kj | \langle \nu s  - \nu \prime s, fj\rangle | 

\leq \=C

\int s

t

d(\mu r, \mu 
\prime 
r)
\bigl( 
cj1 | \langle \nu , f \prime 

j\rangle | + cj2 | \langle \nu , f \prime \prime 
j \rangle | + cgj | \langle \nu , gj\rangle | 

\bigr) 
dr

+

\int s

t

cj1 | \langle \nu  - \nu \prime , f \prime 
j\rangle | + cj2 | \langle \nu  - \nu \prime , f \prime \prime 

j \rangle | dr +
\int s

t

cgj | \langle \nu  - \nu \prime , gj\rangle | dr

for some constant \=C which depends only on the coefficients of (2.1). By summing up
over j \in \BbbN and recalling (8.3), we obtain

d(\nu s, \nu 
\prime 
s) \leq 3 \=C

\biggl( \int s

t

d(\mu r, \mu 
\prime 
r) +

\int s

t

d(\nu r, \nu 
\prime 
r)

\biggr) 
.

Using Gronwall's lemma, we obtain

ds(\Phi (\=\mu ),\Phi (\=\mu 
\prime )) \leq e3

\=Cs

\int s

t

dr(\=\mu , \=\mu 
\prime )

for any t \leq s \leq T . Denoting now C(s) := e3
\=Cs and \Phi k the composition of k times

the map \Phi , it can be verified, by induction, that

dT (\Phi 
k(\=\mu ),\Phi k(\=\mu \prime )) \leq C(T )kT k

k!
dT (\=\mu , \=\mu 

\prime ).

For k large enough \Phi k is a contraction on \scrX , which is a complete metric space in view
of Lemma A.2. Thus, the map \Phi admits a unique fixed point.

Appendix B. Semicontinuous envelopes. In this section, we show that the
semicontinuous envelopes defined on \scrO N converge to the envelopes defined on \scrO .

Lemma B.1. Let (E, \tau ) be a topological space and (EN , \tau N )N\in \BbbN a sequence of
topological spaces with (EN )N\in \BbbN increasing to E, i.e., \cup n\in \BbbN EN = E and EN \subset EN+1

for any N . Let \tau N the subspace topology induced by \tau . Denote by u\ast : E \rightarrow \BbbR \cup \{ \infty \} 
the upper semicontinuous envelope on (E, \tau ) and by u\ast 

N : EN \rightarrow \BbbR \cup \{ \infty \} the upper
semicontinuous envelope on (EN , \tau N ). Then, limN\rightarrow \infty u\ast 

N = u\ast . Similarly, if uN
\ast is

the lower semicontinuous envelope on (EN , \tau N ), then limN\rightarrow \infty uN
\ast = u\ast 

Proof. Consider the following representations of the semicontinuous envelopes.
Let U(\mu ) be the collection of \tau -neighborhoods of \mu . Then, since EN is endowed with
the subspace topology, for any N \in \BbbN ,

u\ast (\mu ) = inf
W\in U(\mu )

sup
W

u for \mu \in E,

u\ast 
N (\mu ) = inf

W\in U(\mu )
sup

W\cap EN

u for \mu \in EN .
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1698 BURZONI, IGNAZIO, REPPEN, AND SONER

Clearly u\ast 
N \leq u\ast 

N+1 \leq u\ast . Suppose first u\ast (\mu ) < \infty . For W \in U(\mu ), choose a
sequence \mu n such that supW u \leq u(\mu n)+1/n. Let M : \BbbN \rightarrow \BbbN be a function such that
\mu n \in EM(n). Without loss of generality, we may choose M to be strictly increasing.
Thus,

sup
n

sup
W\cap EM(n)

u = sup
W

u.

Since above holds for every W \in U(\mu ), limN\rightarrow \infty u\ast 
N (\mu ) = u\ast (\mu ). If u\ast (\mu ) = \infty , we

repeat the same argument with a sequence \mu n such that u(\mu n) > n.
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