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Foreword

Consider a financial market in which our trades impact the current value of the stock. We would like to

I model the frictions, in particular market impact,

I model the dynamics of this structure,

I study its impact on investment decisions.

The new computational techniques are making the computational approaches to high dimensional

problems feasible. So, we should be able to incorporate more details in to our models and analyze them

numerically.
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Price Impact



Friction

Any model with friction is somehow related to this problem of price impact. Indeed, transaction costs

can be taught as a particular price impact. Any positive amount of trade pushes the price to the

ask-price and any sale to the bid.

In the context of hedging, Leland formally argued that transaction cost modifies the volatility. Later,

Fukasawa and Rosenbaum & Tankov revisited this approach. To understand this modification, jointly

with Barles we used asymptotics to obtain a modified Black & Scholes equation.
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Price evolution
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Limit Order Book
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Limit Order Book after a trade
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Model

They postulate an exogenous supply curve

S(t, St , ν), St = S(t, St , 0)

which gives the price per share for a transaction of size ν (ν > 0 is a buy and ν < 0 a sell). An

example of the supply curve is the generalized Black-Scholes economy with liquidity parameter Λ :

S(t,St , ν) = St exp (Λν) , dSt = St [µdt + σdWt ] .
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Linear example

We may simply take

S(t, St , ν) = St + Λν.

This corresponds to a constant density LOB. And 1/Λ is the constant density. For a transaction of size

ν we pay

νSt + Λ ν2 = ν [S(t, St , ν)− St ] .

Now imagine of splitting this order into two and execute them in tandem. Then we would pay

2
[
(ν/2)St + Λ((ν/2))2

]
= νSt +

1

2
Λ ν2.
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Linear example, continued

Hence in this model, we would like to make small but many transactions. Hence the portfolio process

should be continuous with no liquidity cost. But :

I In reality, each transaction takes some time to execute - finite speed of the portfolio. So, we carry

the risk of stock price movements.

I Secondly, after the first transaction stock price moves and we will not be able to get the same price

as before - i.e. there is resilience. But in the ideal model of Cetin, Protter and Jarrow, we do get the

same price !
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Super-replication Problem

Simply, we restrict the portfolio and its gamma to be a semi-martingales with some bounds on the

characteristics. Let At,s be this set of all admissible portfolios.

For a given a European contingent claim with payoff g , the super-replication cost is defined by

V (t, s) = inf
{
y : Y t,y,Z

T ≥ g(S t,s
T ) a.s. for some Z ∈ At,s

}
where

dSt = St [µdt + σdWt ]

Yt = y +

∫ t

0

ZudSu −
N−1∑
n=0

zn [S (τn, z
n)− S (τn, 0)] 1{t<τn+1}−

∫ t

0

∂S
∂ν

(u,Su, 0) Γ2
uσ

2S2
udu.

Zt =
N−1∑
n=0

zn1{t<τn+1} +

∫ t

0

αudu +

∫ t

0

ΓudSu.
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The PDE characterization

Together with Çetin and Touzi, we showed that the super-replicating cost satisfies

0 = −Vt + sup
β≥0

(
−1

2
s2σ2(Vss + β)− Λs2σ2(Vss + β)2

)
,

together with terminal cost V (T , s) = g(s). For a convex pay-off g , the solution also remains convex

and the equation simplifies to

Vt = −1

2
s2σ2Vss − Λs2σ2(Vss)

2 = −1

2
s2σ̂2(t, s)Vss ,

where

σ̂2(t, s) = σ2 [1 + 2ΛVss(t, s)] .

Hence the effect of liquidity is to increase the effective volatility as in Leland and Fukasawa. Same is

true for non-convex pay-off’s as well.
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lliquidity premium

I By an application of maximum principle we have

V (t, s) ≥ VBS(t, s)

and they are equal only when g is an affine function.

I This implies that there exists a strict liquidity premium, a difference between the super-replicating

cost and the Black-Scholes value of the claim.

I The reason why there are contradicting results between CJP and the above is the trading strategy

constraints.

I However, without introducing the resilience explicitly, the liquidity premium is weak and is does not

impact the utility maximization problems.
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Penalizing the speed



Supply Curve

This is a phenomenological model by Almgren & Chriss (also important contributions by Rogers &

Sign, Garleanu & Pedersen), considers an impact functional of the form

S(t, St ,Z
′
t ) = St + ΛZ ′t , where Z ′t :=

d

dt
Zt .

Then, the dynamics are given by

Yt =

∫ t

0

ZudSu − Lt

Lt= Λ

∫ t

0

(
Z ′u
)2

du.

In these models, it is not possible to avoid the liquidity premium.
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Problem

Consider a utility maximization problem

sup
Z

E
[
U
(
RZ

T )
) ]

,

where RT is the risk adjusted liquidation cost of Schöneborn and is given by,

RZ
T := Y Z

T − CΛ2(ZT − θ∗T )2,

where C is a constant derived from the model and θ∗ is optimal portfolio for the frictionless (i.e.,

Λ = 0) market.
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Problem

There are two difficulties :

I Due to the price impact, we could only use portfolios that are differentiable in time. If the target

portfolio θ∗ is rough, the optimisation problem gives us a way to approximate this target portfolio.

I In addition to continuous targeting error, we have both initial and final liquidation costs.

I Initially, we might far from the optimal location and need to move there efficiently.

I Also, closer to maturity one must consider the final portfolio position.
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Equation

The dynamic equation is for the value function v(t, s, y , z) where s is the initial stock price, y is the

initial wealth and z is the initial shares of stocks. Then, v solves

−vt − sµ[vs + vy ]− s2σ2

2
[vss + vyy + 2vys ] + inf

α

{
−Λα2vy − αvz

}
= 0.

More realistic models have been analyzed ; see for instance Moreau, Muhle-Karbe & Soner Math. Fin.

(2017), Bouchard, Loeper, Soner & Zhou SICON (2019).

Until recently it would be impossible to numerically solve the equation. However, recent papers by

Hure, Pham & Warin ; Pham, Warin ; Bachoud, Hure, Langrene & Pham ; Han & E ; Buehler, Gonon,

Teichmann & Wood allow for high-dimensional optimal control problems.

The main advantage of these methods is the ease at which they can handle complexity of the

problems. In particular, one can easily add factors, frictions and other constraints in to the code.
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Asymptotics

The actual problem is not quite tractable and together with Moreau & Muhle-Karbe we considered the

asymptotics as Λ gets smaller.

We have asymptotic results for the value function and also for optimal portfolio.

The rigorous proof uses machinery from viscosity solutions, developed jointly with Possamäı and Touzi,

which I do not report here. Only I only outline the asymptotic structure of the hedge.
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Optimal Portfolio

Let Z∗ = Z∗,Λ be the optimal portfolio for the utility maximization problem with small but non-zero

impact Λ > 0. Recall that θ∗ is the frictionless optimizer.

Asymptotically,

d

dt
Z∗t = c Λ−1/2 (Z∗t − θ∗t ), wherec =

σ√
2Rt

,

and Rt is the frictionless investor’s indirect risk-tolerance process, i.e., the risk tolerance of the

frictionless value.

As Λ gets smaller, Z∗ moves very quickly towards the frictionless optimizer θ∗.
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Tracking model

Joint with Bank & Voss, we consider the following tracking problem for a given portfolio process θ∗t ,

minimize J(u) := J(u; x , θ∗),

where

J(u; x , θ∗) :=
1

2

∫ T

0

[
(Zt − θ∗t )

2
+ Λ(Z ′t )2

]
dt,

Zt := z +

∫ t

0

Z ′sds.

The above model is motivated by recent papers of Bank & Voss and also Kallsen & Muhle-Karbe. It

was also considered in Rogers & Sign but solved only approximately.
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Solution

The optimizer Z∗ = Z∗Λ has a very similar structure to the asymptotic formula already discussed in

the impact model. Indeed, it solves

d

dt
Z∗t = c Λ−1/2 (θ∗t − (Lθ∗)t),

where Lθ∗ is a linear map of θ∗ depending on the parameter Λ. Roughly, it is the adapted projection of

the forward convolution of θ∗.

So, instead of targeting directly the target portfolio θ∗t at time t, we target an estimate of the possible

future values of the target. This was also obtained by Garleanu & Pedersen.
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Target the future

Garleanu & Pedersen quote Wayne Gretzky, “A great hockey player skates to where the puck is going

to be, not where it is.”
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Equilibrium



Very Briefly

There has been quite a lot of recent work. In particular,

I Lukas Gonon, Johannes Muhle-Karbe, Xiaofei Shi, 2020

I Martin Herdegen, Johannes Muhle-Karbe, Dylan Possamäı, 2019

I Xiao Chen, Jin Hyuk Choi, Kasper Larsen, Duane Seppi, 2019

I Peter Bank, Ibrahim Ekren, Johannes Muhle-Karbe, 2018

I Jin Hyuk Choi, Kasper Larsen, Duane Seppi, 2018

I Hao Xing, Gordan Zitkovic, 2017

I Kostas Kardaras, Hao Xing, Gordan Zitkovic, 2015
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Concluding

I There are a rich class of models for illiquid markets with price impact.

I Another use of this approach is to assume that target portfolio is given but not implementable. This

would give us away to provide implementable approximations.

I Asymptotics makes things tractable.

I New computational techniques allow for more complex models.
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