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SECOND-ORDER STOCHASTIC TARGET PROBLEMS WITH
GENERALIZED MARKET IMPACT\ast 

BRUNO BOUCHARD\dagger , GR\'EGOIRE LOEPER\ddagger , HALIL METE SONER\S , AND

CHAO ZHOU\P 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We extend the study of [B. Bouchard, G. Loeper, and Y. Zou, SIAM J. Control Op-
tim., 55 (2017), pp. 3319--3348; G. Loeper, Ann. Appl. Probab., 28 (2018), pp. 2664--2726] stochastic
target problems with general market impacts. Namely, we consider a general abstract model which
can be associated to a fully nonlinear parabolic equation. Unlike the earlier articles, the equation
is not concave, and the regularization/verification approach of our 2017 cannot be applied. We also
relax the gamma constraint of the 2017 article. Instead, we need to generalize the a priori estimates
of Loeper's article and exhibit smooth solutions from the classical parabolic equations theory. Up
to an additional approximating argument, this allows us to show that the superhedging price solves
the parabolic equation and that a perfect hedging strategy can be constructed when the coefficients
are smooth enough. This representation leads to a general dual formulation. We finally provide an
asymptotic expansion around a model without impact.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . second-order stochastic target, generalized market impact, fully nonlinear parabolic
equation, asymptotic expansion
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\bfD \bfO \bfI . 10.1137/18M1196078

1. Introduction. Inspired by [1, 19], the authors in [6, 7] considered a financial
market with permanent price impact (and possibly a resilience effect), in which the
impact function behaves as a linear function (around the origin) in the number of
purchased stocks. This class of models is dedicated to the pricing and hedging of
derivatives in situations where the notional of the product hedged is such that the
delta hedging is nonnegligible compared to the average daily volume traded on the
underlying asset. As opposed to [6], the options considered in [7, 19] are covered,
meaning that the buyer of the option delivers, at the inception, the required initial
delta position and accepts a mix of stocks (at their current market price) and cash
as payment for the final claim. This is a common practice which eliminates the cost
incurred by the initial and final hedge. In [19], the author considers a Black--Scholes
type of model, while the model of [7] is a local volatility one.
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4126 B. BOUCHARD, G. LOEPER, H. M. SONER, AND C. ZHOU

Motivated by these works, we consider in this paper a general abstract model of
market impact in which the dynamics of the stocks X, the wealth1 V , and the number
of stocks Y held in the portfolio follow dynamics of the form

X = x+

\int \cdot 

t

\mu (s,Xs, \gamma s, bs)ds+

\int \cdot 

t

\sigma (s,Xs, \gamma s)dWs,(1)

Y = y +

\int \cdot 

t

bsds+

\int \cdot 

t

\gamma sdXs,(2)

V = v +

\int \cdot 

t

F (s,Xs, \gamma s)ds+

\int \cdot 

t

YsdXs,(3)

where (y, b, \gamma ) are the controls, and we consider the general superhedging problem

v(t, x) := inf\{ v = c+ yx : (c, y) \in \BbbR 2 s.t. \scrG (t, x, v, y) \not = \emptyset \} ,

in which

\scrG (t, x, v, y) =
\Bigl\{ 
(b, \gamma ) : V t,x,v,\phi 

T \geq g(Xt,x,\phi 
T ) for \phi := (y, b, \gamma )

\Bigr\} 
and g is the payoff function associated to a European claim. Note that, in the above,
the number of stocks in the portfolio is taken in the form of an It\^o process controlled
by (b, \gamma ). The process \gamma is the gamma of the portfolio describing the change in the
number of stocks held in the portfolio following a change of the stock's price. It will be
later on identified to the gamma of the option to be hedged. This is a key quantity in
all our analysis. The fact that the bounded variation part of Y is absolutely continuous
is for technical reasons. The function F entering in the dynamics of the wealth models
the liquidity costs. We refer to Example 2.1 below for a typical example.

Given the above dynamics, one can easily be convinced, by using formal com-
putations based on the geometric dynamic programming principle of [23] (see also
the discussion just after Remark 3.1), that v should be a supersolution of the fully
nonlinear parabolic equation

0 \leq  - \partial tv  - \=F (\cdot , \cdot , \partial 2xv) and (| F | + | \sigma | )(\cdot , \cdot , \partial 2xv) <\infty ,

in which
\=F (t, x, z) :=

1

2
\sigma 2(t, x, z)z  - F (t, x, z).

The right-hand-side constraint in the previous inequalities is of importance. Indeed
(F, \sigma )(t, x, \cdot ) can typically be singular and only finite on an interval of the form
( - \infty , \=\gamma (t, x)), as it is the case in [7]. Under this last assumption, one can actually
expect that v is a viscosity solution of

min\{  - \partial tv  - \=F (\cdot , \cdot , \partial 2xv) , \=\gamma  - \partial 2xv\} = 0 on [0, T )\times \BbbR (4)

with T -terminal condition given by the smallest function \^g \geq g such that \partial 2x\^g \leq \=\gamma (T, \cdot ).
In [7], the authors impose a strong (uniform) constraint on the controls of the

form \gamma \leq \~\gamma (\cdot , Xt,x,\phi ) with \~\gamma such that F (\cdot , \cdot , \~\gamma ) \leq C for some C > 0 and obtain
that v is actually the unique viscosity solution of (4) with \~\gamma in place of \=\gamma and termi-
nal condition \^g (defined with \~\gamma as well). Their proof of the supersolution property
mimicks arguments of [11], and we can follow this approach. As for the subsolution
property, they could not prove the appropriate dynamic programming principle, and
the standard direct arguments could not be used. Instead, they employed a regular-

1More precisely: the value of the cash plus the number of stocks in the portofolio times the
current value of the stocks.
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STOCHASTIC TARGET WITH GENERALIZED MARKET IMPACT 4127

ization argument for viscosity solutions, inspired by [16], together with a verification
procedure. In [7], the authors critically use the fact that \=F is convex.

Our setting here is different. First, as in [19], we do not impose a uniform con-
straint on our strategies. Our controls can take values arbitrarily close to the singu-
larity \=\gamma (\cdot , Xt,x,\phi ), and (4) is possibly degenerate. Even for \=F defined as in [7], our
setting is more general in a sense. Second, \=F is not assumed to be convex.

For these reasons, we cannot reproduce the smoothing/verification argument of
[7] to deduce that v is actually a subsolution.

In this paper, we therefore proceed differently and generalize arguments used
in [19] in the context of a Black--Scholes type of model. Namely, we directly use
the theory of parabolic equations to prove the existence of smooth solutions to (4)
whenever \^g is smooth and satisfies a constraint of the form \partial 2x\^g \leq \=\gamma (T, \cdot ) - \varepsilon for some
\varepsilon > 0. Our analysis heavily relies on new a priori estimates (see Proposition 3.10
below), thanks to which one can appeal to the continuity method in a rather classical
way; see the proof of Theorem 3.11. We then let \varepsilon go to 0 to conclude that v indeed
solves (4) in the viscosity solution sense; see Theorem 3.5 below.

We also discuss two important issues that were not considered in [7] but already
studied in [19] in a Black--Scholes type of model:

-- The first one concerns the asymptotic expansion of the price around a model
without market impact. As in [19], we show that a first-order expansion can be
established; see Proposition 4.3 below. But we also prove that one can deduce from
it a strategy that matches the terminal face-lifted payoff \^g at any prescribed level of
precision in the \BbbL \infty -norm; see Proposition 4.6.

-- The second one concerns the existence of a dual formulation. It can be estab-
lished when \=F is convex in its last argument; see Theorem 5.2. Applied to the model
discussed in [7] (see Example 2.1 below), it takes the form

v(t, x) = sup
s

\BbbE 

\Biggl[ 
\^g(Xt,x,s

T ) - 
\int T

t

1

2

(ss  - \sigma \circ (t,X
t,x,s
s ))2

f(Xt,x,s
s )

ds

\Biggr] 

= sup
s

\BbbE 

\Biggl[ 
g(Xt,x,s

T ) - 
\int T

t

1

2

(ss  - \sigma \circ (t,X
t,x,s
s ))2

f(Xt,x,s
s )

ds

\Biggr] 
,

in which Xt,x,s = x +
\int \cdot 
t
ssdWs, \sigma \circ is the volatility surface in a the market without

impact and f > 0 is the impact function, the limit case f \equiv 0 corresponding to
the absence of impact. It can be interpreted as the formulation of the superhedging
price with volatility uncertainty, the difference being that the formula is penalized by
the squared distance of the realized volatility term s to the original local volatility
\sigma \circ (\cdot , Xt,x,s) associated to the model, weighted by the inverse of the impact function
f(Xt,x,s). It can also be seen as a martingale optimal transport problem; see [19,
section 4.1] for details.

To conclude, let us refer the reader to [3, 4, 5, 10, 11, 13, 18, 20, 21, 23] and the
references therein. Also for related works, see [7] for a discussion.

The rest of this paper is organized as follows. The general abstract market model
is described in section 2, and the characterization of v as a solution of a parabolic
equation is proved in section 3. The asymptotic expansion and the dual formulation
are provided and discussed in sections 4 and 5.

General notations. Throughout this paper, \Omega is the canonical space of con-
tinuous functions on \BbbR + starting at 0, \BbbP is the Wiener measure, W is the canonical
process, and \scrF = (\scrF t)t\geq 0 is the augmentation of its raw filtration \scrF \circ = (\scrF \circ 

t )t\geq 0. All
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4128 B. BOUCHARD, G. LOEPER, H. M. SONER, AND C. ZHOU

random variables are defined on (\Omega ,\scrF \infty ,\BbbP ). We denote by | x| the Euclidean norm of
x \in \BbbR n, and the integer n \geq 1 is given by the context. Unless otherwise specified,
inequalities involving random variables are taken in the \BbbP  - a.s. sense. We use the
convention x/0 = sign(x) \times \infty with sign(0) = +. We denote by \partial nx\varphi the nth-order
derivative of a function \varphi with respect to its x-component whenever it is well-defined.
For E,F,G, three subsets of \BbbR , we denote by Ch,k

b (E \times F ) the set of continuous
functions on E \times F which have bounded partial derivatives of order from 1 to h with
respect to the first variable and from 1 to k to the second variable. We denote by
Ch,k,l(E \times F \times G) the set of continuous functions on E \times F \times G which have partial
derivatives of order from 1 to h with respect to the first variable, from 1 to k to the
second variable, and from 1 to l to the third variable. We denote by Ch

b (E \times F ) the
set of continuous functions on E\times F which have bounded partial derivatives of order
1 to h. If in addition its hth-order derivatives are uniformly \alpha -H\"older, with \alpha \in (0, 1),
we say that it belongs to Ch+\alpha 

b (E\times F ). We omit the spaces E,F,G if they are clearly
given by the context.

2. Abstract market impact model. We first describe our abstract market
with impact. It generalizes the model studied in [6, 7, 19]. We use the representation of
the hedging strategies described in [7], which is necessary to obtain the supersolution
characterization of the superhedging price of Proposition 3.8 below. How to get to
the market evolution (1)--(3) is explained briefly in Example 2.1.

Let us start with the definition of the class of admissible controls (b, \gamma ) that enter
into the It\^o decomposition of Y in (2). Given k \geq 1, we denote by \scrA \circ 

k the collection
of continuous and \BbbF -adapted processes (b, \gamma ) such that

\gamma = \gamma 0 +

\int \cdot 

0

\beta sds+

\int \cdot 

0

\alpha sdWs,

where (\alpha , \beta ) is continuous and \BbbF -adapted and \zeta := (b, \gamma , \alpha , \beta ) is essentially bounded
by k and such that

\BbbE [sup \{ | \zeta s\prime  - \zeta s| , t \leq s \leq s\prime \leq s+ \delta \leq T\} | \scrF \circ 
t ] \leq k\delta 

for all 0 \leq \delta \leq 1 and t \in [0, T  - \delta ]. We then define

\scrA \circ := \cup k\scrA \circ 
k.

Let F : [0, T ]\times \BbbR 2 \mapsto \rightarrow \BbbR \cup \{ \infty \} be a continuous map, and let

\scrD := \{ F <\infty \} 

be its domain. We assume that there exists a map (t, x) \rightarrow \=\gamma (t, x) \in \BbbR \cup \{ +\infty \} such
that

\scrD = \{ (t, x, z) \in [0, T ]\times \BbbR \times \BbbR : z \in ( - \infty , \=\gamma (t, x))\} (5)

and such that

\=\gamma is either uniformly continuous or identically equal to +\infty .(6)

We now let \mu : \scrD \times \BbbR \rightarrow \BbbR and \sigma : \scrD \rightarrow \BbbR be two continuous maps such that, for
all \varepsilon > 0,

\mu is Lipschitz, with linear growth in its second variable, on \scrD \varepsilon ,\varepsilon  - 1 \times \BbbR ,(7)

\sigma is Lipschitz, with linear growth in its second variable, on \scrD \varepsilon ,\varepsilon  - 1 ,
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STOCHASTIC TARGET WITH GENERALIZED MARKET IMPACT 4129

where

\scrD \varepsilon := \{ (t, x, z) \in [0, T ]\times \BbbR 2 : F (t, x, z) \leq \varepsilon  - 1\} ,(8)

\scrD \varepsilon ,k := \scrD \varepsilon \cap ([0, T ]\times \BbbR \times [ - k, k]) for k\in (0,\infty ).

Then, given (t, x, v) \in [0, T ] \times \BbbR \times \BbbR and \phi = (y, b, \gamma ) \in \BbbR \times \scrA \circ , we define
(Xt,x,\phi , Y t,x,\phi , V t,x,v,\phi ) as the solution on [t, T ] of

X = x+

\int \cdot 

t

\mu (s,Xs, \gamma s, bs)ds+

\int \cdot 

t

\sigma (s,Xs, \gamma s)dWs,(9)

Y = y +

\int \cdot 

t

bsds+

\int \cdot 

t

\gamma sdXs,(10)

V = v +

\int \cdot 

t

F (s,Xs, \gamma s)ds+

\int \cdot 

t

YsdXs,(11)

satisfying (Xt, Yt, Vt) = (x, y, v) whenever (\cdot , X, \gamma ) takes values in \scrD \varepsilon ,k on [t, T ] for
some \varepsilon , k > 0. If this is the case, we say that \phi belongs to \scrA \varepsilon 

k. For ease of notations,
we set \scrA := \cup \varepsilon ,k>0\scrA \varepsilon 

k.
For a payoff function g : \BbbR \rightarrow \BbbR the superhedging price of the covered European

claim associated to g is then defined as

v(t, x) := inf\{ v = c+ yx : (c, y) \in \BbbR 2 s.t. \scrG (t, x, v, y) \not = \emptyset \} ,(12)

in which

\scrG (t, x, v, y) =
\Bigl\{ 
\phi = (y, b, \gamma ) \in \scrA : V t,x,v,\phi 

T \geq g(Xt,x,\phi 
T )

\Bigr\} 
whenever this set is nonempty. Note that

v(t, x) = inf
\varepsilon >0

v\varepsilon (t, x) where v\varepsilon (t, x) := inf
k>0

v\varepsilon k(t, x),(13)

in which

v\varepsilon k(t, x) := inf\{ v = c+ yx : (c, y) \in \BbbR 2 s.t. \scrG \varepsilon 
k(t, x, v, y) \not = \emptyset \} (14)

with

\scrG \varepsilon 
k(t, x, v, y) =

\Bigl\{ 
\phi = (y, b, \gamma ) \in \scrA \varepsilon 

k : V t,x,v,\phi 
T \geq g(Xt,x,\phi 

T )
\Bigr\} 
.

In the following, we assume as in [7] that

g is lower-semicontinuous, bounded from below, and g+ has linear growth.(15)

Example 2.1 (example of derivation of the evolution equations). We close this
section with an example of formal derivation of the above abstract dynamics.

In the spirit of [1, 19], let us consider a linear market impact model in which
an (infinitesimal) order to buy dYt stocks at t leads to an immediate price move
of f(t,Xt - , \gamma t)dYt and is followed by an immediate relaxation (or resilience) so that
permanent price move is \=f(t,Xt - , \gamma t)dYt for some \=f \leq f . The average execution price
will be Xt - + 1

2f(t,Xt - , \gamma t)dYt. Then, following the computations done in [1, 19] (see
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4130 B. BOUCHARD, G. LOEPER, H. M. SONER, AND C. ZHOU

also the rigorous proof in [6] for details),2 the portfolio value V corresponding to the
holding in cash plus the number of stocks in the portfolio evaluated at their current
price X is given by3

V = v +

\int \cdot 

t

YsdXs  - 
\int \cdot 

t

\biggl( 
1

2
f  - \=f

\biggr) 
(s,Xs, \gamma s)d\langle Y \rangle s.

The contribution ( 12f  - \=f)(s,Xs, \gamma s)d\langle Y \rangle s is due to the spread between the execution
price of the trade and the final price after market impact. It can be either positive
or negative. The fact that f and \=f can depend on \gamma is discussed in [19]. Let us now
assume that X evolves according to dXt = \sigma \circ (t,Xt)dWt + \mu \circ (t,Xt)dt in the absence
of trade. Then, arguing again as in [6], we obtain the modified dynamics

dXt = \sigma \circ (t,Xt)dWt + \mu \circ (t,Xt)dt+ \=f(t,Xt, \gamma t)dYt + \partial x \=f(t,Xt, \gamma t)\gamma t\sigma 
2
\circ (t,Xt)dt.

Combining this with (10) and formally solving in dX, we obtain that

\sigma (t,Xt, \gamma t) =
\sigma \circ (t,Xt)

1 - \=f(t,Xt, \gamma t)\gamma t

so that the dynamics of V can be written as

V = v +

\int \cdot 

t

YsdXs - 
\int \cdot 

t

\biggl( 
1

2
f  - \=f

\biggr) 
(s,Xs, \gamma s)

\biggl( 
\sigma \circ (s,Xs)\gamma s

1 - \=f(s,Xs, \gamma s)\gamma s

\biggr) 2

ds.

Note that, as observed in [6], the drift \mu \circ is also affected by the market impact but
that this does not affect the pricing equation. It is therefore not taken into account
in our abstract model. The model studied in [6, 7] corresponds to f = f(x) (no
dependency in t, \gamma ) and \=f = f (no immediate resilience). In this particular case, the
functions \sigma and F are given by

\sigma (t, x, z) =
\sigma \circ (t, x)

1 - \=f(x)z
, \=\gamma = 1/ \=f

F (t, x, z) =
1

2

\biggl( 
\sigma \circ (t, x)z

1 - \=f(x)z

\biggr) 2

\=f(x)I\{ \=f(x)z<1\} +\infty I\{ \=f(x)z\geq 1\} .

Remark 2.2. As in [7, section 4], a (nonimmediate) resilience effect could be added
in our model. This would take the form of a drift term in the dynamic of X that
depends on past orders. As explained in [7, section 4], it would not play any role in
this setting of covered options. Note also that the above setting allows us to consider
market impact functions that are not globally linear but only ``linear around 0""; see
[7, Remark 2.3] for a precise discussion.

3. PDE characterization. The parabolic equation associated to v can be for-
mally derived as follows. Assume that v is smooth and that a perfect hedging strategy
\phi = (y, b, \gamma ) can be found when starting at t from v = v(t, x) if the stock price is x

2The continuous time version is obtained by considering the limit dynamics of a discrete time
trading model, as the speed of trading goes to infinity.

3Obviously, this is only a theoretical value, the liquidation value of the portfolio being different.
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STOCHASTIC TARGET WITH GENERALIZED MARKET IMPACT 4131

at t. Then we expect to have V t,x,v,\phi = v(\cdot , Xt,x,\phi ), which, by It\^o's lemma combined
with (9)--(11), implies that

F (s,Xt,x,\phi 
s , \gamma s)ds+ Y t,x,\phi 

s dXt,x,\phi 
s

=

\biggl( 
\partial tv +

1

2
\sigma 2(\cdot , \cdot , \gamma s)\partial 2xv

\biggr) 
(s,Xt,x,\phi 

s )ds+ \partial xv(s,X
t,x,\phi 
s )dXt,x,\phi 

s

for s \in [t, T ]. By identifying the different terms, we obtain

F (s,Xt,x,\phi 
s , \gamma s) =

\biggl( 
\partial tv +

1

2
\sigma 2(\cdot , \cdot , \gamma s)\partial 2xv

\biggr) 
(s,Xt,x,\phi 

s ) and Y t,x,\phi 
s = \partial xv(s,X

t,x,\phi 
s ).

Another application of It\^o's lemma to the second equation then leads to

\gamma s = \partial 2xv(s,X
t,x,\phi 
s );

recall (10). The combination of the above reads

0 =  - (\partial tv + \=F (\cdot , \cdot , \partial 2xv))(s,Xt,x,\phi 
s ) and (| F | + | \sigma | )(\cdot , \cdot , \partial 2xv)(s,Xt,x,\phi 

s ) <\infty ,

in which

(16) \=F (t, x, z) :=
1

2
\sigma 2(t, x, z)z  - F (t, x, z), for (t, x, z) \in \scrD .

Remark 3.1. The model discussed in [7] corresponds to

\=F (t, x, z) =
1

2

\sigma 2
\circ (t, x)z

1 - f(x)z
I\{ f(x)z<1\} +\infty I\{ f(x)z\geq 1\} .

As usual, perfect equality cannot be ensured because of the gamma constraint
induced by the above. We therefore only expect to have

0 \leq  - (\partial tv + \=F (\cdot , \cdot , \partial 2xv))(s,Xt,x,\phi 
s ) and (| F | + | \sigma | )(\cdot , \cdot , \partial 2xv)(s,Xt,x,\phi 

s ) <\infty .

Recalling (5), this leads to the fact that v should be a supersolution of the parabolic
equation

min\{  - \partial t\varphi  - \=F (\cdot , \cdot , \partial 2x\varphi ) , \=\gamma  - \partial 2x\varphi \} = 0 on [0, T )\times \BbbR .(17)

By minimality, it should indeed be a solution. Moreover, as usual, the gamma con-
straint \partial 2x\varphi \leq \=\gamma needs to propagate up to the boundary so that we can only expect
that v satisfies the terminal condition

lim
(t\prime ,x\prime )\rightarrow (T,x)

\varphi (t\prime , x\prime ) = \^g(x) for x \in \BbbR ,(18)

where \^g is the face-lift of g, i.e.,4

\^g = inf\{ h \in C2(\BbbR ) : h \geq g and \partial 2xh \leq \=\gamma (T, \cdot )\} .

See Remark 3.7 below for ease of comparison with [7].

4Here and in the definition of \^g\varepsilon below, the inf is taken with respect to the pointwise ordering
on the set of real valued maps. We shall see in Remark 3.7 below that it is actually continuous.
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Remark 3.2. When \=\gamma \equiv +\infty , the above reads

 - \partial t\varphi  - \=F (\cdot , \cdot , \partial 2x\varphi ) = 0 on [0, T )\times \BbbR and lim
(t\prime ,x\prime )\rightarrow (T,x)

\varphi (t\prime , x\prime ) = g(x) on \BbbR .

In order to prove that v is actually a continuous viscosity solution of the above,
we need some additional assumptions. First, we assume that \=F is smooth enough,

\=F \in C1(\scrD ) and \=F \in C1,3,3
b (\scrD \varepsilon ,\varepsilon  - 1), \varepsilon \in (0, \varepsilon \circ ],(19)

\=F is uniformly continuous on \scrD \varepsilon , \varepsilon \in (0, \varepsilon \circ ],(20)

where \varepsilon \circ > 0, and that

F (\cdot , \cdot , 0) = 0.(21)

For later use, note that the above implies

\=F (\cdot , \cdot , 0) = 0.(22)

We also assume that there exists L\circ ,M > 0 such that, on \scrD and for all \varepsilon \in (0, \varepsilon \circ ],

| \partial t \=F/ \=F | \leq L\circ , and | \partial 2x \=F (\cdot , \cdot , z)| \leq M | z| for all z \in ( - \infty , 0];(23)

that

\partial z \=F > 0 on \scrD \varepsilon and sup
\{ (t,x,z)\in \scrD \varepsilon ,\varepsilon  - 1\} 

(| \partial z \=F | + | 1/\partial z \=F | ) <\infty ,(24)

inf
\scrD \varepsilon ,\varepsilon  - 1

\sigma > 0,(25)

F is uniformly continuous on \scrD \varepsilon ,(26)

sup
\scrD \varepsilon 

| F | <\infty ;(27)

and that, for all \varepsilon \in (0, \varepsilon \circ ], there exists a uniformly continuous map \=\gamma \varepsilon such that

\scrD \varepsilon = \{ (t, x, z) \in [0, T ]\times \BbbR 2 : z \leq \=\gamma \varepsilon (t, x)\} .(28)

Moreover,

inf(\=\gamma \varepsilon \prime  - \=\gamma \varepsilon ) > 0 for all 0 < \varepsilon \prime < \varepsilon < \varepsilon \circ .(29)

Remark 3.3. All these conditions are satisfied in the model of [7].

Finally, we assume that

\^g\varepsilon := inf\{ h \geq g : h \in C2(\BbbR ), F (T, \cdot , \partial 2xh) \leq \varepsilon  - 1\} (30)

satisfies

the maps (\^g\varepsilon )\varepsilon >0 are uniformly continuous, uniformly in \varepsilon > 0,

bounded from below, have uniform linear growth,

and converge uniformly toward \^g(31)

and that there exists k\circ \geq 1 such that (recall (14))

[v\varepsilon k]
+ has linear growth, uniformly in k \geq k\circ ,(32)

for all 0 < \varepsilon \leq \varepsilon \circ , in which we use the convention 1/0 = \infty and identify \^g with \^g0.
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Remark 3.4. Note that (31) implies

\^g is uniformly continuous, bounded from below, and has linear growth.(33)

In the case where \=\gamma = +\infty , \^g = g, and therefore, in this case, we assume indeed that
g is uniformly continuous.

Under the above conditions, we can state the main result of this section.

Theorem 3.5. The function v is a continuous viscosity solution of (17) such that
limt\prime \uparrow T,x\prime \rightarrow x v(t

\prime , x\prime ) = \^g(x) for all x \in \BbbR . If, moreover, there exists \alpha \in (0, 1) such
that \^g \in C4+\alpha 

b , | \partial 2x\^g| \leq \varepsilon  - 1, and (T, \cdot , \partial 2x\^g) \in \scrD \varepsilon for some \varepsilon > 0, then, for each

(t, x) \in [0, T )\times \BbbR , we can find \phi \in \scrA such that V t,x,v,\phi 
T = \^g(Xt,x,\phi 

T ) with v = v(t, x).

In [7], the authors also provide a viscosity solution characterization of v, but in
their case

(i) admissible strategies should satisfy \gamma \leq \~\gamma (\cdot , Xt,x,\phi ) for some given function
\~\gamma < \=\gamma (uniformly on [0, T ]\times \BbbR );

(ii) \=F (\cdot , \cdot , \~\gamma ) <\infty ;
(iii) \=F (t, x, \cdot ) is convex on ( - \infty , \~\gamma (t, x)] for all (t, x) \in [0, T ]\times \BbbR .

None of these assumptions are imposed here, and we also consider the case \=\gamma \equiv +\infty .
Still, the supersolution property can essentially be proved by mimicking the ar-

guments of [11, section 5], up to considering a weak formulation of our stochastic
target problem. To be more precise, this will provide a supersolution v\varepsilon of (17) that
will serve as a lower bound for v\varepsilon ; see Proposition 3.8 for a precise statement. In [7],
the subsolution property could not be proved directly as in [11]. The reason is that
the feedback effect of the controlled state dynamics (X,Y, V ) prevented them from
establishing the required geometric dynamic programming principle. Instead, they
used a smoothing argument in the spirit of [16]. This, however, requires \=F to be con-
vex, which, again, is not the case in our generalized setting. We will instead rely on
the theory of parabolic equations. We shall show that (17) admits smooth solutions
for terminal conditions \Phi satisfying a uniform gamma constraint (T, \cdot , \partial 2x\Phi ) \in \scrD \varepsilon for
some \varepsilon > 0; see Corollary 3.12 below. In this case, a simple verification argument
shows that the solution \^u is greater than the superhedging price of the payoff \Phi taken
as a terminal condition. On the other hand, a comparison principle implies that it is
smaller than any supersolution of the same equation; see Proposition 3.9 for a precise
statement. In particular, if the terminal condition \Phi is \^g, then v\varepsilon \geq v\varepsilon \geq \^u \geq v,
and therefore v = \^u by sending \varepsilon to 0. If the terminal condition \^g does not satisfy
the required constraints on its second-order derivative, then one can approximate it
by functions \Phi \varepsilon and \Phi \varepsilon satisfying the above-mentioned constraints and such that
\Phi \varepsilon \geq \^g \geq \Phi \varepsilon for \varepsilon > 0. The corresponding solutions u\varepsilon and u\varepsilon to (17) will satisfy
u\varepsilon \geq v, while v \geq u\varepsilon because u\varepsilon and u\varepsilon are both the superhedging and perfect hedg-
ing prices of \Phi \varepsilon and \Phi \varepsilon . Again, a comparison argument will show that u\varepsilon  - u\varepsilon goes
to 0 as \varepsilon \rightarrow 0. By stability, their common limit is a viscosity solution of (17) with
terminal condition \^g for suitable choices of \Phi \varepsilon ,\Phi \varepsilon \rightarrow \^g; see section 3.3. And therefore,
so is v. We detail this is the subsequent subsections.

From a general methodological perspective, note that the smoothing approach
of [7], as initiated by [8], and the version we use here provide an alternative to the
dynamic programming approach when part of it cannot be proved. The approach of
[7, 8] is relatively easy to implement when the PDE operator is concave, while the one
we use here does not require concavity but much more technical work on the PDE
itself. It can certainly be used in various contexts.
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Remark 3.6. Note that there is in general no hope to prove the existence of a
classical solution solution to (17), in particular, because the second-order derivative
of the boundary condition can be on the boundary of the domain of \=F . Also note that
we do not provide uniqueness in Theorem 3.5. We only provide a partial comparison
result for this type of equation in Proposition 3.9. It is enough for our main result,
and we leave the study of a more general comparison result to future research. Note,
however, that our scheme of proof induces that v is actually the biggest subsolution
of (17) in the class of functions with linear growth; see Remark 3.14 below in which
we also suggest a numerical procedure for approximating v.

We conclude this section with a remark on our definition of the face-lift of g.

Remark 3.7. In [7], the face-lift is defined as the smallest function above g that
is a viscosity supersolution of the equation \=\gamma  - \partial 2x\varphi = 0. It is obtained by considering
any twice continuously differentiable function \=\Gamma such that \partial 2x

\=\Gamma = \=\gamma ; and then setting

\=g := (g  - \=\Gamma )conc + \=\Gamma ,

in which the superscript conc means concave envelope; cf. [22, Lemma 3.1]. This
actually corresponds to our definition. The fact that \^g \geq \=g is trivially deduced
from the supersolution property in the definition of \=g. Let us prove the converse
inequality. Fix \varepsilon \in (0, \varepsilon \circ ], and define \=g\varepsilon as \=g but with \=\gamma  - \varepsilon in place of \=\gamma . Fix
\psi \in C\infty 

b with compact support such that
\int 
\psi (y)dy = 1 and \psi \geq 0, and define

\=g\varepsilon n(x) :=
\int 
\=g\varepsilon (y)n\psi (n(y  - x))dy for n \geq 1. Since \=g\varepsilon is the sum of a concave function

and a C2 function, one can consider the measurem\varepsilon associated to its second derivative,
and it satisfies m\varepsilon (dy) \leq (\=\gamma (y) - \varepsilon )dy. Then \partial 2x\=g

\varepsilon 
n(x) =

\int 
\=g\varepsilon (y)n

2\partial 2x\psi (n(y  - x))dy =\int 
n\psi (n(y  - x))dm\varepsilon (y) \leq 

\int 
n\psi (n(y  - x))(\=\gamma (y) - \varepsilon )dy. Now, note that \=g is continuous

and therefore uniformly continuous on compact sets. Then, up to using the approx-
imation from above argument of [7, Lemma 3.2], we can assume that it is uniformly
continuous. Since \=\gamma is also uniformly continuous (see (6)), one can find \kappa , \varepsilon > 0 such
that \=g\varepsilon ,\kappa n : x \in \BbbR \mapsto \rightarrow \=g\varepsilon n(x) + \kappa is C2, \partial 2x\=g

\varepsilon ,\kappa 
n \leq \=\gamma , and \=g\varepsilon ,\kappa n \geq g. By definition, it

follows that \=g\varepsilon ,\kappa n \geq \^g. Clearly, (\=g\varepsilon ,\kappa n )\varepsilon ,\kappa >0,n\geq 1 converges pointwise to \=g as n\rightarrow \infty and
(\varepsilon , \kappa ) \rightarrow 0 in a suitable way. This shows that \=g \geq \^g.

3.1. Supersolution property of a lower bound and partial comparison.
In this section, we produce a supersolution of a version of (17) that is associated to
v\varepsilon (recall (13)), and that is a lower bound for v\varepsilon . We also prove a partial comparison
result on this version that will be of important use later on. Recall the definition of
\^g\varepsilon in (30).

Proposition 3.8. For each \varepsilon \in (0, \varepsilon \circ ] small enough, there exists a continuous
function v\varepsilon \leq v\varepsilon that has linear growth, is bounded from below, is a viscosity super-
solution of

min\{  - \partial t\varphi  - \=F (\cdot , \cdot , \partial 2x\varphi ) , \varepsilon  - 1  - F (\cdot , \cdot , \partial 2x\varphi )\} = 0 on [0, T )\times \BbbR ,(Eq\varepsilon )

and satisfies lim inft\prime \uparrow T,x\prime \rightarrow x v
\varepsilon (t\prime , x\prime ) \geq \^g\varepsilon (x) for all x \in \BbbR .

Proof. This follows from exactly the same arguments as in [7, section 3.1]. We
only explain the differences. As in [7, section 3.2], we first introduce a sequence of
weak formulations. On (C(\BbbR +))

5, let us denote by (\~\zeta := (\~\gamma ,\~b, \~\alpha , \~\beta ), \~W ) the coordinate
process and let \~\BbbF \circ = ( \~\scrF \circ 

s )s\leq T be its raw filtration. We say that a probability measure
\~\BbbP belongs to \~\scrA k if \~W is a \~\BbbP -Brownian motion and if for all 0 \leq \delta \leq 1 and r \geq 0 it
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holds \~\BbbP -a.s. that

\~\gamma = \~\gamma 0 +

\int \cdot 

0

\~\beta sds+

\int \cdot 

0

\~\alpha sd \~Ws for some \~\gamma 0 \in \BbbR ,(34)

sup
\BbbR +

| \~\zeta | \leq k ,(35)

and

\BbbE \~\BbbP 
\Bigl[ 
sup

\Bigl\{ 
| \~\zeta s\prime  - \~\zeta s| , r \leq s \leq s\prime \leq s+ \delta 

\Bigr\} 
| \~\scrF \circ 

r

\Bigr] 
\leq k\delta .(36)

For \~\phi := (y, \~\gamma ,\~b), y \in \BbbR , we define ( \~Xx,\~\phi , \~Y
\~\phi , \~V x,v,\~\phi ) as in (9)--(11) associated to the

control (\~\gamma ,\~b) with time-t initial condition (x, y, v) and with \~W in place of W . For
t \leq T and k \geq 1, we say that \~\BbbP \in \~\scrG k,\varepsilon (t, x, v, y) if

(37)
\Bigl[ 
\~V x,v,\~\phi 
T \geq \^g\varepsilon ( \~Xx,\~\phi 

T ), F (\cdot , \~Xx,\~\phi , \~\gamma ) \leq \varepsilon  - 1 and \~\gamma \in [ - k, k] on \BbbR +

\Bigr] 
\~\BbbP  - a.s.

We finally define

\~v\varepsilon k(t, x) := inf\{ v = c+ yx : (c, y) \in \BbbR \times [ - k, k] s.t. \~\scrA k \cap \~\scrG k,\varepsilon (t, x, v, y) \not = \emptyset \} .

Step 1. We first provide bounds for \~v\varepsilon k. Note that \~v\varepsilon k \leq v\varepsilon k so that (32) implies
that [\~v\varepsilon k]

+ has linear growth, uniformly in k \geq k\circ . Moreover, note that the fact that \sigma 
is Lipschitz with linear growth in its second variable, uniformly on \scrD \varepsilon ,k \times \BbbR (see (7)),

implies that \~Xt,x,\~\phi is a square integrable martingale under \~\BbbP for any \~\phi := (y, \~\gamma ,\~b) and

that the same holds for
\int \cdot 
t
\~Y t,\~\phi 
s d \~Xt,x,\~\phi 

s . Then the inequality

v +

\int T

t

F (s, \~Xt,x,\~\phi 
s , \~\gamma s)ds+

\int T

t

\~Y t,\~\phi 
s d \~Xt,x,\~\phi 

s \geq \^g\varepsilon ( \~Xt,x,\~\phi 
T )

combined with (27) and (15) implies that v \geq  - sup | g - |  - T sup\scrD \varepsilon 
F >  - \infty . This

shows that \~v\varepsilon k is bounded from below, uniformly in k \geq k0.
Step 2. We claim that

v\varepsilon (t, x) := lim inf
(k, t\prime , x\prime ) \rightarrow (\infty , t, x)

(t\prime , x\prime ) \in [0, T ) \times \BbbR 

\~v\varepsilon k(t
\prime , x\prime ), (t, x) \in [0, T ]\times \BbbR ,

is a viscosity supersolution of (Eq\varepsilon ). To prove this, it suffices to show that it holds
for each \~v\varepsilon k with k \geq k\circ and then to apply standard stability results; see, e.g., [2].
By the same arguments as in [7, Proposition 3.15], each \~v\varepsilon k is lower-semicontinuous.5

Given a C\infty 
b test function \varphi and (t0, x0) \in [0, T ) \times \BbbR such that (t0, x0) achieves a

strict minimum of \~v\varepsilon k  - \varphi ,

(strict) min
[0,T )\times \BbbR 

(\~v\varepsilon k  - \varphi ) = (\~v\varepsilon k  - \varphi )(t0, x0) = 0,

5The use of the weak formulation is exactly motivated by the fact that it ensures this lower-
semicontinuity property, which is required in the arguments we will appeal to for the derivation
of super-solution property. Unfortunately, no alternative argument seems available so far without
lower-semicontinuity for stochastic target problems involving a second order constraint.
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we first use (25) and the arguments of [7, steps 1 and 2, proof of Theorem 3.16] to
obtain that there exists \~\gamma 0 such that

\partial 2x\varphi (t0, x0) \leq \~\gamma 0 and F (t0, x0, \~\gamma 0) \leq \varepsilon  - 1.

Then the same arguments as in [7, Proof of Theorem 3.16] combined with (16) and
(24) lead to

0 \leq F (t0, x0, \~\gamma 0) - \partial t\varphi (t0, x0) - 
1

2
\sigma 2(t0, x0, \~\gamma 0)\partial 

2
x\varphi (t0, x0)

 - 1

2

\bigl( 
\~\gamma 0  - \partial 2x\varphi (t0, x0)

\bigr) 
\sigma 2(t0, x0, \~\gamma 0)

=  - \partial t\varphi (t0, x0) - \=F (t0, x0, \~\gamma 0)

\leq  - \partial t\varphi (t0, x0) - \=F (t0, x0, \partial 
2
x\varphi (t0, x0)).

Finally, the T -boundary condition is obtained as in [7, Proof of Theorem 3.16]; recall
our assumption (15) as well as Remark 3.7.

We now provide a partial comparison result that will be used later on. Note that
a full comparison result could be proved as in [7, Theorem 3.11] when \=F is convex by
mimicking their arguments. It is, however, not the case in general. Given the strategy
of our proof, it is not required in this paper. In the following, we interpret (Eq\varepsilon ) by
using the convention 0 - 1 = \infty in the case \varepsilon = 0.

Proposition 3.9. Let U be an upper semicontinuous viscosity subsolution of
(Eq\varepsilon ) for \varepsilon \in [0, \varepsilon \circ ]. Let V be a lower semicontinuous viscosity supersolution of
(Eq\varepsilon \prime ) for some \varepsilon \prime \in (\varepsilon , \varepsilon \circ ]. Assume that U and V have linear growth and that U \leq V
on \{ T\} \times \BbbR ; then U \leq V on [0, T ]\times \BbbR .

Proof. Set \^U(t, x) := e\rho tU(t, x), \^V (t, x) := e\rho tV (t, x) for some \rho > 0. Then \^U is
a subsolution of

min
\bigl\{ 
\rho \varphi  - \partial t\varphi  - e\rho \cdot \=F (\cdot , \cdot , e - \rho \cdot \partial 2x\varphi ), \varepsilon 

 - 1  - F (\cdot , \cdot , e - \rho \cdot \partial 2x\varphi )
\bigr\} 
= 0,(38)

and \^V is a supersolution of

min
\bigl\{ 
\rho \varphi  - \partial t\varphi  - e\rho \cdot \=F (\cdot , \cdot , e - \rho \cdot \partial 2x\varphi ), (\varepsilon 

\prime ) - 1  - F (\cdot , \cdot , e - \rho \cdot \partial 2x\varphi )
\bigr\} 
= 0,(39)

on [0, T )\times \BbbR .
Assume that sup[0,T ]\times \BbbR ( \^U  - \^V ) > 0. Then there exists \eta > 0 such that, for all

n > 0 and all \lambda > 0 small enough,

(40) sup
(t,x,y)\in [0,T ]\times \BbbR 2

\Bigl[ 
\^U(t, x) - \^V (t, y) - \lambda 

2
| x| 2  - n

2
| x - y| 2

\Bigr] 
\geq \eta > 0.

Denote by (tn, xn, yn) the point at which this supremum is achieved. Since \^V (T, \cdot ) \geq 
\^U(T, \cdot ), we have tn < T . Moreover, standard arguments (see, e.g., [12, Proposition
3.7]) lead to

lim
n\rightarrow \infty 

n| xn  - yn| 2 = 0.(41)

We now apply Ishii's lemma (see, e.g., [12, Theorem 8.3]), to obtain the existence
of (an,Mn, Nn) \in \BbbR 3 such that

(an, n(xn  - yn)+\lambda xn,Mn) \in \=\scrP 2,+ \^U(tn, xn)

(an, - n(xn  - yn), Nn) \in \=\scrP 2, - \^V (tn, yn),
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in which \=\scrP 2,+ and \=\scrP 2, - denote as usual the closed parabolic super- and sub-jets (see
[12]), and \biggl( 

Mn 0
0  - Nn

\biggr) 
\leq 3n

\biggl( 
1  - 1
 - 1 1

\biggr) 
+

\biggl( 
3\lambda + \lambda 2

n  - \lambda 
 - \lambda 0

\biggr) 
.

In particular, Mn \leq Nn + 2\lambda + \lambda 2/n. Since \^V is a supersolution of (39) and \varepsilon < \varepsilon \prime ,
(26) and (41) imply that F (tn, xn, e

 - \rho tnMn) < \varepsilon  - 1 for \lambda > 0 small enough and n
large enough. Hence,

\rho \^U(tn, xn) - an  - e\rho tn \=F (tn, xn, e
 - \rho tnMn) \leq 0.

On the other hand, the supersolution property of \^V combined with (20) and (24)
implies that

0 \leq \rho \^V (tn, yn) - an  - e\rho tn \=F (tn, yn, e
 - \rho tnNn)

\leq \rho \^V (tn, yn) - an  - e\rho tn \=F (tn, yn, e
 - \rho tnMn) + e\rho tn\delta (e - \rho tn(2\lambda + \lambda 2/n)),

in which \delta (z) \rightarrow 0 as z \rightarrow 0. Hence,

\rho ( \^U(tn, xn) - \^V (tn, yn)) \leq e\rho tn
\bigl( 
\=F (tn, xn, e

 - \rho tnMn) - \=F (tn, yn, e
 - \rho tnMn)

\bigr) 
+ e\rho tn\delta (e - \rho tn(\lambda + \lambda 2/n)).

Recalling (41) and (20), we obtain a contradiction to (40) by sending n \rightarrow \infty and
then \lambda \rightarrow 0.

3.2. Regularity of solutions to (Eq\varepsilon ). To complete the characterization of
Proposition 3.8, we now study the regularity of solutions to (Eq\varepsilon ). We shall indeed
show that (Eq\varepsilon ) admits a smooth solution u\varepsilon such that (\cdot , \cdot , \partial 2xu) \in \scrD \varepsilon on [0, T ] \times \BbbR 
for \varepsilon > 0 small enough and for a certain class of terminal conditions. A simple
verification argument will then show that u\varepsilon dominates the superhedging price v if
the terminal data \Phi \varepsilon associated to u\varepsilon dominate \^g. A lower bound u\varepsilon for v can also
be constructed by considering a terminal condition \Phi \varepsilon \leq \^g and using our comparison
result of Proposition 3.9 combined with Proposition 3.8. Then letting \Phi \varepsilon ,\Phi 

\varepsilon \rightarrow \^g in
a suitable way will be enough to show that v is actually a solution of (Eq0), i.e., to
conclude the proof of Theorem 3.5.

The strategy we employ consists in establishing a priori estimates for the second
derivative of the solution to (Eq\varepsilon ). Once established, the equation becomes uniformly
parabolic, and higher regularity follows by standard parabolic regularity (see [17]).
Then the continuity method (see [15]) allows us to actually construct the solution to
(Eq\varepsilon ).

Let us start with uniform estimates for solutions to (Eq\varepsilon ) such that (\cdot , \cdot , \partial 2xu) \in \scrD \varepsilon \prime 

for some \varepsilon \prime > 0 in the case where the terminal condition \Phi is smooth and satisfies a
similar constraint.

Proposition 3.10. Let u and \Phi be two continuous functions such that
(i) \Phi \in C2(\BbbR ) with | \partial 2x\Phi | \leq K\Phi for some K\Phi > 0;
(ii) (T, \cdot , \partial 2x\Phi ) \in \scrD \varepsilon \Phi for some \varepsilon \Phi > 0;
(iii) u \in C1,4([0, T )\times \BbbR )\cap C0,2([0, T ]\times \BbbR ) with | \partial 2xu| \leq K \prime for some K \prime > 0;
(iv) (\cdot , \cdot , \partial 2xu) \in \scrD \varepsilon \prime for some \varepsilon \prime > 0.
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Assume that u solves

\partial tu+ \=F (\cdot , \cdot , \partial 2xu) = 0 on [0, T )\times \BbbR ,(Eq0)

u(T, \cdot ) = \Phi on \BbbR .(42)

Then
a. (\cdot , \cdot , \partial 2xu) \in \scrD \varepsilon on [0, T ]\times \BbbR for some \varepsilon > 0 that depends only on \varepsilon \Phi and L\circ .
b. | \partial 2xu| \leq K on [0, T ]\times \BbbR , where K depends only on K\Phi .
c. If \Phi is globally Lipschitz, then u is also globally Lipschitz with Lipschitz con-

stant controlled by the one of \Phi .
d. u is the unique C1,2([0, T )\times \BbbR ) \cap C0([0, T ]\times \BbbR ) solution of (Eq0)-(42) such

that (\cdot , \cdot , \partial 2xu) \in \scrD \varepsilon \prime \prime for some \varepsilon \prime \prime > 0.
e. For some \alpha \in (0, 1) depending on K\Phi and the assumptions on \=F , u \in 
C1+\alpha 

2 ,2+\alpha ([0, T ) \times \BbbR ). Moreover, for any compact subset C \prime \subset [0, T ) \times \BbbR ,
there is a constant C(C \prime ,K\Phi , \=F ) such that

\| u\| 
C1+\alpha 

2
,2+\alpha (C\prime )

\leq C(C \prime ,K\Phi , \=F ).

f. If moreover \Phi \in C2+\alpha , u \in C1+\alpha 
2 ,2+\alpha ([0, T ]\times \BbbR ).

Proof. a. Let V := \=F (\cdot , \cdot , \partial 2xu). Then, on [0, T )\times \BbbR ,

\partial tV = \partial t \=F (\cdot , \cdot , \partial 2xu) + \partial z \=F (\cdot , \cdot , \partial 2xu)\partial t\partial 2xu,

in which, by (Eq0), \partial t\partial 
2
xu+ \partial 2xV = 0. Hence,

\partial tV + \partial z \=F (\cdot , \cdot , \partial 2xu)\partial 2xV = \partial t \=F (\cdot , \cdot , \partial 2xu) =
\partial t \=F (\cdot , \cdot , \partial 2xu)
\=F (\cdot , \cdot , \partial 2xu)

V ;(43)

recall (23). For (t, x) \in [0, T ]\times \BbbR , let \=Xt,x be the solution of

\=X = x+

\int \cdot 

t

(2\partial z \=F (\cdot , \cdot , \partial 2xu)(s, \=Xs))
1
2 dWs.

By (iv), (19), and (24), it is well-defined. Combining It\^o's lemma and a standard
localizing argument using (19) and (23), we obtain

V (t, x) = \BbbE [V (T, \=Xt,x
T )e - 

\int T
t

(\partial t
\=F (\cdot ,\cdot ,\partial 2

xu)/
\=F (\cdot ,\cdot ,\partial 2

xu))(s,
\=Xt,x
s )ds].(44)

By definition of V and the fact that \partial 2xu(T, \cdot ) = \partial 2x\Phi by (iii), this shows that
(\cdot , \cdot , \partial 2xu) \in \scrD \varepsilon on [0, T ]\times \BbbR for some \varepsilon > 0 that depends only on L\circ and \varepsilon \Phi .

b. To obtain the bound on \partial 2xu, we first differentiate twice (Eq0) with respect to
x; recall (19) and (iii). Letting Z(t, x) = \partial 2xu(t, x), this yields

\partial tZ + 2\partial x\partial z \=F\partial xZ + \partial z \=F\partial 
2
xZ + \partial 2z \=F (\partial xZ)

2 =  - \partial 2x \=F .

We now consider

(t, x) \mapsto \rightarrow Z(t, x) := min\{ 0, inf Z(T, \cdot )\} eM(T - t),

in which M is given in (23). Then

\partial tZ + 2\partial x\partial z \=F\partial xZ + \partial z \=F\partial 
2
xZ + \partial 2z \=F (\partial xZ)

2 =  - MZ \geq  - \partial 2x \=F (t, x, Z).
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Under the current assumptions, Z is uniformly bounded on [0, T ]\times \BbbR . Moreover, from
assumption (19), \partial 2x \=F is uniformly continuous on \scrD \varepsilon ,\varepsilon  - 1 for all \varepsilon > 0 small enough;
hence, by (22) and [12, proof of comparison, Theorem 5.1], the comparison principle
holds between Z and Z and yields that Z \leq Z globally on [0, T ] \times \BbbR . The upper
bound is obtained in the exact same way.

c. The assertion about the Lipschitz regularity also follows from the linearized
equation satisfied by \kappa = \partial xu:

\partial t\kappa + \partial z \=F (\cdot , \cdot , \partial 2xu)\partial 2x\kappa + \partial x \=F (\cdot , \cdot , \partial x\kappa ) = 0, \kappa (T, \cdot ) = \partial x\Phi .

Under the assumptions (24), (19), and (22), this implies that

\kappa (t, x) = \BbbE [\partial x\Phi ( \~Xt,x
T )],

where

\~Xt,x = x+

\int \cdot 

t

\bigl( 
2\partial z \=F (\cdot , \cdot , \partial 2xu)

\bigr) 1
2 (s, \~Xt,x

s )dWs +

\int \cdot 

t

\partial x \=F (\cdot , \cdot , \partial 2xu)
\partial 2xu

(s, \~Xt,x
s )ds,

and the result follows. (Note that, since \=F (\cdot , \cdot , 0) = 0 and \=F \in C1,3,3
b (\scrD \varepsilon ,\varepsilon  - 1), the

map z \mapsto \rightarrow \partial x
\=F (\cdot ,\cdot ,z)
z is bounded and Lipschitz---after extending it to \partial z\partial x \=F (\cdot , \cdot , 0) at

0.)
d. Consider another solution u\prime . Then point b implies that u and u\prime have at most

a quadratic growth. Moreover, point a allows one to consider a uniformly parabolic
equation. Then the fact that u = u\prime follows from standard arguments.

e. Differentiating (Eq0) with respect to x we have that w = \partial xu satisfies

\partial tw + \partial x( \=F (t, x, \partial xw)) = 0.

We then apply the result of [17, Theorem 12.1] to conclude that \partial xw \in C
\alpha /2,\alpha 
loc . This

estimate provides the local in space H\"older continuity. To obtain the estimate in
the time variable, we use the original equation (Eq0). Since \=F (t, x, u(t, x)) is H\"older
continuous and \partial tu(t, x) =  - \=F (t, x, \partial 2xu(t, x)), this implies the regularity in time as
well. The stated local estimate follows from [17, Theorem 12.1, equation (12.4)].

f. If \Phi \in C2+\alpha , then by following the arguments of [17, Theorem 5.13] and
invoking the argument used to prove point e, we obtain that u \in C1+\alpha 

2 ,2+\alpha globally
up to time T .

We are now in position to construct a smooth solution to (Eq0).

Theorem 3.11. Let \Phi be a continuous map such that | \partial 2x\Phi | \leq \varepsilon  - 1 and (T, \cdot ,
\partial 2x\Phi ) \in \scrD \varepsilon for some \varepsilon > 0. Then there exists a solution u of (Eq0)-(42) that belongs
to C([0, T ]\times \BbbR )\cap C1,4

loc ([0, T )\times \BbbR ) such that | \partial 2xu| \leq (\varepsilon \Phi ,L\circ )
 - 1 and (\cdot , \cdot , \partial 2xu) \in \scrD \varepsilon \Phi ,L\circ 

on [0, T ] \times \BbbR for some \varepsilon \Phi ,L\circ > 0 that only depends on \Phi and L\circ . If \Phi is globally
Lipschitz, then u is also globally Lipschitz with Lipschitz constant controlled by the
one of \Phi . If moreover there exists \alpha \in (0, 1) such that \Phi \in C4+\alpha 

b , then u \in C1,4
b .

Proof. This follows by using the continuity method (cf. [15, Chapter 17.2]). We
first mollify \Phi into a function \Phi n so that \partial 5x\Phi n is bounded and at the same time \=F into
a function \=Fn such that \=Fn(\cdot , \cdot , z) is C\infty on each \{ (t, x) \in [0, T ]\times \BbbR : (t, x, z) \in \scrD \varepsilon \prime \} ,
\varepsilon \prime > 0, for all z \in \BbbR , with derivatives' bounds on \{ (t, x) \in [0, T ]\times \BbbR : (t, x, z) \in \scrD \varepsilon \prime \} ,
\varepsilon \prime > 0, that are locally uniform with respect to z. This is possible since \=\gamma and \=F are
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uniformly continuous (recall (6) and (20)) by taking a compactly supported smoothing
kernel \psi \in C\infty (\BbbR ) and considering

\Phi n = n

\int 
\BbbR 
\Phi (y)\psi (n(y  - \cdot ))dy,

\=Fn(\cdot , \cdot , z) = n2
\int 
[0,T ]\times \BbbR 

\=F (s, y, z)\psi (n(s - \cdot ))\psi (n(y  - \cdot ))dsdy,

and taking n large enough with respect to \varepsilon \prime . For later use, note that \=Fn(T, \cdot , \partial 2x\Phi n) \leq 
2\varepsilon  - 1 for n large enough. Set

Gn(\varphi , \theta ) := [\partial t\varphi + \=Fn(\cdot , \partial 2x\varphi )]I[0,T ) + I\{ T\} (\varphi  - \theta \Phi n) for \varphi \in C1,4
b ,

and let En \subset [0, 1] be the set of real number \theta \in [0, 1] for which a C1,4
b solution un\theta 

to Gn(u
n
\theta , \theta ) = 0 exists such that it satisfies the condition (iii)--(iv) of Proposition

3.10. By (22), u0 \equiv 0 solves Gn(u0, 0) = 0 so that 0 \in En. Hence, En is nonempty.
Moreover, for every \theta \in En, the linearized operator associated to Gn is

(\~u, \~\theta ) \in C1,2 \times En \mapsto \rightarrow Ln(\~u, \~\theta ) := [\partial t\~u+ \partial z \=Fn(t, x, \partial 
2
xu)\partial 

2
x\~u]I[0,T ) + I\{ T\} (\~u - \~\theta \Phi n).

It is uniformly parabolic (recall (24)) with coefficients in C\infty . For \~\theta fixed, the equa-
tion Ln(\~u, \~\theta ) = 0 is therefore a linear, uniformly parabolic equation, with smooth
coefficients. The terminal data is smooth and has linear growth and bounded de-
rivatives of order 1 up to 5. Standard parabolic regularity theory (see [14]) yields
that the linearized equation with respect to \~u is solvable in C1,4

b . By the implicit
function theorem (see, e.g., [15, Theorem 17.6]), En is open in [0, 1]. By the a priori
estimates of Proposition 3.10, En is also closed for n large enough. In particular,
we have a uniform (with respect to \theta ) a priori estimate in C1+\alpha 

2 ,2+\alpha . This, given
our assumptions on \Phi n, \=Fn and from standard parabolic regularity, implies that the
corresponding solution is uniformly (with respect to \theta ) bounded in C1,4.

Therefore, En = [0, 1], and un1 is well-defined and uniformly bounded in C1+\alpha 
2 ,2+\alpha .

Note that, by point a of Proposition 3.10, \varepsilon \prime > 0 can be chosen such that (\cdot , \cdot , \partial 2xun1 ) \in 
\scrD \varepsilon \prime ,\varepsilon \prime  - 1 on [0, T ] \times \BbbR for all n large enough. Since ( \=Fn)n\geq 1 is uniformly parabolic,
uniformly in n, and given our initial smoothness assumptions on \=F (see assumption
(19)), un1 is uniformly bounded in C1,4

loc ([0, T ) \times \BbbR ). If moreover (\Phi n)n\geq 1 is bounded

in C4+\alpha 
b uniformly in n, then (un1 )n\geq 1 is C1,4

b uniformly in n (see again [17, Theorem
5.13] applied to \partial 2xu

n
1 ). It remains to send n\rightarrow \infty to deduce the required result.

3.3. Full chacterization of the superhedging price and perfect hedging
in the smooth case. We are now about to conclude the proof of Theorem 3.5. Let
\^u be the function constructed in Theorem 3.11 for \Phi = \^g, assuming that \^g satisfies
the required constraints. We first establish that \^u permits to apply a perfect hedging
strategy of the face-lifted payoff whenever it is smooth enough and that it coincides
with the superhedging price.

Corollary 3.12. Assume that there exists \alpha \in (0, 1) such that \^g \in C4+\alpha 
b and

that | \partial 2x\^g| \leq \varepsilon  - 1 and (T, \cdot , \partial 2x\^g) \in \scrD \varepsilon for some \varepsilon > 0. Let \^u be the function constructed
in Theorem 3.11 for \Phi = \^g. Then v = \^u, and, for each (t, x) \in [0, T ]\times \BbbR , we can find

\phi \in \scrA such that V t,x,v,\phi 
T = \^g(Xt,x,\phi 

T ).
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Proof. It follows from Theorem 3.11, It\^o's lemma, and (16) that \^u induces an
exact replication strategy,

\^g(Xt,x,\phi 
T ) = \^u(t, x) +

\int T

t

\biggl[ 
\partial t\^u+

1

2
\sigma 2(\cdot , \cdot , \partial 2x\^u)\partial 2x\^u

\biggr] 
(s,Xt,x,\phi 

s )ds

+

\int T

t

\partial x\^u(s,X
t,x,\phi 
s )dXt,x,\phi 

s

= \^u(t, x) +

\int T

t

F (s,Xt,x,\phi 
s , \gamma s)ds+

\int T

t

Y t,x,\phi 
s dXt,x,\phi 

s ,

in which \phi = (y, b, \gamma ) with

y = \partial x\^u(t, x), b =

\biggl( \biggl[ 
\partial t +

1

2
\sigma 2(\cdot , \cdot , \gamma )\partial 2x

\biggr] 
\partial x\^u

\biggr) 
(\cdot , Xt,x,\phi 

\cdot ), \gamma = \partial 2x\^u(\cdot , Xt,x,\phi 
\cdot ).

Hence, \^u \geq v. Moreover, \^u is a viscosity subsolution of (Eq\varepsilon \prime ) for all \varepsilon \prime \geq 0 small
enough. Since \^g is globally Lipschitz, \^u is also globally Lipschitz (Theorem 3.11)
and therefore has linear growth. By Proposition 3.8, v\varepsilon \geq v\varepsilon that is a supersolu-
tion of (Eq\varepsilon ) and satisfies lim inft\prime \uparrow T,x\prime \rightarrow x v

\varepsilon (t\prime , x\prime ) \geq \^g\varepsilon (x) \geq \^g(x) = \^u(T, x) for all
x \in \BbbR . Then Proposition 3.9 implies that v\varepsilon \geq \^u. Taking the inf over \varepsilon > 0 leads to
v \geq \^u.

We can now conclude the proof of Theorem 3.5.

Proof of Theorem 3.5. We begin the proof with the following approximation lemma,
whose proof is deferred after the end of the theorem's proof.

Lemma 3.13. For all \varepsilon > 0, there exists \Phi \varepsilon ,\Phi 
\varepsilon \in C2 such that, for \Psi \in \{ \Phi \varepsilon ,\Phi 

\varepsilon \} ,

\Psi \in C5
b (\BbbR ), | \partial 2x\Psi | \leq \varepsilon  - 1, (T, \cdot , \partial 2x\Psi ) \in \scrD \varepsilon 

and

\Phi \varepsilon \leq \^g \leq \Phi \varepsilon , \Phi \varepsilon  - \Phi \varepsilon \leq \delta (\varepsilon ),

in which lim\varepsilon \rightarrow 0 \delta (\varepsilon ) = 0.

Let u\varepsilon and u\varepsilon be the (smooth) solutions to (Eq0) associated to \Phi \varepsilon and \Phi \varepsilon , re-
spectively, as in Theorem 3.11. By applying Corollay 3.12 to \Phi \varepsilon in place of \^g, we
deduce that u\varepsilon is the superhedging price of \Phi \varepsilon \geq \^g so that u\varepsilon \geq v. Similarly, u\varepsilon \leq v,
and therefore u\varepsilon \leq v \leq u\varepsilon .

By the comparison principle, we also have

0 \leq u\varepsilon  - u\varepsilon \leq sup\{ \Phi \varepsilon  - \Phi \varepsilon \} \leq \delta (\varepsilon ).

It follows that v is the uniform limit of a sequence of continuous functions and
is therefore continuous. Each of the functions u\varepsilon solves (17); recall (5). Standard
stability results (see, e.g., [2]) imply that v is a viscosity solution to (17) and (18).

The other assertions in Theorem 3.5 are immediate consequences of Corollary
3.12.

Remark 3.14. By Proposition 3.9, the function u\varepsilon defined in the proof of Theorem
3.5 is the unique solution of (Eq0) with terminal condition \Phi \varepsilon in the class of functions
with linear growth. This opens the door to the construction of a numerical scheme
for the computation of u\varepsilon and therefore of v by passing to the limit \varepsilon \rightarrow 0. Moreover,
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if v is a upper-semicontinuous subsolution of (17), with linear growth, such that
v(T, \cdot ) \leq \^g, then the comparison result of Proposition 3.9 implies that v \leq u\varepsilon . Since
u\varepsilon \rightarrow v, this proves that v is the biggest subsolution of (17), with linear growth,
associated to the boundary condition \^g.

Proof of Lemma 3.13. The proof uses standard approximation arguments, and we
only state the main ingredients. Consider \^g\varepsilon as in (30); see also Remark 3.7. Then
it follows from (28) that its second derivative measure satisfies \partial 2x\^g

\varepsilon (dx) \leq \=\gamma \varepsilon (x)dx.
Consider a smooth mollification \^g\varepsilon n of \^g\varepsilon as in Remark 3.7. By (31), it converges
uniformly to \^g as n \rightarrow \infty and \varepsilon \rightarrow 0. By (29), for n large enough with respect to \varepsilon ,
\partial 2x\^g

\varepsilon 
n < \=\gamma \varepsilon /2 \leq \=\gamma \varepsilon \prime and | \partial 2x\^g\varepsilon n| \leq 1/\varepsilon \prime for some 0 < \varepsilon \prime \leq \varepsilon /2; see Remark 3.7. Since the

convergence is uniform, we can add to (resp., substract from) \^g\varepsilon n a constant k\varepsilon n \geq 0
to ensure that \^g\varepsilon n + k\varepsilon n \geq \^g (resp., \^g\varepsilon n  - k\varepsilon n \leq \^g) such that k\varepsilon n goes to 0 as n\rightarrow \infty and
\varepsilon \rightarrow 0.

4. Asymptotic analysis. We now consider the case where the impact of the
\gamma process in the dynamics of (X,V ) is small. Our aim is to obtain an asymptotic
expansion around an impact-free model. More precisely, we consider the dynamics

X\epsilon ,t,x,\phi = x+

\int \cdot 

t

\mu (s,X\epsilon ,t,x,\phi 
s , \epsilon \gamma s, \epsilon bs)ds+

\int \cdot 

t

\sigma (s,X\epsilon ,t,x,\phi 
s , \epsilon \gamma s)dWs

V \epsilon ,t,x,v,\phi = v +

\int \cdot 

t

\epsilon  - 1F (s,X\epsilon ,t,x,\phi 
s , \epsilon \gamma s)ds+

\int \cdot 

t

Y \epsilon ,t,x,\phi 
s dX\epsilon ,t,x,\phi 

s , \epsilon > 0,

and denote by v\epsilon the corresponding super-hedging price.
We place ourselves in the context of Corollary 3.12 for the coefficients \mu (\cdot , \cdot , \epsilon \cdot , \epsilon \cdot ),

\sigma (\cdot , \cdot , \epsilon \cdot ), and \epsilon  - 1F (\cdot , \cdot , \epsilon \cdot ). In particular, we assume that \^g \in C2 is such that
\epsilon  - 1 \=F (T, \cdot , \epsilon \partial 2x\^g) is bounded on \BbbR for \epsilon > 0 small enough.

In the following, we use the notation

( \=F0, \partial 
n
z
\=F0) := ( \=F (\cdot , \cdot , 0), \partial nz \=F (\cdot , \cdot , 0)) for n = 1, 2.

Remark 4.1. Note that the model of [7] corresponds to

\sigma (t, x, \epsilon z) =
\sigma \circ (t, x)

1 - \epsilon f(x)z
, \epsilon  - 1F (t, x, \epsilon z) =

1

2

\biggl( 
\sigma \circ (t, x)z

1 - \epsilon f(x)z

\biggr) 2

\epsilon f(x).

Our scaling therefore amounts to consider a small impact function x \mapsto \rightarrow \epsilon f(x). In
order to interpret the result of Proposition 4.3 below, also observe that

(2\partial z \=F0(t, x))
1
2 = \sigma \circ (t, x) and \partial 2z \=F0(t, x) = \sigma 2

\circ (t, x)f(x).

Our expansion is performed around the solution v0 of

\partial tv
0 + \partial z \=F0\partial 

2
xv

0 = 0 on [0, T )\times \BbbR and v0(T, \cdot ) = \^g on \BbbR .(45)

Remark 4.2. Let the conditions of Corollary 3.12 hold, and assume that \=F \in 
C1,3,1

loc (\scrD ) with

| \partial x\partial z \=F0| + | \partial 2x\partial z \=F0| uniformly bounded.(46)

Then v0 is the unique solution in C1,2
b ([0, T ] \times \BbbR ) \cap C1,3([0, T ) \times \BbbR ]) of (45). This

follows from (24) and standard estimates.
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The following expansion requires some additional regularity on \^g that will in
general not be satisfied in applications. However, one can reduce to it up to a slight
approximation argument (i.e., by smoothing \^g if needed in practice).

Proposition 4.3. Assume that the conditions of Corollary 3.12 hold with \=F \epsilon :=
\epsilon  - 1 \=F (\cdot , \cdot , \epsilon \cdot ) in place of \=F , uniformly in \epsilon \in (0, \epsilon \circ ], for some \epsilon \circ > 0. Assume further
that \=F \in C1,2,3

loc (\scrD ), (46), and

sup
\scrD \epsilon 

\bigl( 
| \partial 2z \=F0| + | \partial 3z \=F0| + | \partial x\partial 2z \=F0| + | \partial 2x\partial 2z \=F0| 

\bigr) 
<\infty (47)

hold. Then there exists some o(\epsilon ), which does not depend on x, such that

v\epsilon (0, x) = v0(0, x) +
\epsilon 

2
\BbbE 

\Biggl[ \int T

0

\bigl[ 
\partial 2z \=F0| \partial 2xv0| 2

\bigr] 
(s, \~X0

s )ds

\Biggr] 
+ o(\epsilon )

= v0(0, x) +
\epsilon 

2
\BbbE 
\Bigl[ 
\partial x\^g(T, \~X

0
T )

\~YT

\Bigr] 
+ o(\epsilon ),

where, for z \in \BbbR , \~Xz is the solution on [0, T ] of

\~Xz = x+

\int \cdot 

t

(2\partial z \=F (\cdot , z\partial 2xv0(\cdot )))
1
2 (s, \~Xz

s )dWs(48)

and \~Y := \partial z \~Xz| z=0 solves

\~Y =
1\surd 
2

\int \cdot 

t

\partial x\partial z \=F0(s, \~X
0
s ) \~Ys + \partial 2z \=F0\partial 

2
xv

0(s, \~X0
s )\sqrt{} 

\partial z \=F0(s, \~X0
s )

dWs.

Proof. By Corollary 3.12, each v\epsilon associated to \epsilon \in (0, \epsilon \circ ] solves

\partial tv
\epsilon + \epsilon  - 1 \=F (\cdot , \cdot , \epsilon \partial 2xv\epsilon ) = 0.

Moreover, it follows from our assumptions and Corollary 3.12 that (\cdot , \cdot , v\epsilon ) \in \scrD \epsilon for
all \epsilon \in (0, \epsilon \circ ]. Then the fact that \=F (\cdot , \cdot , 0) = 0 implies that

\partial tv
\epsilon + \partial z \=F0\partial 

2
xv

\epsilon +
1

2
\epsilon \partial 2z \=F0| \partial 2xv\epsilon | 2 = O(\epsilon 2),

in which the O(\epsilon 2) is uniform since | \partial 3z \=F0| is uniformly bounded on \scrD \varepsilon by assumption.
Let \Delta v\epsilon := (v\epsilon  - v0)/\epsilon . By the above, (45), and Remark 4.2, it solves

O(\epsilon ) = \partial t\Delta v
\epsilon + \partial z \=F0\partial 

2
x\Delta v

\epsilon +
1

2
\partial 2z \=F0| \partial 2xv0| 2

+
1

2
\epsilon 2\partial 2z

\=F0| \partial 2x\Delta v\epsilon | 2 + \epsilon \partial 2z
\=F0\partial 

2
x\Delta v

\epsilon \partial 2xv
0,

in which O(\epsilon ) is uniform on [0, T )\times \BbbR . By Theorem 3.11, Remark 4.2, and the same
arguments as in this remark, (\partial 2x\Delta v

\epsilon , \partial 2z
\=F0, \partial 

2
xv

0)0<\epsilon \leq \epsilon \circ is locally bounded. Since
\Delta v\epsilon (T, \cdot ) = 0, it follows that

\Delta v\epsilon (0, x) = \BbbE 

\Biggl[ 
1

2

\int T

0

[\partial 2z \=F0| \partial 2xv0| 2](s, \~X0
s )ds

\Biggr] 
+O(\epsilon ).
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4144 B. BOUCHARD, G. LOEPER, H. M. SONER, AND C. ZHOU

Hence, \Delta v := lim\epsilon \rightarrow 0 \Delta v
\epsilon is given by

(49) \Delta v(0, x) = \BbbE 

\Biggl[ 
1

2

\int T

0

[\partial 2z \=F0| \partial 2xv0| 2](s, \~X0
s )ds

\Biggr] 
.

Moreover, \partial xv
0 satisfies

\partial t(\partial xv
0) + \partial x\partial z \=F0\partial 

2
xv

0 + \partial z \=F0\partial 
2
x(\partial xv

0) = 0;(50)

recall Remark 4.2.
Applying It\^o's lemma to \partial xv

0(t, \~X0
t ) \~Yt, we obtain

d(\partial xv
0(t, \~X0

t ) \~Yt) = \partial t\partial xv
0(t, \~X0

t ) \~Ytdt+ \partial 2xv
0(t, \~X0

t ) \~Ytd \~X0
t + \partial xv

0(t, \~X0
t )d \~Yt

+ \partial 2xv
0(t, \~X0

t )d\langle \~Y , \~X0\rangle t +
1

2
\partial 2x(\partial xv

0(t, \~X0
t )) \~Ytd\langle \~X0\rangle t

=
\Bigl( 
\partial t\partial xv

0(t, \~X0
t ) + \partial 2xv

0(t, \~X0
t )\partial x\partial z \=F0(t, \~X

0
t ) + \partial 2x(\partial xv

0(t, \~X0
t ))\partial z \=F0(t, \~X

0
t )
\Bigr) 
\~Ytdt

+ \partial 2z \=F0(t, \~X
0
t )(\partial 

2
xv

0(t, \~X0
t ))

2dt+ \partial 2xv
0(t, \~X0

t ) \~Ytd \~X0
t + \partial xv

0(t, \~X0
t )d \~Yt

= \partial 2z
\=F0(t, \~X

0
t )(\partial 

2
xv

0(t, \~X0
t ))

2dt+ \partial 2xv
0(t, \~X0

t )
\~Ytd \~X0

t + \partial xv
0(t, \~X0

t )d
\~Yt,

where we use (50) to get the last equality.
Therefore, taking expectation on both sides, we have

\BbbE 
\Bigl[ 
\partial xv

0(T, \~X0
T ) \~YT

\Bigr] 
= \BbbE 

\Biggl[ \int T

0

[\partial 2z \=F0| \partial 2xv0| 2](s, \~X0
s )ds

\Biggr] 
,

which leads to

\Delta v(0, x) =
1

2
\BbbE 
\Bigl[ 
\partial xv

0(T, \~X0
T ) \~YT

\Bigr] 
=

1

2
\BbbE 
\Bigl[ 
\partial x\^g(T, \~X

0
T ) \~YT

\Bigr] 
.

Remark 4.4. For later use, note that the above proof implies that \Delta v defined in
(49) satisfies

\partial t\Delta v + \partial z \=F0\partial 
2
x\Delta v +

1

2
\partial 2z \=F0| \partial 2xv0| 2 = 0 on [0, T )\times \BbbR .

Remark 4.5. A more tractable formulation can be obtained in the particular case
where (\partial z \=F0, \partial 

2
z
\=F0) = (\lambda 1, \lambda 2) is constant and \partial x\partial z \=F0 = 0. This is the case in the

model of [7] (see Example 2.1) whenever \sigma \circ and f are constant; see, e.g., Remark 4.1.
Then \partial xv

0(\cdot , \~X0) = \partial xv
0(0, x) +

\int \cdot 
0

\surd 
2\lambda 1\partial 

2
xv

0(s, \~X0
s )dWs by (50) so that

\epsilon 

2
\BbbE 

\Biggl[ \int T

0

[\partial 2z \=F0| \partial 2xv0| 2](s, \~X0
s )ds

\Biggr] 
=
\epsilon \lambda 2
4\lambda 1

\BbbE 

\Biggl[ \int T

0

\Bigl[ \sqrt{} 
2\lambda 1\partial 

2
xv

0(s, \~X0
s )
\Bigr] 2
ds

\Biggr] 

=
\epsilon \lambda 2
4\lambda 1

\BbbE 
\biggl[ \Bigl( 
\partial x\^g( \~X

0
T ) - \partial xv

0(0, x)
\Bigr) 2

\biggr] 
=
\epsilon \lambda 2
4\lambda 1

\BbbE 
\biggl[ \Bigl( 
\partial x\^g( \~X

0
T ) - \BbbE [\partial x\^g( \~X0

T )]
\Bigr) 2

\biggr] 
=
\epsilon \lambda 2
4\lambda 1

Var
\Bigl[ 
\partial x\^g( \~X

0
T )

\Bigr] 
,

and the computation of the gamma \partial 2xv
0 is not required. Such a formulation does not

seem available in general.
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The expansion of Proposition 4.3 leads to a natural approximate hedging strategy.
The result is stated in terms of the function \Delta v introduced in the proof of Proposition
4.3; see (49).

Proposition 4.6. Assume that the conditions of Proposition 4.3 hold and that
(i) \partial 2z \=F0 \in C1,4

b ([0, T ]\times \BbbR );
(ii) (t, x, z) \in [0, T ] \times \BbbR \times \BbbR \mapsto \rightarrow 1

2\epsilon \sigma 
2(t, x, \epsilon z) is bounded and uniformly Lipschitz

in its two last components, uniformly in \epsilon \in (0, \epsilon 0].
Then there exists a constant C > 0 such that, for each \epsilon \in (0, \epsilon 0] and x \in \BbbR ,

| V \epsilon ,0,x,v\epsilon ,\phi \epsilon 

T  - \^g(X\epsilon ,0,x,\phi \epsilon 

T )| \leq C\epsilon 2,

in which
v\epsilon := v0(0, x) + \epsilon \Delta v(0, x)

and \phi \epsilon = (y\epsilon , b\epsilon , \gamma \epsilon ) \in \scrA with

y\epsilon = \partial x(v
0 + \epsilon \Delta v)(0, x),

b\epsilon =

\biggl[ 
\partial t +

1

2\epsilon 
\sigma 2(\cdot , \cdot , \epsilon \partial 2x(v0 + \epsilon \Delta v))\partial 2x

\biggr] 
\partial x(v

0 + \epsilon \Delta v)(\cdot , X\epsilon ,0,x,\phi \epsilon 

),

\gamma \epsilon = \partial 2x(v
0 + \epsilon \Delta v)(\cdot , X\epsilon ,0,x,\phi \epsilon 

).

Proof. For ease of notations, we write \sigma \epsilon for \epsilon  - 
1
2\sigma (\cdot , \epsilon \cdot ). We let Y \epsilon = \partial x(v

0 +
\epsilon \Delta v)(\cdot , X\epsilon ,0,x,\phi \epsilon 

) and only writeX\epsilon forX\epsilon ,0,x,\phi \epsilon 

in the following. Note that (48), (49),
(i), and (24) imply that \Delta v \in C1,4

b ([0, T ]\times \BbbR ). Then the dynamics are well-defined
thanks to Remark 4.2, and \phi \epsilon \in \scrA . Set F\epsilon := F (\cdot , \cdot , \epsilon \cdot )/\epsilon . By applying It\^o's lemma
and using Remarks 4.2 and 4.4 and the definition of \=F\epsilon together with (22), we obtain

\^g(X\epsilon 
T ) - v\epsilon  - 

\int T

0

Y \epsilon 
t dX

\epsilon 
t  - 

\int T

0

F\epsilon (t,X
\epsilon 
t , \gamma 

\epsilon 
t )dt

= v0(T,X\epsilon 
T ) + \epsilon \Delta v(T,X\epsilon 

T ) - v0(0, x) - \epsilon \Delta v(0, x) - 
\int T

0

Y \epsilon 
t dX

\epsilon 
t

 - 
\int T

0

F\epsilon (\cdot , \partial 2x(v0 + \epsilon \Delta v))(t,X\epsilon 
t )dt

=

\int T

0

\Bigl[ 
\=F\epsilon (\cdot , \partial 2x(v0 + \epsilon \Delta v)) - \partial z \=F0\partial 

2
x(v

0 + \epsilon \Delta v) - \epsilon 

2
\partial 2z \=F0| \partial 2xv0| 2

\Bigr] 
(t,X\epsilon 

t )dt.

Recalling that (19) is assumed to hold for \=F\epsilon , uniformly in \epsilon \in (0, \epsilon \circ ], that \partial 
2
xv

0 and
\partial 2x\Delta v are bounded, as well as (22), a second-order Taylor expansion implies that

\=F\epsilon (\cdot , \partial 2x(v0 + \epsilon \Delta v)) - \partial z \=F0\partial 
2
x(v

0 + \epsilon \Delta v) - \epsilon 

2
\partial 2z \=F0| \partial 2xv0| 2 = O(\epsilon 2),

in which O(\epsilon 2) is uniform on [0, T ]\times \BbbR .

5. Dual representation formula in the convex case. In this last section,
we assume that

z \in \BbbR \mapsto \rightarrow \=F (t, x, z) is convex and bounded from below,(51)

lim
z\rightarrow \=\gamma (t,x)

\partial z \=F (t, x, z) = \infty for all (t, x) \in [0, T ]\times \BbbR .(52)
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4146 B. BOUCHARD, G. LOEPER, H. M. SONER, AND C. ZHOU

Note that the second assumption is automatically satisfied if \=\gamma <\infty since in this
case limz\rightarrow \=\gamma (t,x)

\=F (t, x, z) = \infty . Both are satisfied is the model studied in [7]; see
Remark 3.1.

Whenever \=\gamma <\infty , let us now use the extension \=F (\cdot , \cdot , z) := \infty for z \in [\=\gamma ,\infty ) and
define the Fenchel--Moreau transform

\=F \ast (\cdot , \cdot , v) := sup
z\in \BbbR 

\biggl( 
1

2
vz  - \=F (\cdot , \cdot , z)

\biggr) 
, v \in \BbbR .

The conditions (51) and (52) ensure that \=F \ast (t, x, \cdot ) is finite on \BbbR + and takes the
value +\infty on \BbbR  - \setminus \{ 0\} . The function \=F being lower-semicontinuous on \BbbR +, convex
and proper in its last argument, it follows that

\=F (\cdot , \cdot , z) = sup
s\in \BbbR +

\biggl( 
1

2
s2z  - \=F \ast (\cdot , \cdot , s2)

\biggr) 
.(53)

\=F \ast (\cdot , \cdot , 2\partial z \=F (\cdot , \cdot , z)) = \partial z \=F (\cdot , \cdot , z)z  - \=F (\cdot , \cdot , z) for z < \=\gamma .(54)

Remark 5.1. It follows from (53) that a function V is a viscosity supersolution
(resp., subsolution) on [0, T )\times \BbbR of

min\{  - \partial t\varphi  - \=F (\cdot , \cdot , \partial 2x\varphi ) , \=\gamma  - \partial 2x\varphi \} = 0

if and only if it is a viscosity supersolution (resp., subsolution) on [0, T )\times \BbbR of

inf
s\in \BbbR +

\biggl( 
\=F \ast (\cdot , \cdot , s2) - \partial t\varphi  - 1

2
s2\partial 2x\varphi 

\biggr) 
= 0.(55)

This suggests, in the spirit of [24], that v admits a dual formulation in terms of
an optimal control problem.

Theorem 5.2. Assume that (51) and (52) hold. Let S denote the collection of
nonnegative bounded adapted processes. Then for all (t, x) \in [0, T )\times \BbbR ,

v(t, x) = sup
s\in S

\BbbE 

\Biggl[ 
\^g(Xt,x,s

T ) - 
\int T

t

\=F \ast (s,Xt,x,s
s , s2s)ds

\Biggr] 
(56)

= sup
s\in S

\BbbE 

\Biggl[ 
g(Xt,x,s

T ) - 
\int T

t

\=F \ast (s,Xt,x,s
s , s2s)ds

\Biggr] 
,

in which

Xt,x,s = x+

\int \cdot 

t

ssdWs, s \in S.

If moreover the conditions of Corollary 3.12 hold, then the optimum is achieved by
the Markovian control

\^st,x :=
\Bigl( 
2\partial z \=F (\cdot , \cdot , \partial 2xv)(\cdot , Xt,x,\^st,x)

\Bigr) 1
2

.

Remark 5.3. The model studied in [7] corresponds to

\=F \ast (t, x, s2) =
1

2

(s - \sigma \circ (t, x))
2

f(x)
for s \geq 0;
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see Remark 3.1. The result of Theorem 5.2 above can then be formally interpreted as
follows. The larger the impact function f , the more the optimal control can deviate
from the volatility associated to the model without market impact. When f tends to
0, the optimal control needs to converge to the volatility of the impact-free model \sigma \circ ,
and one recovers the usual pricing rule at the limit.

Proof of Theorem 5.2.
1. We first prove the first equality in (56) in the case where the conditions of

Corollary 3.12 hold. Let v denote the right-hand side of (56). Recalling from Remark
5.1, Corollary 3.12, and Theorem 3.11 that v is a smooth supersolution of (55), we
deduce that v \geq v by a simple verification argument. Let now \^X be the solution of

\^X = x+

\int \cdot 

t

(2\partial z \=F (\cdot , \cdot , \partial 2xv)(s, \^Xs))
1
2 dWs.

It is well-defined (recall Corollary 3.12, Theorem 3.11, and equations (24) and (19)),
and corresponds to Xt,x,\^s with

\^s := (2\partial z \=F (\cdot , \cdot , \partial 2xv)(\cdot , \^X))
1
2 ,

which is bounded. Moreover, (54) implies that

v(t, x) = \BbbE 
\Bigl[ 
\^g( \^XT ) - 

\int T

t

\=F \ast (s, \^Xs,\^s
2
s)ds

\Bigr] 
,

which shows that v \leq v since \^s is bounded.
2. We now extend the first equality in (56) to the general case. Let \{ \Phi \varepsilon ,\Phi 

\varepsilon \} be as
in the proof of Theorem 3.5 at the end of section 3, and let u\varepsilon and u\varepsilon be the (smooth)
solutions to (Eq0) associated to \Phi \varepsilon and \Phi \varepsilon , respectively, as in Theorem 3.5. Then
\Phi \varepsilon \leq \^g \leq \Phi \varepsilon , u\varepsilon \leq v \leq u\varepsilon , and (u\varepsilon  - u\varepsilon ,\Phi 

\varepsilon  - \Phi \varepsilon )\varepsilon >0 converges uniformly to 0 as
\varepsilon \rightarrow 0. Define v\varepsilon and v\varepsilon as v but with \Phi \varepsilon and \Phi \varepsilon in place of \^g. Then v\varepsilon \leq v \leq v\varepsilon and
(v\varepsilon  - v\varepsilon )\varepsilon >0 converges uniformly to 0 as \varepsilon \rightarrow 0. Since by point 1 (v\varepsilon , v

\varepsilon ) = (u\varepsilon , u
\varepsilon ),

the required result follows.
3. It remains to prove the second equality in (56). Define

\~v(t, x) := sup
s\in S

\BbbE 

\Biggl[ 
g(Xt,x,s

T ) - 
\int T

t

\=F \ast (s,Xt,x,s
s , s2s)ds

\Biggr] 
, (t, x) \in [0, T )\times \BbbR .

In view of point 2, we know that \~v is bounded from above by v. Since \=F \ast (\cdot , 0)+ and
g - are bounded (see (51) and (15)), it is also bounded from below by a constant.
Then it follows from [9] that the lower-semicontinuous envelope \~v\ast of \~v is a viscosity
supersolution of (55) such that \~v\ast (T, \cdot ) \geq g; recall (15). It is in particular a super-
solution of \=\gamma  - \partial 2x\varphi \geq 0 on [0, T ) \times \BbbR by Remark 5.1. Then the same arguments as
in [7, step 3.b., proof of Theorem 3.16] imply that \~v\ast (T, \cdot ) \geq \^g. By [9] again, we also
have that

\~v(t, x) \geq \BbbE 

\Biggl[ 
\~v\ast (T,X

t,x,s
T ) - 

\int T

t

\=F \ast (s,Xt,x,s
s , s2s)ds

\Biggr] 
for any s \in S.

Hence,

\~v(t, x) \geq sup
s\in S

\BbbE 

\Biggl[ 
\^g(Xt,x,s

T ) - 
\int T

t

\=F \ast (s,Xt,x,s
s , s2s)ds

\Biggr] 
.
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We conclude this section with a result showing that any optimal control control
\^s should be such that \^g(Xt,x,\^s

T ) = g(Xt,x,\^s
T ).

Proposition 5.4. Let the condition of Theorem 5.2 hold, and assume that \=F (\cdot , \cdot , \kappa )
is uniformly bounded on [0, T ] \times \BbbR for some \kappa > 0. Fix (t, x) \in [0, T ) \times \BbbR , and let
(sn)n\geq 1 be such that

v(t, x) = lim
n\uparrow \infty 

\BbbE 

\Biggl[ 
g(Xt,x,sn

T ) - 
\int T

t

\=F \ast (s,Xt,x,sn

s , (sns )
2)ds

\Biggr] 
.

Then (Xt,x,sn

T )n\geq 1 is tight, and any limiting law \nu associated to a subsequence satisfies
\nu (\^g > g) = 0.

Proof. We only write Xn for Xt,x,sn and let

Jn := \BbbE 

\Biggl[ 
g(Xn

T ) - 
\int T

t

\=F \ast (s,X
n

s , (s
n
s )

2)ds

\Biggr] 
,

n \geq 1. Then (15) and (51) imply that one can find C > 0 such that

 - C \leq \BbbE [C +
\kappa 

4
| Xn

T | 2  - 
\int T

t

\kappa 

2
(sns )

2ds+ T sup \=F (\cdot , \cdot , \kappa )]

\leq \BbbE [C  - 
\int T

t

\kappa 

4
(sns )

2ds+ T sup \=F (\cdot , \cdot , \kappa )].

Hence, supn\geq 1 \BbbE [
\int T

t
(sns )

2ds] < \infty . Let \nu n be the law associated to Xn
T . The above

shows that (\nu n)n\geq 1 is tight. Let us consider a subsequence (\nu nk
)k\geq 1 that converges

to some law \nu . If \nu (\^g > g) > 0, then one can find \delta > 0 such that \BbbE [\^g(Xnk

T )] \geq 
\BbbE [g(Xnk

T )] + \delta for all k \geq 1 large enough, which would imply that

lim
k\rightarrow \infty 

\BbbE 

\Biggl[ 
\^g(Xnk

T ) - 
\int T

t

\=F \ast (s,Xnk
s , (snk

s )2)ds

\Biggr] 
\geq lim

k\rightarrow \infty 
Jnk

+ \delta ,

a contradiction to Theorem 5.2.
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