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Overview

I We consider a financial market without any probabilistic or topological structure but rather with a

partial order representing the common beliefs of all agents.

I In this structure, we investigate the proper extensions of the classical notions of arbitrage and

viability or the economic equilibrium. Then, study their implications.

I We provide a definition of arbitrage.

I Our contribution is to extend the classical works of Harrison & Kreps’79 and Kreps’81 to incorporate

Knightian uncertainty.

I We also complete their work proving an equivalence between viability and no-arbitrage.
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Context



Frank Knight

Frank Knight in his 1921 book, Risk, Uncertainty, and Profit, formalized the distinction between risk

and uncertainty.

B According to Knight, risk applies to situations where we do not know the outcome of a given

situation, but can accurately measure the odds.

B Uncertainty applies to situations where we cannot know all the information we need in order to set

accurate odds.

There is a fundamental distinction between the reward for taking a known risk and that for assuming a

risk whose value itself is not known.
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Lord Turner Report

The Turner Review of May 2009 on

A regulatory response to the global financial crisis

“More fundamentally, however, it is important to realize that the assumption that past distribution

patters carry robust inferences for the probability of future patterns is methodologically insecure. It

involves applying to the world of social and economics relationships to a technique drawn from the

world of physics, . . . it is unclear whether this analogy is valid when applied to economic and social

relationships, or whether instead, we need to recognise that we are not dealing with mathematically

modelable risk, but with inherent “Knightian uncertainty’. ”
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Ellsberg



Ellsberg Experiment 1961

Consider the experiment with two urns containing red and black balls :

I Urn 1 has exactly 50 red and 50 black balls.

I Urn 2 has only red and black balls of unknown number ;

Four random events are described :

I R1 : Pays $1 if a Red ball is from from Urn 1 ;

I B1 : Pays $1 if a Black ball is from from Urn 1 ;

I R2 : Pays $1 if a Red ball is from from Urn 2 ;

I B2 : Pays $1 if a Black ball is from from Urn 2.

Most people choose R1 over R2 and B2 ; also B1 over B2 and R2. And they are indifferent between R1

and B1 and R2 and B2.
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No Probability explains this

Suppose we have a subjective probability P.

We have four disjoint events R1,R2,B1,B2 with

I P(R1) > P(R2) ;

I P(B1) > P(B2) ;

I R1 ∪ B1 = R2 ∪ B2 is the whole space, i.e.,

1 = P(R1 ∪ B1) = P(R1) + P(B1)

> P(R2) + P(B2) = P(R2 ∪ B2) = 1.

For the same reason there is no linear pricing.
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A Nonlinear Agent

Consider an agent whose preference relation is given by a Gilboa-Schmeidler utility :

UGS(X ) := min
{
Ea[X ],Eb[X ]

}
,

where a < 1
2
< b and Ep is expectation with a probability Pp such that Pp(R1) = 0.5, Pb(R2) = p.

The induced preference is X � Y if UGS(X ) ≤ UGS(Y ).

This agent is consistent with the observations :

UGS(R1) = 0.5 > UGS(R2) = a ⇒ R1 � R2,

UGS(R1) = 0.5 > UGS(B2) = 1− b ⇒ R1 � B2,

UGS(B1) = 0.5 > UGS(R2) = a ⇒ B1 � R2,

UGS(B1) = 0.5 > UGS(B2) = 1− b ⇒ B1 � B2.
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Volatility Uncertainty

Now consider a market in which dSt = St [rdt + σtdWt ], where there is no common agreement on the

value of volatility but it is agreed that σt ∈ [a, b]. Let

Σ := {σ : [0,T ]→ [a, b] | σ is adapted } .

For each σ ∈ Σ there is a probability measure Pσ which is the distribution of the corresponding stock

price. This structure is similar to the Ellsberg examples, but here all individual measures are mutually

orthogonal.

For a construction of these measures and other properties, see Soner, Touzi & Zhang (2012,2013) and

Nutz (2013), Nutz & Soner (2012).
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Non-dominated Models

I As in the previous example, most markets with Knightian uncertainty demand a cloud of measures Q.

I The quasi-sure order in this setting is natural :

X ≤Q Y ⇔ Q(X ≤ Y ) = 1, ∀Q ∈ Q.

I The positive cone K is given by,

R ∈ K ⇔ R >Q 0,

⇔ R ≥Q 0 and ∃Q∗ ∈ Q s.t. Q∗(R > 0) > 0.

I In most Knigthian uncertain markets, Q is non-dominated. Then, the space K is “ too large”.
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Foundations of Arbitrage



Harrison and Kreps

I Two papers : Harrison & Kreps (1979) and Kreps (1981) laid the economic foundations of arbitrage

by connecting it to economic viability.

I Harrison & Kreps (1979) works on L2(Ω,P) with a given P and proves that viability is equivalent to

the existence of a risk-neutral measure.

I Kreps (1981) considers a more abstract set-up.
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Viability a là Kreps

I The commodity space (the set of all claims) H is a topological space.

I K is its positive cone.

I M is a subspace of H and prices on M are given by a linear map π.

Definition (Kreps ’81)

(H,M, π) is viable if there is a representative agent or equivalently a preference relation � that is

complete, convex, continuous such that :

1. m � 0 for every m ∈M with π(m) ≤ 0.

This is an equilibrium condition ; it demands that the representative agents is able to choose optimal

claim among all claims in M with budget constraint of zero. Note that the set of all agents is large.

In particular, they have endowments.

2. � is strictly increasing on K.

This condition eliminates arbitrage.
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Extension Result

Theorem (Harrison & Kreps’79, Kreps’81)

A market is viable if and only if its extendable, i.e., if there exists a linear, continuous, strictly

monotone ϕ : H → R, which extends π :

ϕ(m) = π(m) ∀m ∈M, ϕ(k) > 0, ∀ k ∈ K.

The extension ϕ is the equivalent risk neutral measure. In this context strict monotonicity replaces

equivalence.

There is no simple equivalence to no-arbitrage in these papers. Delbaen & Schachermayer proves this

equivalence for markets with risk.
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Arbitrage : Classical

There is a filtered probability space (Ω,F,P) and semi-martingale S representing the stock price

process.

I Arbitrage is an admissible, predicable process so that (H · S) is bounded from below and

(H · S)T ≥ 0, P-a.s., and P((H · S)T > 0) > 0.

I A Free Lunch with Vanishing Risk is a sequence of admissible, predicable processes Hn so that

fn := (H · S)T satisfies

f −n → 0 uniformly, ‖fn − f ‖L∞(Ω,P) → 0 and P(f > 0) > 0.
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No Arbitrage : Classical

Under risk (i.e., when the common order is P almost-sure withn a given probability measure), the

following two are same :

I There is no Free Lunch with Vanishing Risk (NFLVR) if there is no fn := (H · S)T satisfying

f −n → 0 uniformly, ‖fn − f ‖L∞(Ω,P) → 0 and P(f > 0) > 0.

I For every ξ with P(ξ ≥ 0) = 1 and P(ξ > 0) > 0,

D(ξ) := inf {x ∈ R : ∃H so that x + (H · S)T ≥ ξ a.s. } > 0.

Kardaras & Karatzas and Herdegen define viability exactly as above but for general markets.
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Summary

I Kreps viability is equivalent to extendability.

I If a market is viable, then there is a strictly positive, linear measure. Hence, Kreps’ definition of

viability is not always compatible with Knightian uncertainty as such markets often do not have such

functionals.

I In general markets, we want to modify Krebs definition appropriately so that its is equivalent to

arbitrage.
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Our Approach



Financial Market



Claims

I H = Bb is the set of all bounded, Borel measurable random variables and any X ∈ H represents a

claim.

I ≤ is a partial order on H.

Examples

1. If a probability measure is given, then X ≤ Y iff X ≤ Y , P− a.s.

2. If a cloud probability measures Q is given, then X ≤ Y iff X ≤ Y , Q− q.s.
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Agents = Preferences

A is the set of a all preference relations (i.e., complete and transitive) satisfying

I monotone with respect to ≤, respects the common order ;

I convex, risk averse ;

I weakly continuous, i.e., for any sequence of real numbers cn ↓ 0 ,

−cn + X � Y , ⇒ X � Y .

Example (Gilboa-Schmeidler)

Given a cloud Q, and a utility function u : R→ R, set

UGS(X ) := inf
Q∈Q

EQ[u(X )].

Then define the preference relation by, X � Y if UGS(X ) ≤ UGS(Y ).
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Marketed Space

To complete the structure, we bring in the traded assets I (analog of (M, π) in Kreps’81) and also

potential arbitrages, R.

Marketed space (H,≤, I,R) is given by,

I (H,≤) is an ordered vector space.

I I is a cone of claims that are liquidly traded with zero initial cost.

Examples of I are stochastic integrals and/or liquidly traded options.

I R is an arbitrary convex subset of H+. We call it as the set of relevant contracts. We assume all

positive constants are in R.

I The set R determines arbitrage and could be equal to H+.
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Example

This is related to Bouchard & Nutz (2015) and Biagini, Bouchard, Kardaras & Nutz (2017).

Let P be a cloud, ≤P be the quasi-sure order and R = H+, i.e.,

R ∈ R ⇔ inf
P∈P

P(R ≥ 0) = 1, sup
P∈P

P(R > 0) > 0.

If P is non-dominated, there exists no linear map ϕ on Bb(Ω,P) satisfying ϕ(R) > 0 for every R ∈ R.

Hence, the market is not viable according to the definition of Kreps. We want to change that.
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Viability



Viability definition

Definition (Viability)

A market (H,≤, I,R) is viable if there exists a set of heterogenous agents Â ⊂ A so that

1. ` ≺ 0, for every ` ∈ I and �∈ Â.

2. For every R ∈ R, there is �R∈ Â so that 0 ≺R R.

I First condition is equilibrium.

I The second condition replaces the strict monotonicity of Kreps. Also it is related to the set of

risk-neutral measures Q being equivalent to P as in Bouchard & Nutz and the notion of arbitrage

used there.
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Arbitrage and Equivalence



Arbitrage Definition

Definition (Arbitrage)

A traded claim ` ∈ I is an arbitrage if there exists R ∈ R,

` ≥ R.

Definition (Free Lunch with Vanishing Risk)

A sequence of traded claims {`n}n ∈ I is called a free lunch with vanishing risk if there exists R ∈ R
and a sequence of real numbers cn → 0 so that

`n + cn ≥ R, ∀ n = 1, 2, . . . .
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Super-replication

We define the super-replication functional by,

D(X ) := inf {c ∈ R : ∃ ` ∈ I so that c + ` ≥ X } .

This is a convex functional and is Lipschitz in the supremum norm.

Lemma

There are no-free-lunches-with vanishing-risk (NFLVR), if and only if D(R) > 0 for all R ∈ R.

In our setting, Kardaras & Karatzas definition of viability is no arbitrage. We next show that it is

equivalent to our notion of viability.
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Convex Duality

The super-replication functional

D(X ) := inf {c ∈ R : ∃ ` ∈ I so that c + ` ≥ X }

is convex, proper and Lipschtiz continuous. Also it is homogenous, i.e., D(λX ) = λD(X ) for every

λ > 0. By Fenchel-Moreau

D(X ) := sup
ϕ∈Q

ϕ(X ),

where

Q = {ϕ ∈ ba(Ω) : ϕ(X ) ≤ D(X ), ∀ X ∈ H}.
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Equivalence

Theorem (Burzoni, Riedel, Soner, 2017)

A financial market is viable if and only if there are no free lunches with vanishing risk.

Proof : Suppose NFLVR holds. Then, D(R) := supϕ∈Q ϕ(R) > 0 for each R ∈ R. In particular,

Q 6= ∅.

Consider heterogenous agents {�ϕ}ϕ∈Q given by

X �ϕ Y if ϕ(X ) ≤ ϕ(Y ). Then,

I ∀` ∈ I, D(`) ≤ 0. Hence, ϕ(`) ≤ 0⇒ ` �ϕ 0 ∀ϕ ∈ Q.

I ∀R ∈ R, D(R) > 0. Hence, ∃ϕR ∈ Q so that ϕR(R) > 0⇒ R �ϕR 0.
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Proof : Other direction

I Suppose the market is viable and towards a contraposition assume that `n + cn ≥ R∗ for some

R∗ ∈ R and cn → 0. Then, −cn + R∗ ≤ `n.

I Choose �∗∈ Â so that 0 ≺∗ R∗.

I Since �∗ is monotone, −cn + R∗ �∗ `n.

I Moreover, by viability −cn + R∗ �∗ `n �∗ 0.

I By weak continuity, −cn + R∗ �∗ 0 ⇒ R∗ �∗ 0.

I This contradicts 0 ≺∗ R∗.
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FTAP

Theorem (Burzoni, Riedel, Soner, 2017)

The following are equivalent :

I Market is viable ;

I There no arbitrages (NFLVR) ;

I There exists a sublinear martingale measure with full support.

In particular, one such sublinear martingale measure the Choquet capacity

E(X ) := sup
ϕ∈Q

ϕ(X ).
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Examples, Implications



Dominated Models

In these class of problems, one fixes a probability space (Ω,F,P) and stock price process S . Then,

I The partial order ≤ is given through P almost sure inequalities.

I R is the set of P almost-surely non-negative functions that are not equal to zero.

Here there is a single representative agent whose preference is induced by a risk neutral measure.

he fact that martingale measures are countably additive is a deep result and depends on results from

stochastic integration.
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Quasi-sure

In this case we fix a measurable space (Ω,F) and a family of probability measures P. Then,

I ≤ is given through P quasi-sure inequalities.

I The choice of R is important. The following is used in the literature (e.g., Bouchard & Nutz)but

other choices are possible as well, R ∈ R if

infP∈P P(R≥ 0) = 1, and supP∈P P(R> 0)> 0.

The result is the existence of bounded additive measures Q consistent with I and with full support

property, i..e, for every R ∈ R there is ϕR ∈ Q so that ϕR(R) > 0.
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Weak EMH

In the preceding setting of the Knightian uncertainty, our result can be viewed a new version of the

weak efficient market hypothesis. Indeed, the consistency with economic equilibrium (i.e., viability) is

equivalent to the existence of a set of martingale measures Q that are equivalent to the original priors

P.

However, under the sublinear expectation (or equivalently the Choquet capacity), the discounted asset

prices are only symmetric martingales.
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Robust Arbitrage

In summary, from weakest to strongest we have

I one point arbitrage : strictly positive only at one point Riedel ;

I open arbitrage : strictly positive on an open set

Burzoni, Fritelli & Maggis, and Dolinsky, Soner ;

I Vienna arbitrage : strictly positive everywhere ;

I uniform arbitrage : uniformly positive. This is the strongest possible ; Bartl, Cheredito & Kupper,

and Dolinsky, Soner ;

To eliminate uniform arbitrage one finitely additive martingale measure suffices. While for one point

arbitrage, for every point there needs to be a martingale measure which charges that point.
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Smooth Ambiguity

This is related to the notion of smooth ambiguity by Klibanoff, Marinacci, Mukerji, 2005.

I P = P(Ω) is the set of all probability measures on (Ω,F).

I Let µ be probability measure on P (i.e., a measure on measures)

I The partial order is then given by, X ≤ Y provided that

µ (P ∈ P : P(X ≤ Y ) = 1) = 1.
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Smooth Ambiguity

We say R ∈ R if

µ (P ∈ P : P(R ≥ 0) = 1) = 1, and

µ (P ∈ P : P(R > 0) > 0) > 0.

Moreover, a Borel set N ⊂ Ω is µ polar if

µ (P ∈ P : P(N) = 0) = 1.

Let Nµ be the set of all µ polar sets.

Then NFLVR and viability is equivalent to existence of a set of risk neutral measures Q so that Q polar

sets is equal to Nµ.
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Conclusions

I We have showed that for partial equilibrium to extend to the whole space, an appropriate

no-arbitrage notion is necessary and sufficient.

I We extend the classical work of Harrison & Kreps by relaxing the strict monotonicity condition. This

relaxation allows us to incorporate Knightian uncertainty.

I Under choices of market, strong and weak efficient market hypothesis follow from our results. In

particular, Gilboa-Schmeidler type utilities result from viability.
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