
Optimal Dividends

H. Mete Soner

ORFE, Princeton

————————————————————

Joint work with

Jussi Keppo, National University of Singapore

Max Reppen, Princeton

Jean-Charles Rochet, Geneva and Zurich

————————————————————

Eastern Conference in Mathematical Finance (ECMF)

Boston, October 27, 2019

0



Overview

I Consider a firm that generates random revenue from its fixed assets and is financed through its

equity and debt.

I We model firm’s cash flow by an exogenous diffusion process.

I Two controls are the size of the dividends and the size and the time of the issuance.

I It faces bankruptcy when it cannot meet its debt obligations.

I Following the literature we first study the problem in which dividends could be paid at any time.

I Then, restrict the dividends to an a-priori determined schedule and investigate the difference

between the problems.

I This problem has its counter-parts in the insurance literature as the De Finnetti-Kramer problem.

I Also related to the real option context of Dixit & Pindyck.
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Continuously paid Dividends



Literature

There is no literature on the periodic case expect our paper : Discrete dividend payments in continuous

time J. Keppo, M. Reppen, H.M.S.

All the papers cited below are without this restriction.

I Optimal dividends with random profitability (Math. Finance 2019), M. Reppen, J.-C. Rochet,

H.M.S.

I Corporate Liquidity and Capital Structure (RFS, 2012), by Anderson & Carverhill. This is very

closely related to the above paper.

I Free Cash-Flow, Issuance Costs and Stock Price Volatility (JF, 2011), by Décamps, Mariotti, Rochet

& Villeneuve.

I Capital supply uncertainty, cash holdings, and investment (RFS, 2015), by Hugonnier, Malamud &

Morellec.

For insurance see the papers by Albrecher and collaborators.
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Objectives

Goal : Assign a value to a cash flow under a liquidity constraint.

Goal : Understand the capital allocation of a limited liability firm.

Means : Model maximization of expected value of future discounted dividends.
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One Dimensional Models



Dixit & Pindyck

There is no liquidity constraint and can borrow instantaneously. Then, the dividend rate is equal to the

cash flow rate. Also it is not optimal to hold cash.

This is equivalent to cash flow evaluation with an option to exit (bankruptcy) and the firm value is

then given by,

V (x , µ) = x + sup
τ≥0

E
[∫ τ

0

e−rt µtdt

]
.

Here τ ≥ 0 is the time of exit, or equivalently, strategic bankruptcy. It is chosen optimally by the firm.
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Jeanblanc & Shiryayev (1995)

I Firm has cash reserves

dX L
t = µdt + σdWt − dLt , X L

0 = x ,

where µ, σ > 0 and Lt (adapted, increasing, RCLL, ∆Lt ≤ Xt−) denotes cumulative dividends paid

up to time t.

I Time of ruin : θ(L) := inf{t > 0 : X L
t < 0}.

I The payoff of a dividend policy L is :

J(x ; L) = E

[∫ θ(L)

0

e−rtdLt

]
.

I The value of the cash flow/firm is the maximum value of :

V (x) = sup
L

J(x ; L).

I Compared to Dixit & Pindyck, here the profitability µ is constant, dividends are always positive and

bankruptcy is not chosen. Without this constraint, one can take dLt = µdt + σdWt .
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Equation

The value function solves

min

{
rV − µV ′ − σ2

2
V ′′,V ′ − 1

}
= 0, V (0) = 0.

The optimal solution is of barrier type, so the state space is divided into two regions :

No-dividend region : For some x̄ , it is not optimal to pay any dividends in [0, x̄). In this region

rV − µV ′ − σ2

2
V ′′ = 0.

Dividend region : In the region [x̄ ,∞), V ′ = 1, suggesting V (x) = V (x̄) + (x − x̄). Hence, any cash in

excess of x̄ is paid as dividends.

9



Value Function
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Random profitability



Random profitability rate

I Cash flow rate :

dµt = κ(µt)dt + σ̃(µt)dWt , µ0 = µ.

I Examples of profitability are Ornstein–Uhlenbeck or CIR processes.

I Reserves at time t with cumulative dividends L (adapted, increasing, RCLL, ∆Lt ≤ Xt−) :

X L
t = x +

∫ t

0

µsds + σWt − Lt .

I In particular, at certain times µt could be negative.

I For negative µ values, there is a balance between :

liquidate immediately and collect x ;

wait until the profitability is positive and pay the cost of discounting ;

also waiting has the probability of bankruptcy due to depletion of the cash reserves.
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Structure of the Solution
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Optimization problem

As before, we maximize present value of dividends until ruin :

V (x , µ) = sup
L

E

[∫ θ(L)

0

e−rtdLt

]
.

Then,

min {rV −AV ,Vx − 1} = 0, V (0, ·) ≡ 0,

A = µ∂x + κ(µ)∂µ +
σ2

2
∂xx +

ρσσ̃

2
∂xµ +

σ̃2

2
∂µµ.

Theorem (Comparison)

Let u and v be upper and lower semicontinuous, polynomially growing viscosity sub- and

super-solutions of the DPE. Then u ≤ v for x = 0 implies that u ≤ v everywhere.
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Why comparison useful

Facts

I The value function is continuous and satisfies the dynamic programming principle.

I The value function is a viscosity solution.

I There is comparison for the dynamic programming equation in an appropriate class.

I The numerical scheme converges to the unique viscosity solution ; hence, to the value function.
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Equity Issuance

I We now add the possibility of equity issuance or capital injection.

I It can be done at any time but with proportional λf ≥ 0 and fixed costs λf ≥ 0.

I Then,

dX L,I
t = dCt − dLt + dIt .

I Pay-off functional :

J(x ; L, I ) = E

[∫ θ(L,I )

0

e−rtdLt −
∑
t≥0

e−rt(λf + (1 + λp)∆It)1{∆It>0}

]
,

where as before θ(L, I ) := inf{t > 0 : X L,I
t < 0}. and V (x) = sup

L,I
J(x ; L, I ).

I The control I could be used to avoid bankruptcy.
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Numerical Results



Random Profitability
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Random Profitability - II
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Value Function
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Non-concavity

I Let L1 and L2 be two strategies and define L̄ = L1+L2

2
.

I Then, θ(L̄) < θ(L1) ∨ θ(L2) may happen, suggesting dividend payment after ruin for the midpoint

strategy.

I Due to this, the value function is not necessarily concave.
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Discrete dividends :

Abstract description



Abstract formulation

State process Xα,β controlled by

I a continuous control α at t ∈ R≥0 with a continuous cost rate of Fαt = F (αt ,X
α,β
t ) and

I a discrete control β at t = 0,T , 2T , . . . moving state to x + β and accumulating cost of Gβt at

discrete times.

The value function is

V (x) := sup
α,β

E
[ ∫ ∞

0

e−rtdFαt +
∞∑
k=0

e−rkTGβkT

∣∣∣∣Xα,β
0− = x

]
,

23



Dynamic programming

Applying the dynamic programming principle,

V (x) = sup
α,β

E
[ ∫ T

0

e−rtdFαt + G(β, x) + e−rTV (Xα,β
T− )

∣∣∣∣Xα,β
0− = x

]
,

Define continuous and discrete operators

Lϕ(x) := sup
α

E
[ ∫ T

0

e−rtdFαt + e−rTϕ(Xα,0
T )

∣∣∣∣Xα,0
0 = x

]
,

Dϕ(x) := sup
β

(ϕ(x + β) + G(β, x)).

Let T := D ◦ L. Then,

V = T V .
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Fixed Point

Recall that V = T V with

Lϕ(x) := sup
α

E
[ ∫ T

0

e−rtdFαt + e−rTϕ(Xα,0
T )

∣∣∣∣Xα,0
0 = x

]
,

Dϕ(x) := sup
β

(ϕ(x + β) + G(β, x)).

Goal : Find (X , d) such that T is a strict contraction and V ∈ X . Then, for any ϕ ∈ X ,

V = lim
n→∞

T nϕ.

This is possible due to discounting.
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Applications

I This structure could exist in several problems where there is periodic control or monitoring.

I We will discuss the case of periodic dividends in the next section.

I Another application is Leveraged Exchange Traded Funds (LETF).

I in LETF, one monitors the daily returns of an underlying and tries to match a pre-determined

multiple of this return. Hence, it is daily monitoring with continuous trading.

I LEFT is studied in a paper with Min Dai, Steve Kuo, M.S., Chen Yang.
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Discrete dividends



Full Problem recalled

I Firm with cash flow C and reserves

dX L,I
t = dCt − dLt + dIt .

I Time of ruin θ(L, I ) = inf{t > 0 : X L,I
t < 0}.

I Continuous payoff functional :

J(x ; L, I ) = E

[∫ θ(L,I )

0

e−rtdLt −
∑
t≥0

e−rt(λf + (1 + λp)∆It)1{∆It>0}

]
.

I Discrete payoff functional :

J(x ; L, I ) = E

[
θ(L,I )∑
t=0

e−rt∆Lt −
∑
t≥0

e−rt(λf + (1 + λp)∆It)1{∆It>0}

]
.
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Periodization

Like in the abstract formulation,

Lϕ(x) = sup
I

E

[
−
∑

0≤t<T

e−rt(λf + (1 + λp)∆It)1{∆It>0} + e−rTϕ(X 0,I
T−)1{T<θ(L,I )}

]
Dϕ(x) = sup

`≤x
(ϕ(x − `) + `);

Numerically we want to find the fixed point of T : V = limn→∞(D ◦ L)nϕ.

To compute L, observe that Lϕ = u(0, ·), where u solves u(T , ·) = ϕ and

min

{
−(∂t +A− r)u(t, x), u(t, x)− sup

i≥0
(u(t, x + i)− (1 + λp)i − λf )

}
= 0,

with Au = µu′ + σ2

2
u′′ is the infinitesimal generator of C .
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PDE formulation

I Define the issuance operator as

Mu(t, x) = sup
i≥0

(u(t, x + i)− (1 + λp)i − λf ) .

I The fixed point can be characterized by the PDE

min {−(∂t +A− r)v(t, x), v(t, x)−Mv(t, x)} = 0,

with the boundary condition

v(t, 0) = Mv(t, x) ∨ 0, t ∈ [0,T ]

and a periodic final condition,

v(T , x) = e−rT sup
`≤x

(v(0, x − `) + `).
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Regularity

Fix ϕ and consider the pure issuance problem up to time T .

Theorem

Under some assumptions on ϕ. The value function u is a smooth, classical solution of

−(∂t +A− r)v(t, x) = 0, t ∈ [0,T ), x > 0,

with the boundary condition

v(t, 0) = Mv(t, x) ∨ 0, t ∈ [0,T ],

and u(T , ·) = ϕ. In particular, it is not optimal to make issuance when x > 0.

The assumptions on ϕ are natural and are satisfied in the dividend problem. It is proved by an iterative

scheme.
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Value function with Ct = µt + σWt , µ, σ ∈ R>0 and no issuance
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Value function with Ct = µt + σWt , µ, σ ∈ R>0, and Issuance
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Random profitability

I Let dCt = µtdt + σdWt and µis a diffussion process.

I We follow the same steps :

Dϕ(x , µ) = sup
`≤x

(ϕ(x − `, µ) + `),

Lϕ(x , µ) = u(0, x , µ),

where u solves

min
{
− (∂t +A− r)u(t, x , µ), u(t, x , µ)−Mu(t, x , µ))

}
= 0,

u(T , x , µ) = ϕ(x , µ), and A is the generator of (C , µ).

I We numerically compute V = limn→∞(D ◦ L)nϕ.
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Convergence

Theorem

If there exists an α : R→ [1,∞) so that

1. E[(x + CT )+|µ0 = µ] ≤ x + C∗α(µ), ∀µ ∈ R, for some C∗ ≥ 0,

2. E[α(µT )|µ0 = µ] ≤ erT/2α(µ),

then there exists a metric space (Cα, dα) such that the operator T maps Cα into itself and is a strict

contraction.

These assumptions are satisfied by Ornstein–Uhlenbeck profitability :

dµt = k(µ̄− µt)dt + σ̃dW̃ .
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Value function (It ≡ 0)
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Value function with Issuance
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Relative loss (It ≡ 0)
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Relative loss with Issuance
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Gambling for resurrection



Concavication or Gambling

Consider the possibility of entering a fair lottery at any time.

New control variable

Gt =
∞∑
k=1

gk1{t≥τk},

for predictable τk and Fτk -measurable random variable gk satisfying E[gk ] = 0 and Xτk− + gk ≥ 0.

Define

Xt = x +

∫ t

0

µtdt + σWt − Lt + Gt ,

and the value function is as before, but including optimization over lotteries as wll.

The HJB equation is then

min{rV − LV , Vx − 1, −Vxx} = 0, V (0, ·) = 0.
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Concluding



Thank you for your attention

I Depending on the structure, there could be a substantial difference between the discrete and

continuous problems.

I Periodic structure is conceptually natural.

I The regularity for the issuance problem in one step is also a new result.

I This is joint work with Jussi Keppo, Max Reppen, Jean-Charles Rochet :

I Discrete dividend payments in continuous time, J. Keppo, M. Reppen, M.S.

I Optimal dividends with random profitability (Math. Finance 2019), M. Reppen, J.-C. Rochet, M.S.
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